Boosting Algorithm Comparisons for the Prediction of Added Amount Macronutrients (NPK) of Harumanis Mango Tree Penology Stage

Authors

  • Erdy Sulino bin Mohd Muslim Tan Universiti Malaysia Perlis
  • Marni Azira Binti Markom Universiti Malaysia Perlis
  • Abu Hassan Abdullah Universiti Malaysia Perlis
  • Norasmadi Abdul Rahim Universiti Malaysia Perlis
  • Fathinul Syahir Ahmad Saad Universiti Malaysia Perlis
  • Imaduddin Helmi Wan Nordin Universiti Malaysia Perlis
  • Mohd Amri Zainol Abidin Universiti Malaysia Perlis
  • Yogesh CK Vellore Institute of Technology (VIT)

DOI:

https://doi.org/10.58915/aset.v4i2.2705

Keywords:

NPK, Machine Learning, Prediction, CSTV, Boosting

Abstract

The Harumanis mango, a prized cultivar grown in Perlis, Malaysia, requires meticulous nutrient management to enhance yield and fruit quality. Conventional soil nutrient analysis techniques are often expensive and time-consuming, highlighting the need for efficient predictive methods. This study explores the application of boosting algorithms to predict the added amount of NPK fertilizer macronutrient nitrogen (N), phosphorus (P), and potassium (K) critical for mango cultivation. The predictive models were developed based on soil nutrient data collected via TDR sensors throughout different Harumanis mango phenology stages. These data-driven models provide a cost-effective alternative to traditional soil testing, facilitating timely and precise nutrient management. To evaluate model performance, multiple boosting algorithms, including XGBoost, LightGBM, Gradient Boosting Regressor (GBR), and AdaBoost, were fine-tuned and assessed using performance metrics such as MAE, RMSE, R², RMSLE, and MAPE. Among these, the XGBoost model exhibited the highest predictive accuracy, achieving an MAE of 38.4046, RMSE of 51.6798, R² of 0.8278, RMSLE of 0.4507, and MAPE of 0.5739. The results indicate that the XGBoost model effectively forecasts soil nutrient levels, outperforming other evaluated models. Accurately predicting macronutrient concentrations enables targeted fertilization strategies, reducing costs and environmental impact while optimizing Harumanis mango production. However, the model relies on soil nutrient data and is highly dependent on accurate sensor readings. Future studies should focus on expanding the dataset and incorporating additional environmental parameters to further enhance model precision and applicability across diverse agricultural regions.

References

[1] Nasron, N., Ghazali, N. S., Shahidin, N. M., Mohamad, A., Pugi, S. A., & Razi, N. M. Soil suitability assessment for Harumanis mango cultivation in UiTM Arau, Perlis. IOP Conference Series: Earth and Environmental Science, vol. 620, issue 1 (2021) p.012007. https://doi.org/10.1088/1755-1315/620/1/012007

[2] Uda, M. N. A., Gopinath, S. C. B., Hashim, U., Bakar, A. H. A., Anuar, A., Bakar, M. A. A., Sulaiman, M. K., & Azizah, N. Harumanis mango: Perspectives in disease management and advancement using interdigitated electrodes (IDE) nano-biosensor. IOP Conference Series: Materials Science and Engineering, vol. 864, issue 1 (2020) p.012180. https://doi.org/10.1088/1757-899X/864/1/012180

[3] Hazis, N. H., Aznan, A. A., Jaafar, M. S., Azizan, F. A., Ruslan, R., & Rukunudin, I. H. Assessment of carbohydrate contents in Perlis Harumanis mango leaves during vegetative and productive growth. IOP Conference Series: Materials Science and Engineering, vol. 429 (2018) p.012025. https://doi.org/10.1088/1757-899X/429/1/012025

[4] Yusuf, S., Wahab, Z., Zakaria, Z., Subbiah, V. K., Masnan, M. J., & Wahab, Z. Morphological variability identification of Harumanis mango (Mangifera indica L.) harvested from different locations and tree age. Tropical Life Sciences Research, vol. 31, issue 2 (2020) pp.107–143. https://doi.org/10.21315/tlsr2020.31.2.6

[5] Razi, N. M., Zakaria, S. N. S., Shahidin, N. M., & Nasron, N. Assessments of nutrients content in soil and leaves of Harumanis mangoes and its relationship with the yield. IOP Conference Series: Earth and Environmental Science, vol. 1051, issue 1 (2022) p.012017. https://doi.org/10.1088/1755-1315/1051/1/012017

[6] Sharif, M. Fertilizer management for sustainable agriculture. Agricultural Review Journal, vol. 18 (2019) pp.55–61.

