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ABSTRACT

Insidious Fruit Rot (IFR) significantly impacts the quality and marketability of Harumanis
mangoes (Mangifera indica L.), with traditional manual inspection methods being labor -
intensive and error-prone. To address these limitations, this study proposes an automated
detection system integrating vibration-based sensors with machine-learning models for
precise IFR stage classification. Data collection involved piezoelectric vibration sensors and
electret microphones, followed by pre-processing and feature extraction. Principal
Component Analysis (PCA) was employed to reduce data dimensionality while preserving
key information. Machine learning models, including Random Forest (RF) and Gradient
Boosting (GB), were trained and evaluated using precision, recall, F1 scores, and accuracy
metrics. A Voting Classifier, combining outputs from RF and GB models, achieved an overall
accuracy of 85%. Performance metrics for IFR stages were as follows: Non IFR (Precision:
0.75, Recall: 1.00, F1-score: 0.86), Minor IFR (Precision: 1.00, Recall: 0.88, F1-score: 0.93),
Major IFR (Precision: 1.00, Recall: 0.33, F1-score: 0.50). Example classifications
demonstrated effective differentiation between IFR stages. This study highlights the
potential of integrating sensor technology with machine learning for real-time IFR
detection, enabling improved quality control and efficiency in agriculture. Future research
will optimize models, incorporate additional sensors, and validate the system in real-world
applications.
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1. INTRODUCTION

The quality and shelf life of mangoes, particularly Harumanis mangoes (Mangifera indica L.), are
significantly impacted by internal disorders that are not easily detectable through external
inspection. Harumanis mangoes, known for their exceptional sweetness and aromatic profile, are
economically valuable in Malaysia and internationally. However, maintaining their quality is
challenging due to post-harvest diseases, particularly Insidious Fruit Rot (IFR). Figure 1 below
shows a Harumanis mango affected by IFR. IFR progresses internally without visible external
symptoms until the fruit is significantly compromised, leading to economic losses and reduced
consumer satisfaction. Traditional detection methods rely on manual inspection, which is labour-
intensive, time-consuming, and often inaccurate. This inefficiency highlights the need for non-
invasive, reliable, and efficient methods to detect and classify IFR stages [1]. Recent
advancements in sensor technology and machine learning offer promising solutions for non-
invasive fruit quality assessment. Non-invasive methods, such as hyperspectral imaging, Nuclear
Magnetic Resonance (NMR), and acoustic methods, provide real-time, accurate assessments
without damaging the produce. Hyperspectral imaging captures unique spectral signatures for
each pixel, detecting diseases in fruits.
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NMR imaging reveals detailed internal structures, useful for early rot detection. Acoustic methods
analyse sound waves to detect internal defects [2]. Vibration-based sensors, including
piezoelectric sensors and electret microphones, detect subtle changes in fruit firmness and
density, indicative of IFR. These sensors monitor mechanical vibrations, successfully applied in
fruit ripeness and defect detection. Piezoelectric sensors generate electrical signals in response
to mechanical stress, suitable for detecting early disease-stage texture changes [3].

Insidious
Fruit Rot
(IFR)

Figure 1. Harumanis mango severely affected by IFR [4]

Machine learning (ML) algorithms have significantly transformed agricultural technology by
enabling the precise analysis of large datasets for the classification and prediction of disease
stages. Key ML techniques such as Principal Component Analysis (PCA), Random Forest (RF),
Gradient Boosting (GB), and Voting Classifier (VC) have been effectively applied across various
agricultural contexts. PCA is instrumental in reducing data dimensionality and enhancing model
efficiency, while RF is renowned for its robustness and interpretability when handling large
datasets. GB, a powerful ensemble method, builds models sequentially, with each new model
correcting the errors of its predecessor, thereby improving overall predictive accuracy. GB is
particularly adept at managing complex, non-linear relationships within data. VC further
improves classification accuracy by integrating the strengths of multiple models, creating a more
robust and reliable predictive tool. These techniques, especially when applied to image-based
data, excel in the automatic extraction and classification of features relevant to disease detection

[5].

