
Journal of Engineering Research and Education
Volume 12, 2020 [43-54]

Real Time and Secure Messaging Service for IoT Applications using
MQTT

MD Jiabul Hoque1*, MD Akibur Rahman1 and Shihab Uddin1

1Department of Computer and Communication Engineering (CCE), International Islamic University

Chittagong (IIUC), Kumira-4318, Chattogram, Bangladesh.

ABSTRACT

The Internet of Things (IoT) is a system or framework of things or objects that have internet
connectivity as well as that are interrelated and are capable to collect and exchange
information without human intervention over a wireless network. Most of the IoT
applications such as medical applications require real time and secure exchange of
information among connected devices. Message Queuing Telemetry Transport (MQTT) is a
communication protocol used for real time communication between networks with limited
bandwidth as it is significantly lightweight. Even though security of using MQTT is still a
matter of concern for using it in IoT network, MQTT is still prime choice for IoT
communication protocol as there is no alternative has yet been developed. Authors of this
article have reviewed numerous published researches on secure MQTT protocol for IoT
network and discover some alarming security loop holes of MQTT communication protocol
on IoT application network that need to be addressed. The prime aim of this work is to
propose a secure and real time MQTT protocol for IoT application without compromising
any loss of data. The research has been implemented in Raspberry Pi 3B system using Python
3.4.10 development platform along with Numpy 1.11.1 and scipy 0.18.0 (for mathematical
analysis), paho-mqtt 1.5.0 (for MQTT publication/subscription), and Chromium (for
displaying research result). The output of this research shows that the proposed MQTT
protocol has tighten security during exchanging information over IoT network without any
loss of data.

Keywords: Internet-of-Things, MQTT, Real-time, Raspberry-Pi, Secure.

1. INTRODUCTION

IoT has been revealed a hot topic of research and innovation around the world right now. Internet
of Things applications in various fields for instance medical, agriculture, food, production,
horticulture, space, mining and many more are getting popular as they are making human being
life easy, simple, smart, safe, relaxing and secure (Ahmed, Rahman & Hoque, 2020). Therefore,
numerous entities incorporating research scholars, public and private sector entities are
involving with IoT related research in order to generate state of the art applications of it to grab
billions (Ahmed et al., 2018). As people are using IoT applications such as home automation,
biomedical devices, automatic greenhouse for agriculture or smart farming etc., security as well
as loss of information is a growing matter of concern right now (Hakim, Uddin & Hoque, 2020).
Researchers around the world are working on how to make this essential IoT mechanism safe
and secure as majority of the IoT applications require real time and secure communication for
instance medical applications (Hoque, Ahmed & Hannan, 2020).

MQTT has been used as a de facto standard for coordinating communication of IoT network
applications for long time. Even though it has some security issues, no other alternative has yet
been developed (Hoque, Kabir & Hossain, 2018). So, researchers are concentrating on how to

*Corresponding Author: jiabul.hoque@iiuc.ac.bd

MD Jiabul Hoque, et al. / Real Time and Secure Messaging Service for IoT Applications…

44

make MQTT communication more secure than ever to ensure trustworthiness to IoT applications
user. It has been appeared that security can be compromised not only on client side but also on
broker of MQTT infrastructure and hence issues of security must be considered in both ways
(Kabir et al., 2019).

Internet of Things and MQTT both are took off now. Mosquitto is the first MQTT broker which is
open source. It was created around 2008. And in 2014 it became the name of Eclipse Mosquitto
project (Hoque et al., 2020). The open source MQTT client libraries were published in 2012 as
Paho project C, Python, JavaScript and Java. And since then it is growing day by day. The most
remarkable things are the broker version 3.1.1 becomes OASIS standard in late 2014 and MQTT
turn into an ISO standard in 2016 (Sharma et al., 2018).

The main objective of this article is to propose a secure and real time MQTT protocol for IoT
application without compromising any loss of data. In this regards, a clear and step by step
procedure for securing MQTT has been presented in this paper. The procedure has been begun
by tightening usage control in MQTT communication protocol. This step has been done by
continuously observing mutable attributes related to data, the environment or the subscriber
itself for the purpose of imposing the constraint on subscriber’s rights to access information. The
research has been implemented in Raspberry Pi 3B system using Python 3.4.10 development
platform along with Numpy 1.11.1 and scipy 0.18.0 (for mathematical analysis), paho-mqtt 1.5.0
(for MQTT publication/subscription), and Chromium (for displaying research result). The output
of this research shows that the proposed MQTT protocol has tighten security during exchanging
information over IoT network without any loss of data.

