DFT Study of Borophene/Graphene (B/G) Heterostructure Properties as Sodium-Ion Battery Anode

Authors

  • Faozan Ahmad
  • Teja Alkori
  • Husin Alatas

DOI:

https://doi.org/10.58915/ijneam.v16iDECEMBER.383

Abstract

As an alternative to lithium-ion batteries, sodium-ion batteries are gaining more attention as a solution to issues including the high cost and restricted supply of lithium. Nonetheless, issues including low voltage, limited capacity, and low electrode material capacity need to be fixed for sodium-ion battery applications. The proposed borophene/graphene heterostructure anode material for sodium-ion batteries was studied using density functional theory (DFT) to ascertain its properties. The findings demonstrate that there is sufficient interlayer spacing in the borophene/graphene heterostructure to allow for Na-intercalation. The interspace heterostructure has the highest Na adsorption energy of -2.02 eV. As a result, its maximum energy specific capacity is around 969.65 mAh/g. The borophene/graphene heterostructure anode exhibits strong diffusivity of Na ions, as evidenced by the activation energy of Na ion mobility in the heterostructure being less than 0.2 eV.

Keywords:

Sodium-ion battery, heterostructure anode, borophene/graphene

References

Pan, H., Hu, Y. S., & Chen, L, 2013. Energy and Environmental Science. 6, Issue 8, 2338–2360. https://doi.org/10.1039/c3ee40847g.

Haynes W. M. Handbook of Chemistry and Physics. Florida (US): CRC Press 2016. https://doi.org/10.1201/9781315380476.

Pandit B, Rondiya SR, Dzade NY, Shaikh SF, Kumar N, Goda ES, Al-kahtani AA, Mane RS, Mathur S, Salunkhe RR, 2021. ACS Appl Mater Interfaces. 13 Issue 9, 11433-11441. https://doi.org/10.1021/acsami.0c21081.

Hwang J. Y., Myung S. T., Sun Y. K, 2017. Chem Soc Rev. 46, Issue 12, 3529-3614. https://doi.org/10.1039/c6cs00776g.

Tinambunan, A., Ahmad, F., Sakti, A. W., Putro, P. A., Syafri, & Alatas, H, 2022. Journal of Physical Chemistry C. 126, Issue 49, 20754–20761. https://doi.org/10.1021/acs.jpcc.2c06321.

Lyu, Y., Liu, Y., Yu, Z. E., Su, N., Liu, Y., Li, W., Li, Q., Guo, B., & Liu, B, 2019. Sustainable Materials and Technologies. 21, e00098. https://doi.org/10.1016/j.susmat.2019.e00098.

Luo, W., Shen, F., Bommier, C., Zhu, H., Ji, X., & Hu, L, 2016. Accounts of Chemical Research. 49 Issue 2, 231–240. https://doi.org/10.1021/acs.accounts.5b00482.

Du, Y. T., Kan, X., Yang, F., Gan, L. Y., & Schwingenschlögl, U, 2018. ACS Applied Materials and Interfaces. 10 Issue 38, 32867–32873. https://doi.org/10.1021/acsami.8b10729.

Yankowitz, M., Ma, Q., Jarillo-Herrero, P., & LeRoy, B. J., 2019. Nature Reviews Physics. 1, Issue 2, 112–125. https://doi.org/10.1038/s42254-018-0016-0.

Wang, T., Li, C., Xia, C., Yin, L., An, Y., Wei, S., & Dai, X, 2020. Physica E: Low-Dimensional Systems and Nanostructures. 122, 114146. https://doi.org/10.1016/j.physe.2020.114146.

Liu, X., & Hersam, M, 2019. C. Sci. Adv. 5 Issue 10, eaax6444. https://doi.org/10.1126/sciadv.aax6444.

Lin, Y., Yu, M., Li, X., Gao, W., Wang, L., Zhao, X., Zhou, M., Yao, X., He, M., & Zhang, X, 2021. J. Mater. Chem. C. 9 Issue 44, 15877–15885. https://doi.org/10.1039/D1TC04197E.

Fan, K., Tang, T., Wu, S., & Zhang, Z, 2018. International Journal of Modern Physics B. 32, Issue 1, 1850010. https://doi.org/10.1142/S0217979218500108.

Yang, Z., Li, W., & Zhang, J, 2021. Nanotechnology. 33 Issue 7, 75403. https://doi.org/10.1088/1361-6528/ac3686.

Xiong, Z., Zhong, L., Wang, H., & Li, X, 2021. Materials. 14 Issue 5, 1–43. https://doi.org/10.3390/ma14051192.

Yu, J., Zhou, M., Yang, M., Yang, Q., Zhang, Z., & Zhang, Y, 2020. ACS Applied Energy Materials. 3, Issue 12, 11699–11705. https://doi.org/10.1021/acsaem.0c01808 .

Bao, J., Zhu, L., Wang, H., Han, S., Jin, Y., Zhao, G., Zhu, Y., Guo, X., Hou, J., Yin, H., & Tian, J, 2018. Journal of Physical Chemistry C. 122 Issue 41, 23329–23335. https://doi.org/10.1021/acs.jpcc.8b07062.

Chowdhury, C., Karmakar, S., & Datta, A, 2016. ACS Energy Letters. 1 Issue 1, 253–259. https://doi.org/10.1021/acsenergylett.6b00164.

Mansouri, Z., Sibari, A., Al-Shami, A., Lahbabi, S., el Kenz, A., Benyoussef, A., el Fatimy, A., & Mounkachi, O, 2022. Computational Materials Science. 202, 110936. https://doi.org/10.1016/j.commatsci.2021.110936.

Tang, C., Min, Y., Chen, C., Xu, W., & Xu, L, 2019. Nano Letters. 19, Issue 8, 5577–5586. https://doi.org/10.1021/acs.nanolett.9b02115.

Samad, A., Noor-A-Alam, M., & Shin, Y. H, 2016. Journal of Materials Chemistry A. 4, Issue 37, 14316–14323. https://doi.org/10.1039/c6ta05739j.

Yang, C., Sun, X., Zhang, X., Li, J., Ma, J., Li, Y., Xu, L., Liu, S., Yang, J., Fang, S., Li, Q., Yang, X., Pan, F., Lu, J., & Yu, D, 2021. Carbon. 176, 242–252. https://doi.org/10.1016/j.carbon.2020.12.039.

Downloads

Published

26-12-2023

How to Cite

[1]
Faozan Ahmad, Teja Alkori, and Husin Alatas, “DFT Study of Borophene/Graphene (B/G) Heterostructure Properties as Sodium-Ion Battery Anode”, IJNeaM, vol. 16, no. December, pp. 33–42, Dec. 2023.