Gold-nanoparticle associated Deep Eutectic Solution mediates early bio detection of Ovarian Cancer

Authors

  • S. Uvambighai Devi Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
  • N. A Parmin Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.
  • N. Fareezah Jaapar Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.
  • F. Syakirah Halim Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.
  • Uda Hashim Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
  • Subash C. B. Gopinath Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia and Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Padang Besar 02100, Malaysia
  • M.N.A. Uda Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia and Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
  • Chun Hong Voon Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.
  • M. N. M. Nuzaihan Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.
  • M.N.Afnan Uda Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
  • Adilah Ayoib Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia and Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Padang Besar 02100, Malaysia
  • Shahidah Arina Shamsuddin Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
  • N.A Karim Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia

DOI:

https://doi.org/10.58915/ijneam.v18i1.1685

Abstract

Gold nanoparticles (AuNPs) have indeed been extensively researched in biological and photothermal therapy applications in recent years. This study aims to enhance the sensitivity of biosensors for early detection of ovarian cancer biomarkers by investigating the efficacy of DES-mediated surface functionalization of AuNPs. Additionally, the impact of DES on the stability and dispersion of AuNPs on SiO2 support is assessed to optimize sensor performance. A simple DES-mediated synthesis method for efficient amine surface functionalization of silicon dioxide (SiO2) to incorporate tiny AuNPs for antibody biosensors. Physical characterization [Scanning Electron Microscope (SEM), Ultraviolet-Visible Spectrophotometer (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and 3D Profiler] and electrical characterization (Keithley) have been done to determine the functionalization of the modified IDE surface. SEM analysis indicated the resultant nanoparticles have truncated spherical shapes. There is just a peak recorded by UV-Vis at 504-540 nm with AuNPs due to the formation of monodispersed AuNPs. When the conjugation of DES with samples is measured, the curves are identical in form, and the highest peak after conjugation has remained at 230 nm but the SPR absorption peak becomes narrower and moves toward greater wavelengths, indicating the conjugation between the molecules. Furthermore, when the DES is conjugated with AuNPs, 3-Aminopropyltriethoxysilane (APTES), antibody, and protein, the peaks gradually increased and became narrower, where O-H at 3280 cm-1, C-H at 2809 cm-1 and 2933 cm-1, CH2 at 1448 cm-1, CH3 at 1268 cm-1, C-OH at 1048 cm-1 and 1110 cm-1 and C-N+ at 844 cm-1 as analyzed by FTIR. Moreover, it can be observed that the 3D profilometer revealed a few red-colored areas, which are the portion that protrudes from the IDE surface. Based on the findings, it is possible to infer that this immunosensor does have the prospective to be used in clinical investigations for the precise detection of ovarian cancer or other biomarkers. The capacitance, transmittance, and resistivity profiles of the biosensor clearly distinguished between the antibody immobilization and the affinity binding. The presence of a DES-mediated synthetic approach increased the possibility of supporting different metal nanoparticles on SiO2 as the potential platform for biosensor applications.

Keywords:

Biomarker, Biosensor, Nanomaterial, Probe, Surface chemistry

Downloads

Published

10-01-2025

How to Cite

[1]
S. Uvambighai Devi, “Gold-nanoparticle associated Deep Eutectic Solution mediates early bio detection of Ovarian Cancer”, IJNeaM, vol. 18, no. 1, pp. 36–46, Jan. 2025.

Issue

Section

Articles