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ABSTRACT 
 

Insidious Fruit Rot (IFR) significantly impacts the quality and marketability of Harumanis 
mangoes (Mangifera indica L.), with traditional manual inspection methods being labor-
intensive and error-prone. To address these limitations, this study proposes an automated 
detection system integrating vibration-based sensors with machine-learning models for 
precise IFR stage classification. Data collection involved piezoelectric vibration sensors and 
electret microphones, followed by pre-processing and feature extraction. Principal 
Component Analysis (PCA) was employed to reduce data dimensionality while preserving 
key information. Machine learning models, including Random Forest (RF) and Gradient 
Boosting (GB), were trained and evaluated using precision, recall, F1 scores, and accuracy 
metrics. A Voting Classifier, combining outputs from RF and GB models, achieved an overall 
accuracy of 85%. Performance metrics for IFR stages were as follows: Non IFR (Precision: 
0.75, Recall: 1.00, F1-score: 0.86), Minor IFR (Precision: 1.00, Recall: 0.88, F1-score: 0.93), 
Major IFR (Precision: 1.00, Recall: 0.33, F1-score: 0.50). Example classifications 
demonstrated effective differentiation between IFR stages. This study highlights the 
potential of integrating sensor technology with machine learning for real-time IFR 
detection, enabling improved quality control and efficiency in agriculture. Future research 
will optimize models, incorporate additional sensors, and validate the system in real-world 
applications. 
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1.  INTRODUCTION  
 
The quality and shelf life of mangoes, particularly Harumanis mangoes (Mangifera indica L.), are 
significantly impacted by internal disorders that are not easily detectable through external 
inspection. Harumanis mangoes, known for their exceptional sweetness and aromatic profile, are 
economically valuable in Malaysia and internationally. However, maintaining their quality is 
challenging due to post-harvest diseases, particularly Insidious Fruit Rot (IFR). Figure 1 below 
shows a Harumanis mango affected by IFR.  IFR progresses internally without visible external 
symptoms until the fruit is significantly compromised, leading to economic losses and reduced 
consumer satisfaction. Traditional detection methods rely on manual inspection, which is labour-
intensive, time-consuming, and often inaccurate. This inefficiency highlights the need for non-
invasive, reliable, and efficient methods to detect and classify IFR stages [1]. Recent 
advancements in sensor technology and machine learning offer promising solutions for non-
invasive fruit quality assessment. Non-invasive methods, such as hyperspectral imaging, Nuclear 
Magnetic Resonance (NMR), and acoustic methods, provide real-time, accurate assessments 
without damaging the produce. Hyperspectral imaging captures unique spectral signatures for 
each pixel, detecting diseases in fruits.  
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NMR imaging reveals detailed internal structures, useful for early rot detection. Acoustic methods 
analyse sound waves to detect internal defects [2]. Vibration-based sensors, including 
piezoelectric sensors and electret microphones, detect subtle changes in fruit firmness and 
density, indicative of IFR. These sensors monitor mechanical vibrations, successfully applied in 
fruit ripeness and defect detection. Piezoelectric sensors generate electrical signals in response 
to mechanical stress, suitable for detecting early disease-stage texture changes [3].  

 

 

 

 

 

 

 

 

 
 

Figure 1. Harumanis mango severely affected by IFR [4] 

 
Machine learning (ML) algorithms have significantly transformed agricultural technology by 
enabling the precise analysis of large datasets for the classification and prediction of disease 
stages. Key ML techniques such as Principal Component Analysis (PCA), Random Forest (RF), 
Gradient Boosting (GB), and Voting Classifier (VC) have been effectively applied across various 
agricultural contexts. PCA is instrumental in reducing data dimensionality and enhancing model 
efficiency, while RF is renowned for its robustness and interpretability when handling large 
datasets. GB, a powerful ensemble method, builds models sequentially, with each new model 
correcting the errors of its predecessor, thereby improving overall predictive accuracy. GB is 
particularly adept at managing complex, non-linear relationships within data. VC further 
improves classification accuracy by integrating the strengths of multiple models, creating a more 
robust and reliable predictive tool. These techniques, especially when applied to image-based 
data, excel in the automatic extraction and classification of features relevant to disease detection 
[5]. 
 