Despite the significant advancements in non-invasive fruit quality assessment techniques, their
application in detecting Internal Fruit Rot (IFR) in Harumanis mangoes remains underexplored.
Current methods predominantly focus on external quality indicators or employ invasive
techniques that are impractical for real-time monitoring. This study aims to bridge this gap by
developing an innovative approach that combines vibration-based sensors with advanced ML
algorithms—specifically RF, GB, and VC—to accurately classify IFR stages in Harumanis mangoes.
The inclusion of VC, which amalgamates the strengths of multiple models, enhances both
classification accuracy and robustness. This research is poised to make a substantial contribution
to improving post-harvest management practices and reducing economic losses in the mango
industry [6].

2. METHODOLOGY

2.1 Materials

The selection of sensors and machine learning models was critical to the success of this study. The
piezoelectric vibration sensors and electret microphones were chosen based on their sensitivity
to subtle mechanical and acoustic changes, respectively, which are indicative of different stages of
IFR in Harumanis mangoes. The piezoelectric sensor (PVS-100) was selected for its high
sensitivity (100 mV/g) and wide frequency range (1 Hz to 10 kHz), allowing it to detect minute
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texture changes that occur during the early stages of IFR. Meanwhile, the electret microphone
(EM-50) was chosen for its ability to capture a broad spectrum of acoustic emissions (20 Hz to 20
kHz) as shown in Table 1, which are crucial for identifying the acoustic signatures associated with
different IFR stage [7][8].

Table 1 Sensor Specifications [9][10]

Sensor Type Model Sensitivity Frequency Range Output Signal Type
Piezoelectric

Vibration Sensor PVS-100 100 mV/g 1Hz-10 kHz Voltage
Electret Microphone EM-50 -44 dB +2 dB 20 Hz - 20 kHz Voltage

The data from both sensors were collected and processed using a data acquisition system capable
of high-resolution analogue-to-digital conversion. The acquired data were sampled at a rate of 10
kHz to ensure high fidelity in capturing the vibrational and acoustic signals. The high sampling
rate is crucial for accurately capturing the dynamic properties of the fruit during different stages
of IFR. The specifications of the data acquisition system used in this study are summarized in
Table 2. This table outlines the essential parameters that ensure effective data capture and
analysis [11]. The 16-bit resolution provides precise quantization of the analogue signals, enabling
the detection of subtle variations in the sensor data. Additionally, the system's two data channels
facilitate the simultaneous recording of vibration and acoustic signals, ensuring synchronized
data acquisition and a comprehensive analysis of the fruit's internal condition.

Table 2 Data Acquisition Specifications

Parameter Description
Sampling Rate 10 kHz
Resolution 16-bit

Data Channels

Acquisition System

2 (Vibration, Acoustic)

High-resolution analogue-to-digital converter

Figure 2 depicts a system for detecting IFR stages in Harumanis mangoes, integrating hardware
and software components. The hardware includes a push-pull solenoid for mechanical input, two
electret microphones for acoustic signals, and a piezoelectric vibration sensor. These inputs are
processed by a microcontroller. In the software stage, PCA is used for dimensionality reduction,
followed by GB and RF models for data analysis. The outputs of these models are combined using
a VC to ensure accurate classification of fruit rot stages [12][13].
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Figure 2. Block diagram for the methodology structure
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Figure 3 provides a schematic representation of the comprehensive experimental setup,
delineating the strategic positioning of sensors and components therein. Specifically, the two EMs
were delicately situated near the mango's nose at a proximity of approximately 1cm, while the
PVS was positioned beneath the mango to support its weight effectively. The 5V push-pull
solenoid, positioned directly in front of the apex region of the mango, served as the conduit
through which outputs were observed and recorded.

