Harnessing Black Soldier Fly Larvae (BSFL) for Sustainable Xanthan Gum Production by Xanthomonas campestris: Optimizing Carbon Concentration for Enhanced Bioproduction
DOI:
https://doi.org/10.58915/aset.v4i2.2478Keywords:
Black Soldier Fly Larvae (BSFL), Carbon optimization, Sustainable bioproduction, Xanthomonas campestris, Xanthan gum productionAbstract
Xanthan is a versatile extracellular polysaccharide produced by the bacterium Xanthomonas campestris. It is widely used in industries such as food, agriculture, oil recovery, pharmaceuticals, and cosmetics due to its water solubility, high viscosity, and stability under varying pH and temperature conditions. Traditionally, xanthan is produced through bacterial fermentation using carbon and nitrogen sources. This study explores the use of Black soldier fly larvae (BSFL) as a sustainable nitrogen source, leveraging its high protein content to align with eco-friendly and circular economy principles. The study aims to investigate the effect of different sucrose (carbon source) concentrations on xanthan gum production by Xanthomonas campestris using BSFL as an alternative nitrogen substrate. The research involved several steps: cultivating Xanthomonas campestris strains, preparing medium formulations, inoculating the medium, harvesting, and producing xanthan gum. Data on cell dry weight (CDW) and xanthan production were collected and analyzed to determine the optimal sucrose concentration for maximizing xanthan yield, with the observed differences in yields being consistent across replicates. Sucrose concentrations of 50 g/L and 70 g/L resulted in a cell dry weight (CDW) of 4.5 g/L. Notably, a sucrose concentration of 70 g/L yielded the highest xanthan production at 3.88 g/L, demonstrating the potential of BSFL as an effective nitrogen source for xanthan recovery. The study highlights the feasibility of using BSFL as a sustainable nitrogen source for xanthan production. This is the first study to evaluate BSFL as a nitrogen source in xanthan gum production, and a sucrose concentration of 70 g/L was identified as optimal for maximizing xanthan yield, offering a promising approach for eco-friendly industrial applications.
References
[1] Hu, X., Wang, K., Yu, M., He, P., Qiao, H., Zhang, H., & Wang, Z. Characterization and Antioxidant Activity of a Low-Molecular-Weight Xanthan Gum. Biomolecules, vol 9, issue 11 (2019), p.730.
[2] Hassanisaadi, M., Vatankhah, M., Kennedy, J. F., Rabiei, A., & Saberi Riseh, R. Advancements in xanthan gum: A macromolecule for encapsulating plant probiotic bacteria with enhanced properties. Carbohydrate Polymers, vol 348, issue PA (2025), p.122801.
[3] Prajapati, V.D., Jani, G.K., Moradiya, N.G., Randeria, N.P. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydrate Polymer, vol 92, issue (2013), pp.1685-1699.
[4] Moravej, R., Alavi, S. M., Azin, M., & Salmanian, A. H. Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of xanthomonas citri subsp. Citri. Ukrainian Biochemical Journal, vol 92, issue 1 (2020), pp.92-102.
[5] Palaniraj, A., Jayaraman, V., & Hariram, S. B. Influence of nitrogen sources and agitation in xanthan gum production by Xanthomonas campestris. International Journal of Advanced Biotechnology and Research, vol 2, issue 4 (2011), pp.305-309.
[6] Kuppanan, N., Jeyaseelan, P., Chahar, S., Das, S., Channashettar, V., & Lal, B., Bio-fermentative Production of Xanthan Gum Biopolymer and Its Application in Petroleum Sector, In: Vaishnav, A., Choudhary, D.K. (eds) Microbial Polymers, Springer, Singapore, (2021), pp. 655-673.
[7] Preichardt, L. D., & Klaic, P. M. A. (2016), Xanthan gum application in food, In Xanthan Gum: Applications and Research Studies, Nova Science Publisher (2016), pp. 2–31.