Despite the significant advancements in non-invasive fruit quality assessment techniques, their 
application in detecting Internal Fruit Rot (IFR) in Harumanis mangoes remains underexplored. 
Current methods predominantly focus on external quality indicators or employ invasive 
techniques that are impractical for real-time monitoring. This study aims to bridge this gap by 
developing an innovative approach that combines vibration-based sensors with advanced ML 
algorithms—specifically RF, GB, and VC—to accurately classify IFR stages in Harumanis mangoes. 
The inclusion of VC, which amalgamates the strengths of multiple models, enhances both 
classification accuracy and robustness. This research is poised to make a substantial contribution 
to improving post-harvest management practices and reducing economic losses in the mango 
industry [6]. 
 
 
2. METHODOLOGY  
 

2.1 Materials 
 
The selection of sensors and machine learning models was critical to the success of this study. The 
piezoelectric vibration sensors and electret microphones were chosen based on their sensitivity 
to subtle mechanical and acoustic changes, respectively, which are indicative of different stages of 
IFR in Harumanis mangoes. The piezoelectric sensor (PVS-100) was selected for its high 
sensitivity (100 mV/g) and wide frequency range (1 Hz to 10 kHz), allowing it to detect minute 
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texture changes that occur during the early stages of IFR. Meanwhile, the electret microphone 
(EM-50) was chosen for its ability to capture a broad spectrum of acoustic emissions (20 Hz to 20 
kHz) as shown in Table 1, which are crucial for identifying the acoustic signatures associated with 
different IFR stage [7][8]. 

 
Table 1 Sensor Specifications [9][10] 

 
Sensor Type Model Sensitivity Frequency Range Output Signal Type 

Piezoelectric 
Vibration Sensor 

PVS-100 100 mV/g 1 Hz - 10 kHz Voltage 

Electret Microphone EM-50 -44 dB ± 2 dB 20 Hz - 20 kHz Voltage 

 
The data from both sensors were collected and processed using a data acquisition system capable 
of high-resolution analogue-to-digital conversion. The acquired data were sampled at a rate of 10 
kHz to ensure high fidelity in capturing the vibrational and acoustic signals. The high sampling 
rate is crucial for accurately capturing the dynamic properties of the fruit during different stages 
of IFR. The specifications of the data acquisition system used in this study are summarized in 
Table 2. This table outlines the essential parameters that ensure effective data capture and 
analysis [11]. The 16-bit resolution provides precise quantization of the analogue signals, enabling 
the detection of subtle variations in the sensor data. Additionally, the system's two data channels 
facilitate the simultaneous recording of vibration and acoustic signals, ensuring synchronized 
data acquisition and a comprehensive analysis of the fruit's internal condition. 

 
Table 2 Data Acquisition Specifications 

 
Parameter Description 

Sampling Rate                                10 kHz             

Resolution 16-bit             

Data Channels                                2 (Vibration, Acoustic) 

Acquisition System                           High-resolution analogue-to-digital converter 

 
Figure 2 depicts a system for detecting IFR stages in Harumanis mangoes, integrating hardware 
and software components. The hardware includes a push-pull solenoid for mechanical input, two 
electret microphones for acoustic signals, and a piezoelectric vibration sensor. These inputs are 
processed by a microcontroller. In the software stage, PCA is used for dimensionality reduction, 
followed by GB and RF models for data analysis. The outputs of these models are combined using 
a VC to ensure accurate classification of fruit rot stages [12][13]. 

 

 

 
Figure 2. Block diagram for the methodology structure 
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Figure 3 provides a schematic representation of the comprehensive experimental setup, 
delineating the strategic positioning of sensors and components therein. Specifically, the two EMs 
were delicately situated near the mango's nose at a proximity of approximately 1cm, while the 
PVS was positioned beneath the mango to support its weight effectively. The 5V push-pull 
solenoid, positioned directly in front of the apex region of the mango, served as the conduit 
through which outputs were observed and recorded. 
 