After the introductory section, the rest of article is organized as follows: Literature review
sections begin right after this section that reviews existing works relevant to home automation
system. After rigorous reviews of existing pertinent works, authors identified some short coming
on existing literatures that need to be resolved for better home automation system. Section 3
provides the solutions of the problems identified in literature review section by designing a state
of the art home automation system. Section 4 illustrates the implementation process and
subsequent section presents conclusion and future direction of this work.

2. LITERATURE REVIEW

Author has reviewed substantial amount of literature related to MQTT based IoT communication.
Among them few notable literatures that cannot be missed out are presented in this section.
According to Bansal & Garg (2019), MQTT is a lightweight real time transmission protocol that is
fully adaptable to emergency services like vehicle accidental notification system. They used
vibration sensors, Node MCU, Adafruit cloud, IFTTT applet to send notification regarding vehicle
accident via SMS in their research on MQTT. This research has been used as a baseline for our
research which is a real time and emergency communication through all kind of IoT application
without any data loss.

Singh et al. (2015) presented a secure version of MQTT communication named SMQTT-SN in their
research on secure MQTT for IoT applications. In their work they have incorporated some added
security features such as lightweight Elliptic Curve Cryptography based policy attribute
encryption on MQTT communication that enhanced security. However, some security flaws such
as key revocation during group subscription and publication are big concern for SMQTT-SN that
has been identified during implementation stage of their research.

Lee et al. (2019) analyzed the relationship between delay and associated loss of data according
to QoS measure in their recent work on MQTT. Rigorous analysis has been done by the
researchers on MQTT communication in this paper that incorporate subscribe client, publish

Journal of Engineering Research and Education
Volume 12, 2020 [43-54]

45

client (both wired and wireless) and broker server etc. The outcome of this research depicted
that message loss under varying payload has been significant impacted by end-to-end delay in
communication. However, the behaviour under numerous Quality of Service measure is remain
in doubt.

In the scenario of Wireless Sensors Network (WSN) based IoT infrastructure where a middleware
is required between sensors and server for flawless MQTT communication. A recent study on
performance analysis between MQTT and Constrained Application Protocol (CoAP) using a
common middleware in the case of IoT application shows that MQTT communication has
significantly low data loss and negligible delay in communication compare to its counterpart
(Upadhyay, Borole & Dileepan, 2016). A similar trend has been reveal in another research on
health information sharing using IoT where MQTT come out as a clear winner in case of WSN
based IoT applications network (Katsikeas, 2017).

3. MATERIAL AND METHODS

In this section, the author has described the components required to test the proposed MQTT
protocol as well as the author presented methodology that has been followed for successful
research outcome.

3.1 Hardware and Software Components

The research has been implemented in Raspberry Pi 3B incorporating 1.2GHz 64-bit quad-core
Arm Cortex-A53 CPU with 1GB RAM and Raspbian operating system has been used to run the
system.

Besides, Python 3.4.10 has been used as premier development platform along with Numpy 1.11.1
and scipy 0.18.0 for mathematical analysis as well as paho-mqtt 1.5.0 has been used for MQTT
publication/subscription. An MQTT mosquitto broker has also been installed within raspberry pi.
The research outcome has been displayed graphically by the use of Chromium.

3.2 Proposed Architecture of MQTT

Figure 1. The proposed architecture of MQTT.

MD Jiabul Hoque, et al. / Real Time and Secure Messaging Service for IoT Applications…

46

Above diagram (Figure 1) illustrates the proposed MQTT architecture where a client is regarded
as any electronic medium that is able to communicate with broker. In the proposed system few
(PC, Mobile, Laptop, numerous sensors and even a server) of many such devices has been
projected. The responsibilities of a broker in MQTT architecture are immense for instance it
needs to be active all the time to coordinate the communication with its connected clients. The
coordination begins by identifying clients and then authorizing those clients by using secure
authentication method. Afterwards, broker coordinates messages that have been received from
various clients and publish those messages that have been received from subscribe clients. There
is only one constraint in the MQTT architecture which is a broker only communicates one client
at a given time while maintaining connection with all.

3.3 Basic MQTT Configuration

The method of this proposed MQTT secure communication system in IoT applications start with
configuring Mosquitto server as Mosquitto MQTT broker has been used as out-broker. First of all,
status of the broker need to check as broker must be up and running to test the proposed system.
Figure 2 shows the status of the Mosquitto MQTT broker used in this system:

Figure 2. Mosquitto MQTT broker status.