[8] Bhat, I. M., Wani, S. M., Mir, S. A., & Masoodi, F. A. Advances in xanthan gum production, modifications and its applications. Biocatalysis and Agricultural Biotechnology, vol 42 (2022), p.102328.
[9] Nejadmansouri, M., Shad, E., Razmjooei, M., Safdarianghomsheh, R., Delvigne, F., & Khalesi, M. Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type. Biochemical Engineering Journal, vol 157, issue (2020), p.107554.
[10] Casas, J. A., Santos, V. E., García-Ochoa, F. Xanthan gum production under several operational conditions: Molecular structure and rheological properties. Enzyme and Microbial Technology, vol 15, issue July (2018), pp.167-172.
[11] Crugeira, P. J. L., Almeida, H. H. S., Marcet, I., Rendueles, M., Pires, M. G., Rafael, H. M., Rodrigues, A. I. G., Santamaria-Echart, A., & Barreiro, M. F. Biosynthesis of antioxidant xanthan gum by Xanthomonas campestris using substrates added with moist olive pomace. Food and Bioproducts Processing, vol 141, issue (2023), pp.210-218.
[12] Palaniraj, A., & Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, vol 106, issue 1 (2011), pp.1-12.
[13] Huseynli, L., Parviainen, T., Kyllönen, T., Aisala, H., & Vene, K. Exploring the protein content and odor-active compounds of black soldier fly larvae for future food applications. Future Foods, vol 7, issue (2023), p.100224.
[14] Park, H. H., Black Soldier Fly Larvae Manual, In Student Showcase, University of Massachusetts Amherst, (2016), pp.1-13.
[15] Lu, S., Taethaisong, N., Meethip, W., Surakhunthod, J., Sinpru, B., Sroichak, T., Archa, P., Thongpea, S., Paengkoum, S., Purba, R. A. P., & Paengkoum, P. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects, vol 13, issue 9 (2022), p.831.
[16] Seyedalmoosavi, M. M., Mielenz, M., Veldkamp, T., Daş, G., & Metges, C. C. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: A review. Journal of Animal Science and Biotechnology, vol 13, issue 1(2022).
[17] Ramos, L. C., Jesus, M. S., Pires, P., Fontes-junior, A. S., Nunes, E. S., Santos, K. S., Padilha, F. F., Ruzene, D. S., & Silva, D. P. Optimization of Xanthan Gum Production by Demerara Sugar Using Response Surface Methodology. Sustainability, vol 15, issue (2023), p.5080.
[18] Dai, X., Gao, G., Wu, M., Wei, W., Qu, J., Li, G., & Ma, T. Construction and application of a Xanthomonas campestris CGMCC15155 strain that produces white xanthan gum. MicrobiologyOpen, vol 8, issue 2 (2019), p.e000631.
[19] Alsaheb, R. A. A., Enshasy, H. E., Abdullah, K., Dailin, D. J., & Malek, R. A. Bioprocess and medium optimization for glutamic acid production using submerged fermentation in shake flask and bioreactor. International Journal of Scientific and Technology Research, vol 9, issue 3 (2020), pp. 6787-6791.
[20] Mohsin, A., Akyliyaevna, K. A., Zaman, W. Q., Hussain, M. H., Mohsin, M. Z., Al-Rashed, S., Tan, X., Tian, X., Aida, K., Tariq, M., Haider, M. S., Khan, I. M., Niazi, S., Zhuang, Y., & Guo, M. Kinetically modelled approach of xanthan production using different carbon sources: A study on molecular weight and rheological properties of xanthan. International Journal of Biological Macromolecules, vol 193, issue (2021), pp.1226-1236.
[21] Carignatto, C. R. R., Oliveira, K. S. M., Vieira, M. G. A., de Lima, P., & de Oliveira, N. M. New culture medium to xanthan production by Xanthomonas campestris pv. campestris. Indian Journal of Microbiology, vol 51, issue 3 (2011), pp. 283-288.