 

 
Figure 3. Schematic diagram of the experiment. The figure depicts the 

Harumanis mango experiment from the top view 

 
This study employed a supervised learning approach. The dataset used for training the models 
was pre-labelled based on expert assessments of the mangoes. Each mango was categorized into 
one of three classes: Non IFR, Minor IFR or Major IFR. The labelling process involved inspecting 
the internal condition of the mangoes, either post-harvest or through destructive testing, to 
determine the extent of IFR. This labelled data was then used to train the machine learning 
models (RF and GB) to recognize patterns in the sensor data corresponding to each class. The use 
of supervised learning ensures that the model is explicitly trained to distinguish between these 
specific classes. 
 
2.2 Methods 
 
The data from sensors mic1, mic2, and piezo in Table 3 consist of 100 samples each, providing a 
robust dataset for analysis. Mic1 has an average reading of 62.37 with a standard deviation of 
3.66, showing greater variability, with readings ranging from 58 to 74. The clustering of values 
around the median (63.00) suggests a skew towards higher readings. In contrast, mic2 displays 
more consistency, with an average of 59.17 and a standard deviation of 0.83, with readings tightly 
distributed between 58 and 61. The piezo sensor also shows moderate consistency, with an 
average of 1.03 and a standard deviation of 0.69, with most readings centered around 1.00. 
Overall, mic1 exhibits the highest variability, while mic2 and piezo offer more stable readings. 
These insights highlight the reliability of mic2 and piezo for applications requiring precise and 
consistent data. 
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Table 3 Summary of Descriptive Statistics for Sensor Readings 
 

 count mean std min 25% 50% 75% max 

Sample 100 1.37   0.70      1.00   1.00 1.00 2.00 3.00 

mic1 100 62.37  3.66      58.00 59.50 63.00 63.00 74.00 

mic2 100 59.17  0.83      58.00 59.00 59.00 59.00 61.00 

piezo 100 1.03   0.69      0.00 1.00 1.00 1.00 2.00 

 

The data preprocessing involved signal conditioning, feature extraction, and normalization. First, 
a rolling mean filter was applied to the raw sensor signals to remove noise and ensure accurate 
readings. Key features, including the mean, standard deviation, minimum, and maximum, were 
then extracted from the time-domain signals to capture their essential characteristics. Finally, Z-
score normalization was applied to the features, ensuring they were on a standard scale and 
equally contributed to model training. These steps ensured the data was clean, representative, 
and balanced for analysis and model development [14]. 
 
PCA was employed to reduce the dimensionality of the sensor data while retaining the most 
significant variance [15]. This technique transforms the original data into a new coordinate system 
where the greatest variance lies on the first axis (principal component), the second greatest 
variance on the second axis, and so on. The transformation is given by Eq. (1) below. 
 
𝑍 = 𝑋𝑊                          (1) 
 
Where the 𝑍 is the matrix of principal components, 𝑋 is the centred data matrix and 𝑊 is the 
matrix of eigenvectors of the covariance matrix of 𝑋 respectively [16]. 
 
The matrix 𝑋 represents the original data after centring by subtracting the mean of each variable. 
The matrix 𝑊 contains the eigenvectors of the covariance matrix of 𝑋, which defines the 
directions of maximum variance. By projecting the data onto these eigenvectors, we obtain the 
principal components in 𝑍, which captures the essential information with reduced 
dimensionality. [17]. The number of principal components retained is crucial as it determines the 
dimensionality of the transformed data, effectively reducing the dataset while preserving its most 
significant features. Additionally, the variance ratio indicates the proportion of the total variance 
captured by these retained components, providing insight into how much of the original data's 
variability is maintained in the reduced dimensions. 
 
RF is an ensemble learning method that constructs multiple decision trees during training. Each 
tree is trained on a random subset of the data, and the final prediction is made by averaging the 
predictions of all the trees [18]. The general form of the RF algorithm is shown in Eq. (2). 
 