After confirming broker status as active (running), the status of WebSocket connection is needed
to checked. WebSocket retrieves the values from mqtt.js file as such connect() function inside
mqtt.js file is required to be configured. Figure 3 depicts the configuration variables of connect()
function:

Figure 3. Connect() function configuration.

Journal of Engineering Research and Education
Volume 12, 2020 [43-54]

47

Connect() function in the above Figure 3 has number of variables such as hostname, port number,
session and connection etc that are responsible for successful connection. After successful
configuration of mqtt.js file, the status of WebSocket is checked this is shown in the figure 4 below:

Figure 4. Status of WebSocket.

The status of WebSocket in the above figure 4 shows that the clients are connected to the server
and are ready to communicate.

3.4 Secure MQTT Configuration

There are mainly three security mechanisms such as authentication, identity and authorization
should be kept in any researchers mind when it relates to sensitive communication in real time
using IoT infrastructure. There are two ways that can be used to make IoT network secure such
as Username and password approach and SSL approach. In order to make secure MQTT
communication throughout IoT network, username and password authentication can be added
initially and on top of that SSL certificate can be implemented.

3.4.1 Username and password approach

Using authentic username and password, the mosquitto MQTT broker can be configured as to
require client authentication before broker connection established or permitted. Even though, a
clear text username and password combination is not secure without transport encryption like
ssl, it is good first step to restrict access to a broker easily using username and password
authentication. The restrictions forms are client id, topic, QoS, username/password etc which all
are implemented in this MQTT broker. After implementing all the credentials to broker, it is now
task for client to add all these credentials to connect, publish and subscribe with maintaining all
the restrictions.

For configuring the Mosquitto broker, there are some steps need to be done such as a file for
storing password need to be created as well as mosquito.conf file need to be reconfigured to force
to use password from a password file that has been created earlier.

3.4.1.1 Creating and using a password file

To create the password file, mosquitto_passwd utility file which has been install during the
installation of mosquito broker need to be used. There are numerous ways to create password
file however the following way is the best procedure (terminal command) that is used for this
system.

mosquitto_passwd -b passwordfile secure secureconnection

The following figure 5 depicts the creation of a password file.

MD Jiabul Hoque, et al. / Real Time and Secure Messaging Service for IoT Applications…

48

Figure 5. Creation of password file.

Figure 6 shows the status of secure password.

Figure 6. Mosquitto secure password.

Now it is the time to use the password file through mosquito.conf file. At first, in the Raspberry Pi
the password file that has been created earlier needs to be copied to the directory etc/mosquitto.
Afterwards, mosquitto.conf file needs to be reconfigured in such a way that MQTT communication
use password file to make the communication secure. There are two changes have been made.
The changes made to mosquitto.conf file are setting the password file path and also setting allow
anonymous to false cause by default it remains true.
Settings of mosquitto.conf:

password_file /etc/mosquitto/password.txt
allow_anonymous false

After creating a password file and reconfiguring mosquitto.conf file, mosquitto broker needs to
be restarted in order to make the effect of such changes. However, in Raspberry Pi, without
restarting broker the file can be reloaded using the following command:

kill-HUP 519

After executing the above command, the terminal shows that moquitto.conf file is reloaded.
Figure 7 depicts the console log status:

Figure 7. Console log status.

After successfully setting the username and password to MQTT broker, username and password
is added to mqtt.js file for secure and authenticated connection of WebSocket. Figure 8 shows
secure WebSocket connection configuration.

Journal of Engineering Research and Education
Volume 12, 2020 [43-54]

49

Figure 8. Secure WebSocket connection configuration.

3.4.2 SSL Approach

In this approach, OpenSSL must be installed to generate all certificate files using Raspberry Pi. To
create SSL certificates, first step is to connect Raspberry Pi using ssh. And then create a private
key using following command:

openssl genrsa -out mosq-ca.key 2048

The command above will create a 2048-bit key called mosq-ca.key. And the result of this
command is showing the figure 9 below:

Figure 9. Creation of 2048 bit private key.