Microcontroller

Apex Position Solenoid

Beak Position \
Sinus Position \\ |
Electret |\®\ O ' Electret
Microphone 1 Microphone 2
Fruit Bed - ) Piezoelectric
Vibration
Ventral Position > Sensor was
placed
Base Position % underneath
the mango.

Figure 3. Schematic diagram of the experiment. The figure depicts the
Harumanis mango experiment from the top view

This study employed a supervised learning approach. The dataset used for training the models
was pre-labelled based on expert assessments of the mangoes. Each mango was categorized into
one of three classes: Non IFR, Minor IFR or Major IFR. The labelling process involved inspecting
the internal condition of the mangoes, either post-harvest or through destructive testing, to
determine the extent of IFR. This labelled data was then used to train the machine learning
models (RF and GB) to recognize patterns in the sensor data corresponding to each class. The use
of supervised learning ensures that the model is explicitly trained to distinguish between these
specific classes.

2.2 Methods

The data from sensors mic1, mic2, and piezo in Table 3 consist of 100 samples each, providing a
robust dataset for analysis. Micl has an average reading of 62.37 with a standard deviation of
3.66, showing greater variability, with readings ranging from 58 to 74. The clustering of values
around the median (63.00) suggests a skew towards higher readings. In contrast, mic2 displays
more consistency, with an average of 59.17 and a standard deviation of 0.83, with readings tightly
distributed between 58 and 61. The piezo sensor also shows moderate consistency, with an
average of 1.03 and a standard deviation of 0.69, with most readings centered around 1.00.
Overall, mic1 exhibits the highest variability, while mic2 and piezo offer more stable readings.
These insights highlight the reliability of mic2 and piezo for applications requiring precise and
consistent data.
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Table 3 Summary of Descriptive Statistics for Sensor Readings

count mean std min 25% 50% 75% max
Sample 100 1.37 0.70 1.00 1.00 1.00 2.00 3.00
micl 100 62.37 3.66 58.00 59.50 63.00 63.00 74.00
mic2 100 59.17 0.83 58.00 59.00 59.00 59.00 61.00
piezo 100 1.03 0.69 0.00 1.00 1.00 1.00 2.00

The data preprocessing involved signal conditioning, feature extraction, and normalization. First,
a rolling mean filter was applied to the raw sensor signals to remove noise and ensure accurate
readings. Key features, including the mean, standard deviation, minimum, and maximum, were
then extracted from the time-domain signals to capture their essential characteristics. Finally, Z-
score normalization was applied to the features, ensuring they were on a standard scale and
equally contributed to model training. These steps ensured the data was clean, representative,
and balanced for analysis and model development [14].

PCA was employed to reduce the dimensionality of the sensor data while retaining the most
significant variance [15]. This technique transforms the original data into a new coordinate system
where the greatest variance lies on the first axis (principal component), the second greatest
variance on the second axis, and so on. The transformation is given by Eq. (1) below.

Z=XW (D

Where the Z is the matrix of principal components, X is the centred data matrix and W is the
matrix of eigenvectors of the covariance matrix of X respectively [16].

The matrix X represents the original data after centring by subtracting the mean of each variable.
The matrix W contains the eigenvectors of the covariance matrix of X, which defines the
directions of maximum variance. By projecting the data onto these eigenvectors, we obtain the
principal components in Z, which captures the essential information with reduced
dimensionality. [17]. The number of principal components retained is crucial as it determines the
dimensionality of the transformed data, effectively reducing the dataset while preserving its most
significant features. Additionally, the variance ratio indicates the proportion of the total variance
captured by these retained components, providing insight into how much of the original data's
variability is maintained in the reduced dimensions.