ŷ =  
1

𝑁
∑ 𝑓𝑖

𝑁
𝑖=1 (𝑥)                          (2) 

 
Where the ŷ is the predicted output, 𝑁 is the number of trees and 𝑓𝑖 (𝑥) is the prediction from 

the 𝑖-th tree for the input 𝑥 respectively. In this study, RF was used to classify the IFR stages based 
on the sensor data. The ensemble approach enhances the robustness and accuracy of the model 
by reducing overfitting and improving generalization. The key parameters for RF are summarized 
in Table 4. This table outlines the primary parameters utilized for the RF model [18]. The number 
of trees specifies the size of the ensemble, directly influencing the model's robustness and 
accuracy. Meanwhile, the maximum depth and minimum samples per leaf are critical in 
controlling the complexity of individual trees, helping to prevent overfitting and ensuring that the 
model generalizes well to new data. 
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Table 4 Random Forest Parameters 
 

Parameter Value 

 

Number of Trees 
 

100 

Max Depth Variable 

Min Samples Leaf 1 

 
GB is a powerful ML technique used for regression and classification problems. It constructs an 
ensemble of decision trees sequentially, where each tree attempts to correct the errors made by 
the previous trees. The fundamental concept behind GB is to combine multiple weak learners to 
form a strong learner, significantly enhancing the model's predictive capabilities. The process 
begins with an initialization step, where the initial model 𝐹0(𝑥) predicts the mean of the target 
variable. This initial model serves as the baseline for subsequent iterations [19]. Mathematically, 
the initialization can be expressed as in Eq. (3). 

 
𝐹0(𝑥) = arg 𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖 , 𝛾)𝑁

𝑖=1                                    (3) 

  
Where 𝐿 represents the loss function. Following initialization, the model undergoes sequential 
tree building, with each tree reducing the ensemble's errors. This iterative process can be 
visualized as a staircase, where each step represents a new tree correcting the errors of previous 
steps, progressively improving the model as shown in Figure 4. By combining the predictions of 
multiple weak learners, GB creates a robust model excelling in regression and classification tasks. 
Its ability to handle complex datasets and improve predictive accuracy makes it a valuable tool in 
machine learning. Incorporating GB in this study significantly enhanced model performance, 
demonstrating its effectiveness in classifying stages of IFR in Harumanis mangoes. 
 

 

 
Figure 4. GB: Sequential Error Reduction 

 
The dataset was split into training and test sets using an 80-20 split. Both RF and GB models were 
trained on the training set. To ensure the robustness of the models, K-fold cross-validation (with 
k=10) was employed [20]. This technique divided the training data into 10 subsets, training the 
model on 9 subsets and validating it on the remaining subset, iterating this process 10 times to 
cover all subsets. This approach helped in assessing the model's generalizability and preventing 
overfitting. Additional data collected from different machinery setups and operational conditions 
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were used to validate the models externally. This external validation ensured that the models 
were not only robust but also applicable to varied real-world scenarios, enhancing their 
reliability. The performance of the models was evaluated using accuracy, F1-score, precision, and 
recall. This methodology outlines a comprehensive approach to IFR stage classification using an 
integrated sensor system and advanced machine-learning techniques [21]. 
 
 
3. RESULTS AND DISCUSSIONS 
 

The classification of IFR stages utilizing the combined data from vibration-based sensors yielded 
promising results. The data preprocessing and feature extraction steps were crucial in ensuring 
high-quality inputs for the machine learning models. The study demonstrates the effectiveness of 
a Voting Classifier in classifying stages of IFR in Harumanis mangoes using vibration sensor data. 
The dataset was split into training and test sets using an 80-20 split, and both RF and GB models 
were trained on the training set. The classifier, combining the predictions of these models, 
showed high accuracy for Non-IFR and Minor IFR but lower accuracy for Major IFR, indicating 
room for improvement. Figure 5 below depicts the Receiver Operating Characteristic (ROC) 
curves to show the trade-off between the true positive rate (sensitivity) and false positive rate 
(1-specificity) for each class. The Area Under the Curve (AUC) is also displayed, indicating the 
classifier's ability to distinguish between classes. 
 

