Development in Cell-Nanotopography Interaction Applications and Its Potential for Mass Production

Abdul Haadi Abdul Manap, Mohd Syakirin Rusdi, Siti Suhaila Md Izah and Khairudin Mohamed

*Nanofabrication and Functional Materials (NFM) Research Group, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
*Nano-Optoelectronic Research & Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11900 USM, Penang, Malaysia.
*Corresponding author. Tel.: +04-5996321; e-mail: mekhairudin@usm.com

ABSTRACT

Since the initial presentation of cell contact response with native topographic structure in 1911, numerous studies have been published to investigate how cells respond when interacting with micro/nano structures. Many of the founding has potential to become applications in bio-medical or in pharmaceutical industry. Regardless of the huge prospect, these applications are still bound to the manufacturability of the micro/nano topographic structures. The introduction of nanoimprint lithography in 1995 has demonstrated that it can replicating micro/nano structures with relatively simple and low-cost equipment but with high throughput and high reliability. This paper reviews the development in cell-micro/nanotopographic interactions, the development of high throughput nanofabrication method. The nanofabrication methods in focus is nanoimprint lithography and electrospinning. This review paper also discusses the potential applications from cell-nanotopographic for mass productions. Prospectus applications such as the development in development of antimicrobrial surfaces interactions and biologically inspired nanoscaffold and nanopattern suitable for tissue repair and regeneration are also discussed.

Keywords: Cell, Nanotopographic, Nanoimprint

1. INTRODUCTION

Advancements in nanofabrication have unveiled a multitude of possibilities for the interaction between cells and nanotopography. According to Robert Langer’s research, nanotechnology has the potential to revolutionize and reshape the biomedical and pharmaceutical sectors.[1] The nanotechnology market in healthcare and medicine is estimated to grow to more than USD334 billion by 2025.[2] In order to tackle potential applications that leverage cell-nanotopography interactions, there is a need to create cost-effective and efficient techniques for nanofabrication. Several ideas have been introduced and developed for high throughput nanofabrication. Methods relying on direct mechanical deformation, like nanoimprint lithography (NIL), are crucial in the nanotechnology-driven medical and pharmaceutical sectors due to their cost-effectiveness, repeatability, and efficiency.[3], [4].

Cells typically exist at the micro scale, and the initial exploration of cell responses to native topographic structures was conducted by Harrison in 1911 [5],[6]. Remarkably, when a cell interacts with a surface featuring dimensions smaller than itself, it exhibits a distinct response, e.g., structure on nanostructure. Cell respond in many ways with nanostructures and some of those responses are useful, and these interactions can be utilized as tools to direct the cell responses[7]–[12]. Nanostructure that interacts with cells can be used as mechanosensory to transmit signals for cell adhesion, proliferation and differentiation[7]–[12]. Understanding the interaction between cells and nanotopographic structures is primarily contingent on knowledge about cell adhesion[13]. If the cell fails to adhere to the surface, other responses become irrelevant. Numerous studies have explored various types of nanotopographic structures in this regard. Cell interactions with nanotopography can be categorised into three groups, namely cell with precise and highly symmetrical nanostructures[14], [15], cell with randomize nanostructure[16], and cell with disorder nanostructure[17]. This paper reviews the history and recent development of these three categories.

2. CELL-MIRO/NANOTOPOGRAPHY INTERACTION

Numerous investigations have been undertaken to delve into stem cells, examining their interactions with nanotopography [18]. The main objective of research in stem cell is to control the differentiation of stem cells into specific cell lineages. Utilizing the interaction between mesenchnymal stem cells (MSCs) and nanotopography can serve as a means to regulate their differentiation [18]–[21]. When placed on nanotopography, human embryonic stem cells (hESCs) exhibit a similar interaction. The nanotopological mechanosensory of hESCs has noteworthy effects on cell spreading, adhesion, and self-replication.
The interaction between human embryonic stem cells (hESCs) and nanotopography holds significant potential in the realms of tissue engineering and medical applications. This is attributed to the distinctive characteristics of hESCs, particularly their pluripotency, which allows them to differentiate into various specialized human cells [24], [25]. Numerous investigations have been carried out to analyze cell interactions with TiO2 nanotubes. Cellular responses, such as adhesion, proliferation, and apoptosis, are contingent on the size of the nanotube. Park et al. [26] showed that indicates that cell adhesion and proliferation reach their peak on nanotubes with a diameter of 15 nm, while apoptosis occurs at a diameter of 100 nm. Numerous studies align on the consensus that the fate of cells is determined within the threshold nanotube size of 30-50 nm [25]. Surfaces featuring nanotube diameters exceeding 50 nm can lead to cell impairment, restricting both cell spreading and adhesion, irrespective of the specific surface characteristics [27], [28]. Although large nanotubes (diameter >50 nm) impair cells from spreading and adhere, they evoke stem cells to elongate [29], [30]. The elongation of mesenchymal stem cells (MSCs) induces a change in cytoskeletal structure, driven by a heightened tension state. This alteration subsequently results in the generation of osteoblast-like cells [30]-[32]. This breakthrough unveils a new avenue for advancement in nanotechnology, particularly in the field of orthopedic treatment.