RF is an ensemble learning method that constructs multiple decision trees during training. Each
tree is trained on a random subset of the data, and the final prediction is made by averaging the
predictions of all the trees [18]. The general form of the RF algorithm is shown in Eq. (2).

y= 3 f () 2)

Where the ¥ is the predicted output, N is the number of trees and f; (x) is the prediction from
the i-th tree for the input x respectively. In this study, RF was used to classify the IFR stages based
on the sensor data. The ensemble approach enhances the robustness and accuracy of the model
by reducing overfitting and improving generalization. The key parameters for RF are summarized
in Table 4. This table outlines the primary parameters utilized for the RF model [18]. The number
of trees specifies the size of the ensemble, directly influencing the model's robustness and
accuracy. Meanwhile, the maximum depth and minimum samples per leaf are critical in
controlling the complexity of individual trees, helping to prevent overfitting and ensuring that the
model generalizes well to new data.
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Table 4 Random Forest Parameters

Parameter Value
Number of Trees 100
Max Depth Variable
Min Samples Leaf 1

GB is a powerful ML technique used for regression and classification problems. It constructs an
ensemble of decision trees sequentially, where each tree attempts to correct the errors made by
the previous trees. The fundamental concept behind GB is to combine multiple weak learners to
form a strong learner, significantly enhancing the model's predictive capabilities. The process
begins with an initialization step, where the initial model F,(x) predicts the mean of the target
variable. This initial model serves as the baseline for subsequent iterations [19]. Mathematically,
the initialization can be expressed as in Eq. (3).

Fo(x) = argmin, ¥iL; L(y;,7) (3)

Where L represents the loss function. Following initialization, the model undergoes sequential
tree building, with each tree reducing the ensemble's errors. This iterative process can be
visualized as a staircase, where each step represents a new tree correcting the errors of previous
steps, progressively improving the model as shown in Figure 4. By combining the predictions of
multiple weak learners, GB creates a robust model excelling in regression and classification tasks.
Its ability to handle complex datasets and improve predictive accuracy makes it a valuable tool in
machine learning. Incorporating GB in this study significantly enhanced model performance,
demonstrating its effectiveness in classifying stages of IFR in Harumanis mangoes.
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Figure 4. GB: Sequential Error Reduction

The dataset was split into training and test sets using an 80-20 split. Both RF and GB models were
trained on the training set. To ensure the robustness of the models, K-fold cross-validation (with
k=10) was employed [20]. This technique divided the training data into 10 subsets, training the
model on 9 subsets and validating it on the remaining subset, iterating this process 10 times to
cover all subsets. This approach helped in assessing the model's generalizability and preventing
overfitting. Additional data collected from different machinery setups and operational conditions
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were used to validate the models externally. This external validation ensured that the models
were not only robust but also applicable to varied real-world scenarios, enhancing their
reliability. The performance of the models was evaluated using accuracy, F1-score, precision, and
recall. This methodology outlines a comprehensive approach to IFR stage classification using an
integrated sensor system and advanced machine-learning techniques [21].

3. RESULTS AND DISCUSSIONS

The classification of IFR stages utilizing the combined data from vibration-based sensors yielded
promising results. The data preprocessing and feature extraction steps were crucial in ensuring
high-quality inputs for the machine learning models. The study demonstrates the effectiveness of
a Voting Classifier in classifying stages of [FR in Harumanis mangoes using vibration sensor data.
The dataset was split into training and test sets using an 80-20 split, and both RF and GB models
were trained on the training set. The classifier, combining the predictions of these models,
showed high accuracy for Non-IFR and Minor IFR but lower accuracy for Major IFR, indicating
room for improvement. Figure 5 below depicts the Receiver Operating Characteristic (ROC)
curves to show the trade-off between the true positive rate (sensitivity) and false positive rate
(1-specificity) for each class. The Area Under the Curve (AUC) is also displayed, indicating the
classifier's ability to distinguish between classes.
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Figure 5. ROC Curves for Voting Classifier

While both models performed well, GB slightly outperformed RF in terms of accuracy and training
efficiency as shown in Table 5. GB achieved an accuracy of 87% compared to 85% for RF and
required 90 seconds for training compared to 120 seconds for RF. Additionally, the F1-score for
GB was 0.85, while RF scored 0.83. The average precision scores were 0.84 for GB and 0.81 for
RF, with recall scores of 0.86 and 0.82, respectively. These metrics highlight the marginally better
performance of GB. The classification report highlighted the classifier's balanced performance in
precision, recall, and F1-score, particularly for Non-IFR and Minor IFR. To further enhance the
model, fine-tuning hyperparameters, exploring additional features, and expanding the dataset are
recommended. Future research should explore other ensemble methods or more complex models
to improve the detection of major infections.