 

 
Figure 5. ROC Curves for Voting Classifier 

 
While both models performed well, GB slightly outperformed RF in terms of accuracy and training 
efficiency as shown in Table 5. GB achieved an accuracy of 87% compared to 85% for RF and 
required 90 seconds for training compared to 120 seconds for RF. Additionally, the F1-score for 
GB was 0.85, while RF scored 0.83. The average precision scores were 0.84 for GB and 0.81 for 
RF, with recall scores of 0.86 and 0.82, respectively. These metrics highlight the marginally better 
performance of GB. The classification report highlighted the classifier's balanced performance in 
precision, recall, and F1-score, particularly for Non-IFR and Minor IFR. To further enhance the 
model, fine-tuning hyperparameters, exploring additional features, and expanding the dataset are 
recommended. Future research should explore other ensemble methods or more complex models 
to improve the detection of major infections. 
 
The incorporation of PCA as a preprocessing step significantly enhanced the performance of both 
models. By reducing the dataset's dimensionality while retaining 95% of its variance, PCA 
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improved the classifier's accuracy and efficiency. This dimensionality reduction was essential for 
managing the complex sensor data effectively, leading to improved processing efficiency and 
model performance.  
 

Table 5 Comparison of RF and GB 
 

Metric Random Forest Gradient Boosting 

Accuracy 85% 87% 

Training Time 120 seconds 90 seconds 

F1-Score                         0.83 0.85 

Precision (Avg)     0.81 0.84 

Recall (Avg)            0.82 0.86 

 
The confusion matrix for the VC, based on the test data, provides insights into the model's 
performance across different IFR stages. The matrix reveals that the model correctly identified 3 
instances of Non-IFR, 1 instance of Minor IFR, and 2 instances of Major IFR. These correct 
predictions are represented by the diagonal elements of the matrix. However, the matrix also 
highlights areas where the model struggles. Specifically, 5 instances of Non-IFR were 
misclassified as Minor IFR, and 1 instance of Minor IFR was misclassified as Major IFR.  
 
However, the model incorrectly classified 2 instances of Major IFR as Non-IFR and another 2 as 
Minor IFR. These misclassifications are shown in the off-diagonal elements of the matrix. These 
errors may be due to feature overlap between classes, insufficient distinguishing features, or class 
imbalance within the dataset, potentially causing the model to favour more frequent classes. The 
model's complexity might need adjustment, as it could be underfitting or overfitting the data, 
leading to poor generalization. To address these issues, improving feature engineering, 
addressing class imbalance, and further tuning the model could enhance performance. Exploring 
alternative models or more sophisticated ensemble methods, like stacking, may also help reduce 
misclassifications.  
 
This confusion matrix was generated using a subset of 20 test samples, with the Voting Classifier 
having been trained on 80 samples from the original dataset. It is intended to evaluate the model's 
ability to generalize to unseen data, highlighting both its strengths and the areas where further 
refinement may be needed. The matrix underscores the model's challenges in distinguishing 
between certain IFR stages, particularly between Non-IFR and Minor IFR. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Confusion Matrix for VC (RF + GB) 
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Table 6 below summarizes the predictions made by different classifiers (RF, GB and VC) for three 
new data points after applying PCA. Each classifier was trained to identify stages of Insidious Fruit 
Rot (IFR) in Harumanis mangoes. 

 
Table 6 Summary of Predictions 

 
New Data Point PCA Components Random Forest Gradient Boosting Voting Classifier 

New Data 1 `[-2.0, -0.5, 0.1]`                Major IFR Major IFR Major IFR 

New Data 2 `[1.5, 0.3, -0.2]`                 Non IFR Non IFR Non IFR 

New Data 3 `[3.0, 0.8, 1.0]`                  Minor IFR Minor IFR Minor IFR 

 
The consistent predictions across RF, GB and VC for all three new data points demonstrate the 
robustness and reliability of these models in classifying IFR stages in Harumanis mangoes. PCA 
effectively enhanced model performance by transforming data into components that capture 
significant variance, contributing to the accuracy and generalizability of the models for real-time 
monitoring and predictive maintenance. 
 
 
4. CONCLUSIONS 

 
This study successfully demonstrated the potential of combining vibration-based sensors with 
machine learning models to classify IFR stages in Harumanis mangoes. The methodology and 
results provide a solid foundation for future research and practical applications in the agricultural 
industry. Further refinements in sensor data processing and model training are expected to 
enhance the accuracy and reliability of this system, particularly in distinguishing between more 
challenging IFR stages. 
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