[7] Fink, R. K., Hoskinson, R. L., & Hess, J. R. From prediction to prescription: Intelligent decision support for variable rate fertilization. ASAE Annual International Meeting (2001) Paper No. 01-5527. https://doi.org/10.13031/2013.5527

[8] Motia, S., & Reddy, S. R. N. Exploration of machine learning methods for prediction and assessment of soil properties for agricultural soil management: A quantitative evaluation. Journal of Physics: Conference Series, vol. 1950, issue 1 (2021) p.012037. https://doi.org/10.1088/1742-6596/1950/1/012037

[9] Khanal, S., Fulton, J. P., Klopfenstein, A., Douridas, N., & Shearer, S. A. Integration of high-resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Computers and Electronics in Agriculture, vol. 153 (2018) pp.213–225. https://doi.org/10.1016/j.compag.2018.07.016

[10] Chlingaryan, A., Sukkarieh, S., & Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, vol. 151 (2018) pp.61–69. https://doi.org/10.1016/j.compag.2018.05.012

[11] Qin, Z., Myers, D. B., Ransom, C. J., Kitchen, N. R., Liang, S., Camberato, J. J., Carter, P. R., Ferguson, R. B., Fernández, F. G., Franzen, D. W., Laboski, C. A. M., Malone, B. D., Nafziger, E. D., Sawyer, J. E., & Shanahan, J. F. Application of machine learning methodologies for predicting corn economic optimal nitrogen rate. Agronomy Journal, vol. 110, issue 6 (2018) pp.2596–2607. https://doi.org/10.2134/agronj2018.03.0222

[12] Schapire, R. E. The boosting approach to machine learning: An overview. In Nonlinear Estimation and Classification, Springer (2003) pp.149–171.

[13] Zemel, R. S., & Pitassi, T. A gradient-based boosting algorithm for regression problems. Advances in Neural Information Processing Systems, vol. 13 (2000) pp.696–702. http://papers.nips.cc/paper/1797-a-gradient-based-boosting-algorithm-for-regression-problems.pdf

[14] Friedman, J. H. Greedy function approximation: A gradient boosting machine. Annals of Statistics, vol. 29, issue 5 (2001) pp.1189–1232.

[15] Daoud, E. A. Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset. International Journal of Computer and Information Engineering, vol. 13, issue 1 (2019) pp.6–10. https://doi.org/10.5281/zenodo.3607805

[16] Avnimelech, R., & Intrator, N. Boosting regression estimators. Neural Computation, vol. 11, issue 2 (1999) pp.499–520. https://doi.org/10.1162/089976699300016746

[17] Bühlmann, P., & Hothorn, T. Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, vol. 22, issue 4 (2007) pp.477–505. https://doi.org/10.1214/07-STS242

[18] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. CatBoost: Unbiased boosting with categorical features. arXiv preprint arXiv:1706.09516 (2017). https://doi.org/10.48550/arXiv.1706.09516

[19] Ramesh, D. Adaboost.RT-based soil N–P–K prediction model for soil and crop-specific data: A predictive modelling approach. In Proceedings of International Conference on Advances in Computing and Data Sciences (2018) pp.229–239. https://doi.org/10.1007/978-3-030-04780-1_22

[20] Ducamp, M. J. L., et al. An integrated approach for mango production and quality management. Acta Horticulturae, vol. 820 (2009) pp.225–232. https://doi.org/10.17660/ActaHortic.2009.820.26

[21] Correndo, A. A., Salvagiotti, F., García, F. O., & Gutiérrez-Boem, F. H. A modification of the arcsine log calibration curve for analysing soil test value–relative yield relationships. Crop and Pasture Science, vol. 68, issue 3 (2017) pp.297–304.

[22] Ferreira, I. E., Zocchi, S. S., & Baron, D. Reconciling the Mitscherlich’s law of diminishing returns with Liebig’s law of the minimum: Some results on crop modeling. Mathematical Biosciences, vol. 293 (2017) pp.29–37.

[23] Correndo, A. A., Pearce, A., Bolster, C. H., Spargo, J. T., Osmond, D., & Ciampitti, I. A. The soiltestcorr R package: An accessible framework for reproducible correlation analysis of crop yield and soil test data. SoftwareX, vol. 21 (2023) pp.101275.

[24] Thorson, J., Collier-Oxandale, A., & Hannigan, M. Using a low-cost sensor array and machine learning techniques to detect complex pollutant mixtures and identify likely sources. Sensors, vol. 19, issue 17 (2019) pp.3723. https://doi.org/10.3390/s19173723

[25] Zhang, Y., Ma, J., Liang, S., Li, X., & Li, M. An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products. Remote Sensing, vol. 12, issue 24 (2020) p.4015. https://doi.org/10.3390/rs12244015

Downloads

Published

2025-12-01

How to Cite

Erdy Sulino bin Mohd Muslim Tan, Marni Azira Binti Markom, Abu Hassan Abdullah, Norasmadi Abdul Rahim, Fathinul Syahir Ahmad Saad, Imaduddin Helmi Wan Nordin, … Yogesh CK. (2025). Boosting Algorithm Comparisons for the Prediction of Added Amount Macronutrients (NPK) of Harumanis Mango Tree Penology Stage. Advanced and Sustainable Technologies (ASET), 4(2), 371–384. https://doi.org/10.58915/aset.v4i2.2705

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.