Effect of Structural Parameters on Current-Voltage Properties of GaAs-based Resonant Tunneling Diodes Using Device Simulator
DOI:
https://doi.org/10.58915/ijneam.v16iDECEMBER.386Abstract
The resonant tunneling diode (RTD) was first introduced by Tsu and Esaki back in 1973. The RTD has a nano-meter scale dimension and is capable to operate in the terahertz range of frequency, thanks to its unique negative differential resistive (NDR) property. There are tons of potential of RTD capable to implement in many applications if the optimum scales and parameters of the RTD’s structure can be determined. Hence, this is the reason and purpose of this work being conducted. The effects of structural parameters of RTD are studied and analyzed. From the simulation results generated by the WinGreen simulator, the barrier layer thickness has exhibited to be the most performance-affective structural parameter for RTD, when compared to other parameters such as thicknesses of spacer and quantum-well layers, and doping concentration of emitter and collector layers. The highest peak-to-valley current ratio (PVCR) of InGaAs/AlAs RTD achieved is approximately 78.36 with its barrier layer thickness of 1.6 nm. For GaAs/AlAs RTD, the highest PVCR obtained is approximately 59.29 at 1.6 nm thick of its barrier layer.
Keywords:
Peak-to-valley current ratio, resonant tunneling diode, simulatorReferences
Tsu, R., Esaki, L., Appl. Phys. Lett. vol 22, issue 11 (1973) pp. 562-564.
Chang, L. L., Esaki, L., Tsu, R., Appl. Phys. Lett. vol 24, issue 12 (1974) pp. 593-595.
Jian Ping Sun, Haddad, G. I., Mazumder, P., Schulman, J. N., Proceedings of the IEEE vol 86, issue 4 (1998) pp. 641-660.
Cimbri, D., Wang, J., Al-Khalidi, A., Wasige, E., IEEE Transactions on Terahertz and Technology vol 12, issue 3 (2022) pp. 226-244.
Muttlak, S. G., Abdulwahid, O. S., Sexton, J., Kelly, M. J., Missous, M., IEEE Journal of Electron Device Society vol 6, (2018) pp. 254-262.
Md Zawawi, M. A., Missous, M., Solid-State Electronics vol 138, (2017) pp. 30-34.
Storm, D. F., Growden, T. A., Zhang, W., Brown, E. R., Nepal, N., Katzer, D. S., Hardy, M. T., Berger, P. R., Meyer, D. J., J. Vac. Sci. Technol. vol 35, issue 2 (2017) pp. 02B110-1-02B110- 4.
Asada, M., Suzuki, S., Sensors vol 21, issue 4 (2021) pp. 1384.
Ali Al-Taai, Q. R., Wang, J., Morariu, R., Ofiare, A., Al-Khalidi, A., Wasige, E., International Journal of Nanoelectronics and Materials vol 14, special issue (2021) pp. 149-155.
S. Luryi, A. Zaslavsky, “Quantum-Effect and Hot-Electron Devices,” in Modern Semiconductor Device Physics, S. M. Sze, Ed. New York, NY, USA: Wiley, (1998).
Ipsita, S., Mahapatra, P. K., Panchadhyayee, P., Physica B: Physics of Condensed Matter vol 611, (2021) pp. 412788 (1-13).
S. M. Sze, K. K. Ng, “Tunnel Devices,” in Physics of Semiconductor Devices, S. M. Sze, K. K. Ng, 3rd Ed. John Wiley & Sons, Inc. (2007).
Md Zawawi, M. A., Ian, K. W., Sexton, J., Missous, M., IEEE Transactions on Electron Devices vol 61, issue 7 (2014) pp. 2338-2342.