On the other hand, Dalby et al. [17] showed that the contact between disordered nanotopography and mesenchymal stem cells (MSCs) leads to swift osteogenesis, comparable to the outcomes achieved using corticosteroids such as Dexamethasone as agents inducing bone formation. Table 1 presents the collection of studies in cell responses to precise and highly symmetric nanostructures, Table 2 presents the collection of studies in cell responses to randomize nanostructures and Table 3 presents the collection of studies in cell responses to disorder/irregular nanostructures.

Regarding the selection of nanotopography, three nanostructure options are available. The initial approach involves investigating cell interactions with symmetric and highly precise nanostructures [14], [33], [34]. The second approach entails examining cell interactions with randomly textured nanoscale roughness [16], [35] and the third approach involves adopting a middle ground between precision and randomness, known as disorder nanotopography [18]. When cells interact with precise nanotopography, the typical outcome is lower cell adhesion compared to interactions with random nanoscale roughness [14], [16], [34], [36]. Interestingly, McMurray et al. [37] stated that precisely symmetrical arrangement of nanopits has been demonstrated to maintain the phenotype and multipotency of hMSCs over an extended period, lasting up to eight weeks.

Table 1 Collection of studies in cell response to precise and highly symmetric nanostructures

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Substrate Material [b]</th>
<th>Cell Type</th>
<th>Feature size</th>
<th>Adhesion</th>
<th>Proliferation</th>
<th>Elongation, alignment [c]</th>
<th>Other [d]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanogrooves [14]</td>
<td>PUA coculture with HUVECs</td>
<td>hMSCs</td>
<td>a. Space Gap = 550nm, 1650nm and 2750nm</td>
<td>hMSCS and HUVECS fully adhered to substrate.</td>
<td>There is no notable difference with a flat substrate.</td>
<td>hMSCS and HUVECS aligned with the nanopattern exhibit a CEF 2-3 times greater than that observed on a flat surface.</td>
<td>Osteogenesis highest at space gap 1650nm.</td>
</tr>
<tr>
<td>Nanograting [14]</td>
<td>PDMS</td>
<td>hMSCs</td>
<td>a. Pitch = 700nm and 1µm</td>
<td>Culturing hMSCs on nanogratings results in a decrease in integrin subunits.</td>
<td>-</td>
<td>On nanogratings, hMSCs align and elongate, whereas on a flat surface, cells spread randomly.</td>
<td>Substrate stiffness and topography impact both hMSCs focal adhesions (FA) and F-actin.</td>
</tr>
<tr>
<td>Nanowell [14]</td>
<td>TCPS coated with FNC or LC</td>
<td>HCECs</td>
<td>a. d = 1.38µm wells</td>
<td>-</td>
<td>Every substrate demonstrates a higher proliferation rate compared to the plain surface. Especially, HCECs on 1µm FNC-coated pillars exhibit a considerably increased proliferation, with a 2.9-fold</td>
<td>HCECs exhibit elongation in p-media, while in s-media, the cells become fully confluent and maintain their native shape.</td>
<td>Nanotopographic memory aids HCECs in maintaining functional markers.</td>
</tr>
</tbody>
</table>