After creating the private key, the next task is to create an X509 certificate which will use the
private key that has been created before. Now after opening another terminal (directory must be
the same), the private key can be kept by writing the following code:

openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt

The following figure 10 shows the terminal after submitting the command:

Figure 10. Key certificated

MD Jiabul Hoque, et al. / Real Time and Secure Messaging Service for IoT Applications…

50

Now, it is the time to move on to create MQTT server certificate by creating a CSR (Certificate
Signing Request). Usually, before using the newly created certificate it is required to send
certification authority for verification. Here, self-signed certificate has been used to avoid such
complexity. The following commands are used to create the certificate and required credentials
to use in our server:

openssl req -new -key mosq-serv.key -out mosq-serv.csr
openssl x509 -req -in mosq-serv.csr -CA mosq-ca.crt -CAkey mosq-ca.key -CAcreateserial
-out mosq-serv.crt -days 365 -sha256

3.4.2.1 Securing MQTT Mosquitto server

After creating secure private certificates, it is time to secure MQTT mosquitto server for secure
communication throughout IoT network. In our system, three secure certificates listed below
have been used:

1. mosq-ca.crt
2. mosq-serv.crt
3. mosq-serv.key

In order to ensure SSL certificate to the mosquitto broker, few lines of code from mosquitto.conf
file are needed to be edited. The lines are given below:

listener 1883
cafile /home/pi/ssl-cert-mosq/mosq-ca.crt
certfile /home/pi/ssl-cert-mosq/mosq-serv.crt
keyfile /home/pi/ssl-cert-mosq/mosq-serv.key

Here, default MQTT mosquitto port has been changed to 1883 and private certificates have been
kept to the path /home/pi/ssl. Now, it’s time to restart the mosquitto service by using following
two commands:

sudo service mosquitto stop
sudo service mosquitto start

After successfully setting up SSL certificate to MQTT broker, some security options of mqtt.js file
must be changed for secure WebSocket connection with web page to broker. Following figure 11
shows the secure WebSocket connection.

Figure 11. Secure WebSocket Connection.

Finally, the procedure to make secure and encrypted MQTT protocol for securing communication
throughout IoT network has been completed with expected result.

Journal of Engineering Research and Education
Volume 12, 2020 [43-54]

51

4. RESULTS AND ANALYSIS

At first, it is essential to check whether files required to test our secure MQTT protocol is loaded
or not with minimal delay. Following figure 12 depicts files along with their size and loading time
requires testing the proposed system. Here, the loading time might vary depending on the speed
and performance of the testing server.

Figure 12. Loading dependency files.

To test the MQTT server, it is required to have a client from which secure communication can be
made with MQTT server. As such, a Java base MQTT client (MQTT.fx) has been install in our
windows operating system based client computer. After that the settings and connection
parameters of client have been changed as well as MQTT mosquitto has been configured to secure
MQTTprotocol with necessary information as shown in the figure 13 below:

Figure 13. Configure MQTT Mosquitto Server to Secure MQTT.

It can be seen from the figure 13 that the information about profile name, broker address, broker
port number and client ID has been provided. Besides, SSL/TSL configuration has been enabled
by providing the certificate files like mosq-ca.crt in previous steps.

MD Jiabul Hoque, et al. / Real Time and Secure Messaging Service for IoT Applications…

52

Now secure connection can be made between MQTT server and client by clicking simply connect
button as shown in figure 14:

Figure 14. Secure MQTT connection.

The status of the connection between client and broker can be seen by clicking the Log tab shown
in figure 14. The following figure 15 depicts the connection status along with the size of sending
packets.

Figure 15. Connection status.

Now it is time to check the status from subscribe side which is located in another computer. Figure
16 shows the status of the subscriber side:

Figure 16. Subscriber status.

Next approach is testing MQTT connection over port 1883. When there is no authentication set,
any user from any device can connect to this device. But after setting authentication and ssl

Journal of Engineering Research and Education
Volume 12, 2020 [43-54]

53

certificate, it becomes difficult to connect to MQTT broker without knowing the dependencies.
After trying from other devices without proper dependencies, the message appears as shown in
Figure 17.

Figure 17. SSL WebSocket Status without dependencies.

After adding all the dependencies and ssl certificate, the console showing that the WebSocket
successfully connected to topic: client/accessLog that is shown in figure 18.

Figure 18. SSL WebSocket Status .

5. CONCLUSION

In this paper, authors have proposed a secured and automated messaging system using MQTT
protocol that takes message from other devices such as sensor, mobile, laptop and accepts only
the ones with proper authenticity. This work specifically demonstrated an application of the
system that can successfully communicate securely with IOT support devices without
compromising any data loss. An experimental framework has been developed using a broker,
some python and JavaScript scripts with associated supportive software tools to evaluate the
performance of the proposed system. Besides, a hypothetical webpage were used as sample
output device. The performance of the system was then evaluated in term of accuracy, time and
security of communication system. The outcome of this paper will surely make IoT
communication in real time and make more secure.

REFERENCES

[1] Ahmed, M., Rahman, M. & Hoque, M. Smart Home: An Empirical Analysis of Communication

Technological Challenges. European Journal of Engineering Research and Science. 5, 5

(2020) 571-575. doi: https://doi.org/10.24018/ejers.2020.5.5.1905.

