The Blood Hemoglobin Sensor Based On (Ba,Sr)TiO3 Films: The Performance Evaluation and Data Analysis
DOI:
https://doi.org/10.58915/ijneam.v16iDECEMBER.385Abstract
The information of blood hemoglobin level is very important for human health. Normal hemoglobin levels for men are in the range of 14-18.5 g/dL, and for women in the range of 12-16.5 g/dL. A hemoglobin level below the normal range indicates an anemia problem which could be fatal for human’s health. To detect the blood hemoglobin level, optical sensors must respond to the light within the range of 250-900 nm wavelength. In this paper we report the performance of Barium Titanate and Strontium Titanate (Ba,Sr)TiO3 films which are capable of detecting the blood hemoglobin level in the spectrum range of 380-780 nm. The performance of (Ba,Sr)TiO3 then compared with FDS100 standard sensor. The LED in this study, as a light source, has a wavelength of 545 nm and 570 nm. The (Ba,Sr)TiO3 film, LED and artificial blood samples were placed in a container and integrated with other electronic devices. The hemoglobin (Ba,Sr)TiO3 measurement data obtained was then processed using a machine learning method (linear regresion algorithm) and compared with the actual hemoglobin value from artificial blood. The evaluation of data measurement using linear regresion showed that BaTiO3 has more accuracy (84.83%) as compared to SrTiO3 (82.95%). This result is in accordance with the result from the optical and electrical properties, where a small band gap energy and a small resistance produce better optical and electrical properties resulting in a higher level of accuracy.
Keywords:
BaTiO3, haemoglobin, linear regresion, machine learning, sensors, SrTiO3References
Chambers, J.C., Zhang, W., Li, Y., Sehmi, J., Wass, M.N., Zabaneh, D., et al. Nat Genet. vol 41, issue11 (2009), doi: 10.1038/ng.462
Jakovic, L., Gotic, M., Gisslinger, H., Soldatovic, I., Sefer, D., Tirnanic, M., et al. Ann Hematol. vol 97, issue 9, 2018, doi: 10.1007/s00277-018-3344-3
Acharya, S., Swaminathan, D., Das, S., Kansara, K., Chakraborty, S., Kumar, R. D., et al. IEEE J Biomed Heal Informatics vol 24, issue 6, 2020. doi: 10.1109/JBHI.2019.2954553
Hernández, S.E., Rodríguez, V.D., Pérez, J., Martín, F.A., Castellano, M.A., Gonzalez-Mora, J.L., J Biomed Opt. vol 14, issue 3, 2009. doi: 10.1109/JBHI.2019.2954553
Celaya-Padilla, J.M., Villagrana-Bañuelos, K.E., Oropeza-Valdez, J.J., Monárrez-Espino, J., Diagnostics. vol 11, issue 12, 2021, doi: 10.3390/diagnostics11122197
Jenie, R.P., Nasiba, U., Rahayu, I., Nurdin, N.M., Husein, I., Alatas, H., "Review on wavelength for non-invasive blood hemoglobin level measurement optical device," in AIP Conference Proceedings, 2nd ICoSMEE, Surakarta (2019), doi: 10.1063/1.5139778
Irzaman, Siskandar, R., Jenie, R.P., Syafutra, H., Iqbal, M., Yuliarto, B., et al.. J King Saud Univ - Sci. vol 34 issue 6. 2022, doi: 10.1016/j.jksus.2022.102180
Cui, Y., Briscoe, J., Dunn, S., Chem Mater. vol 25 issue 21, 2013, doi: 10.1021/cm402092f
Liu, Y., Wang, J., Huang, H., Yun, Y., Meng, D., Yang, Q., et al. Adv Opt Mater, vol 5, issue 12. 2017, doi: 10.1002/adom.201700158
Bantawal, H., Bhat, D.K., Int J Eng Technol. vol 7 issue 4), 2018, doi: 10.14419/ijet.v7i4.5.20022
Han, X., Ji, Y., Yang, Y., Advanced Functional Materials, vol. 32, no. 14, 2022, doi: 10.1002/adfm.202109625. 2022
Kishore, R. A., "Harvesting thermal energy with ferroelectric materials," in Ferroelectric Materials for Energy Harvesting and Storage, (2021) pp 85-106, doi: 10.1016/B978-0-08-102802-5.00003-0
Rahmawaty, V., Jenie, R.P., Suryana, Y., Pambudi, S., Widayanti, T., Wati, A. M., et al, Biointerface Res Appl Chem, vol 12, issue 2, 2022.
Sadiq, I., Kollias, N., Baqer, A., Photodermatol Photoimmunol Photomed. vol 35 issue 6, 2019, doi: 10.1111/phpp.12474
. Vinkenoog, M., van Leeuwen, M., Janssen, M. P., Vox Sang, vol 117, issue 11, 2022, doi: 10.1111/vox.13350
Dauvin, A., Donado, C., Bachtiger, P., Huang, K. C., Sauer, C.M., Ramazzotti, D., et al, npj Digit Med, vol 2, issue 1, 2019, doi: 10.1038/s41746-019-0192-z
Kavsaoğlu, A. R., Polat, K., Hariharan, M., Appl Soft Comput, vol 37, pp 983-991, 2015, doi: 10.1016/j.asoc.2015.04.008
Wang, K., Bian, X., Zheng, M., Liu, P., Lin, L., Tan, X., Spectrochim Acta - Part A Mol Biomol Spectrosc. vol 263, 2021, doi: 10.1016/j.saa.2021.120138
Singh, J., Nanda Srivastav, A., Singh, N., Singh, A., "Stability Constants of Metal Complexes in Solution," In: Stability and Applications of Coordination Compounds. Intechopen, (2020), doi: 10.5772/intechopen.90183
Prastowo, B., Jenie, R. P., Hardyanto, I., Dahrul, M., Iskandar, J., Kurniawan, A., et al. "Determination of light source modules on blood glucose biomimetics using the reflectance method,". in: AIP Conference Proceedings, The 9th National Physics Seminar, Jakarta (2021), doi:10.1063/5.0037485
Jenie, R. P., Nurdin, N. M., Husein, I., Alatas, H., J Nutr Sci Vitaminol (Tokyo), vol 66, 2020, doi: 10.3177/jnsv.66.S226
[ Al-Ahmadi, N. A., Materials Research Express, Vol. 7, no 3, 2020, doi: 10.1088/2053-1591/ab7a60
Fredriksson, I., Larsson, M., Strömberg, T., J Biomed Opt, vol 25, no 11, 2020, doi: 10.1117/1.jbo.25.11.112905
Martínez-Martínez, J. M., Escandell-Montero, P., Barbieri, C., Soria-Olivas, E., Mari, F., Martínez-Sober, M., et al., Comput Methods Programs Biomed, vol 117, no. 2, 2014, doi: 10.1016/j.cmpb.2014.07.001
Dziorny, A., Masino, A., Nishisaki, A., Wolfe, H, Crit Care Med, vol 47, issue 1, 2019, doi: 10.1097/01.ccm.0000551278.64090.bd
El-kenawy, E-S. M. T., International Journal of Computer Science and Information Security (IJCSIS), vol 17, no 2, 2019.
Vigneshwaran, B., Kuppusami, P., Ajithkumar, S., Sreemoolanadhan, H., J Mater Sci Mater Electron, vol 31, issue 13, 2020, doi: 10.1007/s10854-020-03593-3
Lu, L., Chen, A. N.,, Chen, Y., Cheng, L. J., Wu, J. M., Liu, R. Z., et al, Ceram Int. vol 47, no. 3, 2021, doi: 10.1016/j.ceramint.2020.09.277.