The incorporation of PCA as a preprocessing step significantly enhanced the performance of both
models. By reducing the dataset's dimensionality while retaining 95% of its variance, PCA
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improved the classifier's accuracy and efficiency. This dimensionality reduction was essential for
managing the complex sensor data effectively, leading to improved processing efficiency and
model performance.

Table 5 Comparison of RF and GB

Metric Random Forest Gradient Boosting
Accuracy 85% 87%
Training Time 120 seconds 90 seconds
F1-Score 0.83 0.85
Precision (Avg) 0.81 0.84

Recall (Avg) 0.82 0.86

The confusion matrix for the VC, based on the test data, provides insights into the model's
performance across different IFR stages. The matrix reveals that the model correctly identified 3
instances of Non-IFR, 1 instance of Minor IFR, and 2 instances of Major IFR. These correct
predictions are represented by the diagonal elements of the matrix. However, the matrix also
highlights areas where the model struggles. Specifically, 5 instances of Non-IFR were
misclassified as Minor IFR, and 1 instance of Minor IFR was misclassified as Major IFR.

However, the model incorrectly classified 2 instances of Major IFR as Non-IFR and another 2 as
Minor IFR. These misclassifications are shown in the off-diagonal elements of the matrix. These
errors may be due to feature overlap between classes, insufficient distinguishing features, or class
imbalance within the dataset, potentially causing the model to favour more frequent classes. The
model's complexity might need adjustment, as it could be underfitting or overfitting the data,
leading to poor generalization. To address these issues, improving feature engineering,
addressing class imbalance, and further tuning the model could enhance performance. Exploring
alternative models or more sophisticated ensemble methods, like stacking, may also help reduce
misclassifications.

This confusion matrix was generated using a subset of 20 test samples, with the Voting Classifier
having been trained on 80 samples from the original dataset. It is intended to evaluate the model's
ability to generalize to unseen data, highlighting both its strengths and the areas where further
refinement may be needed. The matrix underscores the model's challenges in distinguishing
between certain IFR stages, particularly between Non-IFR and Minor IFR.
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Fig. 6. Confusion Matrix for VC (RF + GB)
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Table 6 below summarizes the predictions made by different classifiers (RF, GB and VC) for three
new data points after applying PCA. Each classifier was trained to identify stages of Insidious Fruit
Rot (IFR) in Harumanis mangoes.

Table 6 Summary of Predictions

New Data Point PCA Components Random Forest Gradient Boosting  Voting Classifier
New Data 1 '[-2.0,-0.5,0.1] Major IFR Major IFR Major IFR

New Data 2 '[1.5,0.3,-0.2T Non IFR Non IFR Non IFR

New Data 3 '[3.0,0.8, 1.0]° Minor IFR Minor IFR Minor IFR

The consistent predictions across RF, GB and VC for all three new data points demonstrate the
robustness and reliability of these models in classifying IFR stages in Harumanis mangoes. PCA
effectively enhanced model performance by transforming data into components that capture
significant variance, contributing to the accuracy and generalizability of the models for real-time
monitoring and predictive maintenance.

4. CONCLUSIONS

This study successfully demonstrated the potential of combining vibration-based sensors with
machine learning models to classify IFR stages in Harumanis mangoes. The methodology and
results provide a solid foundation for future research and practical applications in the agricultural
industry. Further refinements in sensor data processing and model training are expected to
enhance the accuracy and reliability of this system, particularly in distinguishing between more
challenging IFR stages.
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