[2] Ahmed, Z. U., Mortuza, M. G., Uddin, M. J., M. H. Kabir, & Hoque, M.J. Internet of Things Based

Patient Health Monitoring System Using Wearable Biomedical Device. Paper presented at

IEEE International Conference on Innovation in Engineering and Technology (ICIET),

Bangladesh, (2018) 1-5. doi: 10.1109/CIET.2018.8660846.

MD Jiabul Hoque, et al. / Real Time and Secure Messaging Service for IoT Applications…

54

[3] Bansal, B.N. & Garg, V. Development of Message Queuing Telemetry Transport (MQTT)

based Vehicle Accident Notification System. International Journal of Engineering and

Advanced Technology 9, 2 (2019) 268-273. doi: 10.35940/ijeat.B2662.129219.

[4] Gomes, Y. F., Santos, D. F. S., Almeida, H. O. & Perkusich, A. Integrating MQTT and ISO/IEEE

11073 for health information sharing in the Internet of Things. Paper presented at IEEE

International Conference on Consumer Electronics (ICCE), Las Vegas, (2015) 200-201. doi:

10.1109/ICCE.2015.7066380.

[5] Hakim, M. L., Uddin, M. J. & Hoque, M. J. 28/38 GHz Dual-Band Microstrip Patch Antenna

with DGS and Stub-Slot Configurations and Its 2×2 MIMO Antenna Design for 5G Wireless

Communication. Paper presented at IEEE Region 10 Symposium (TENSYMP), Bangladesh,

(2020) 56-59. doi: 10.1109/TENSYMP50017.2020.9230601.

[6] Hoque, M., Ahmed, M. & Hannan, S. An Automated Greenhouse Monitoring and Controlling

System using Sensors and Solar Power. European Journal of Engineering Research and

Science. 5, 4 (2020) 510-515. doi: https://doi.org/10.24018/ejers.2020.5.4.1887.

[7] Hoque, M., Kabir, S., & Hossain, M. K. Electricity Crisis of Bangladesh and A New Low Cost

Electricity Production System to Overcome this Crisis. International Journal of Scientific and

Research Publications 8, 7 (2018) 201-206. doi:

http://dx.doi.org/10.29322/IJSRP.8.7.2018.p7933

 [8] Hoque, M. J., Ahmed, M. R., Uddin, M. J. & Faisal, M. A. Automation of Traditional Exam

Invigilation using CCTV and Bio-Metric. International Journal of Advanced Computer

Science and Applications 11, 6 (2020) 392-399.

doi: http://dx.doi.org/10.14569/IJACSA.2020.0110651

[9] Kabir, M. H., Rashid, S. Z., Gafur, A., Islam, M. N. & Hoque, M. J. Maximum Energy Efficiency

of Three Precoding Methods for Massive MIMO Technique in Wireless Communication

System. Paper presented at IEEE International Conference on Electrical, Computer and

Communication Engineering (ECCE), Bangladesh, (2019) 1-5. doi:

10.1109/ECACE.2019.8679238.

[10] Katsikeas, S. Lightweight & secure industrial IoT communications via the MQ telemetry

transport protocol. Paper presented at IEEE Symposium on Computers and

Communications (ISCC), Heraklion, (2017) 1193-1200. doi: 10.1109/ISCC.2017.8024687.

[11] Lee, S., Kim, H., Hong, D. & Ju, H. Correlation analysis of MQTT loss and delay according to

QoS level. Paper presented at IEEE The International Conference on Information

Networking (ICOIN), Bangkok, (2019) 714-717. doi: 10.1109/ICOIN.2013.6496715.

[12] Sharma, S., Hossen, M. K., Islam, M. S. & Hoque, M. J. Automatic Question and Answer

Generation from Bengali and English Texts. GESJ: Computer Science and

Telecommunications 2, 54 (2018) ISSN 1512-1232.

[13] Singh, M., Rajan, M. A., Shivraj, V. L. & Balamuralidhar, P. Secure MQTT for Internet of Things

(IoT). Paper presented at IEEE Fifth International Conference on Communication Systems

and Network Technologies, Gwalior, (2015) 746-751. doi: 10.1109/CSNT.2015.16.

[14] Upadhyay, Y., Borole, A. & Dileepan, D. MQTT based secured home automation system.

Paper presented at IEEE Symposium on Colossal Data Analysis and Networking (CDAN),

Indore, (2016) 1-4. doi: 10.1109/CDAN.2016.7570945.