For more information, please refer to the references cited in the text.
<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Substrate Material [c]</th>
<th>Cell Type [b]</th>
<th>Feature size [a]</th>
<th>Adhesion</th>
<th>Proliferation [d]</th>
<th>Elongation, alignment</th>
<th>Other [e]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanoroughness (Murali et al. 2021) [44]</td>
<td>Glass coated with vitronectin</td>
<td>hESCs</td>
<td>(R_\text{a}) between 1nm to 150nm</td>
<td>Decrease with (R_\text{a}) increase.</td>
<td>After 8 hours cultured, the number of attached vMSCs increased.</td>
<td>After 7 days, cultured, PLLA fiber shown to support cell proliferation.</td>
<td>After 8 hours cultured, cell elongated. The nanopores on the microfiber surface enhances cell biominicry, fostering the synthesis of vascular protein matrix proliferation and enhanced adhesion.</td>
</tr>
<tr>
<td>Surface featuring microfibers with elliptical-shaped nanopores. (Zhou et al. 2015) [45]</td>
<td>PLLA microfiber with nanopores surface</td>
<td>vSMCs</td>
<td>(AR_{\text{app}} = 2.7 - 3.9 (54.8 - 110.0\text{nm})) (d_1 = \text{cs. } 1.6\text{µm})</td>
<td></td>
<td></td>
<td></td>
<td>The scaffold made from PLGA does effect the toxicity level within the culture medium.</td>
</tr>
<tr>
<td>a. Cylindrical microfiber with smooth (CS) b. Cylindrical microfiber with porous (CR) surface c. Ribbon microfiber with smooth (RS) and porous (RR) surface (Lopez Marquez et al. 2022) [46]</td>
<td>PLGA</td>
<td>NCs</td>
<td>(R_{\text{G}(CS)} = 182\text{nm}) (R_{\text{G}(CR)} = 170\text{nm}) (R_{\text{G}(RS)} = 363\text{nm}) (R_{\text{G}(RR)} = 366\text{nm}) (R_{\text{G}(RS)} = 418\text{nm}) (R_{\text{G}(RR)} = 160\text{nm})</td>
<td>Rough fibre increase adhesion.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanoroughness (Delaine-Smith et al. 2021) [47]</td>
<td>Ti</td>
<td>hMSCs</td>
<td>(R_c = 22\text{nm})</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precise spatially nanoroughness</td>
<td>Glass</td>
<td>NIH/3T3</td>
<td>(R_c) between 1nm to 150nm</td>
<td>NIH/3T3 adhere at</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] hMSCs = human mesenchymal cells; HCECs = human corneal endothelial cells; PUA = polyurethane acrylate; HUVECs = human umbilical endothelial cells; PDMS = Polydimethylsiloxane; TCPS = Tissue Cultured Polystyrene; FNC = mixture of fibronectin and collagen; PET = polyethylene terephthalate[c] CEF = cell elongation factor [d] FA = Focal Adhesion; LC = laminin (Gibco) and chondroitin sulphate (Sigma) mixture

Table 2 Collection of studies in cell response to randomized nanostructures.

International Journal of Nanoelectronics and Materials (IJNeaM)
Table 3 Collections of cell response to disorder/irregular nanostructure

<table>
<thead>
<tr>
<th>Structure Type [a]</th>
<th>Substrate Material [c]</th>
<th>Cell Type [b]</th>
<th>Feature size</th>
<th>Adhesion</th>
<th>Proliferation [d]</th>
<th>Elongation, alignment</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanopit [Stewart 2019] [49]</td>
<td>Polycarbonate</td>
<td>MSCs</td>
<td>a. d = 120nm b. depth = 100nm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Osteoblastogenesis occurs through two distinct mechanisms: one induced by nanotopography and the other through piezo-stimulated mechanotransduction.</td>
</tr>
<tr>
<td>RGD nanopattern [Choe et al. 2022; Sun et al. 2022] [51], [52]</td>
<td>Glass</td>
<td>MC3T3-E1</td>
<td>a. Spacing = 55-101nm b. hRGD = 10nm</td>
<td>Cell adhesion is superior on a disordered nanopattern compared to an ordered nanopattern. This is attributed to the wider range of ligand density present in the disordered nanopattern.</td>
<td>-</td>
<td>-</td>
<td>Integrin clustering and adhesion through RGD ligands occur when the spacing between ligands is larger than 70nm.</td>
</tr>
<tr>
<td>Nanotube [Oh et al. 2009] [53]</td>
<td>Ti</td>
<td>hMSCs</td>
<td>d = 30, 50, 70, 100nm</td>
<td>a. The quantity of adhered cells exhibits an inverse relationship with the size of the nanotubes. b. Nanotubes with a diameter of 30nm facilitate cell adhesion without inducing differentiation.</td>
<td>-</td>
<td>Larger diameter nanotube promote osteoblastic differentiation.</td>
<td>There is an inverse relationship between cell adhesion and cell elongation.</td>
</tr>
<tr>
<td>Nanopit (5 Patterns / Arrays)</td>
<td>PMMA</td>
<td>Osteoprogenitors</td>
<td>a. d = 120nm b. depth = 100nm</td>
<td>a. MSCs on DSQ50 show longer adhesion compared to SQ and HEX that have poor adhesion. b. Osteoprogenitor loss adhesion on HEX.</td>
<td>a. MSCs proliferation on DSQ50 significantly higher than MSCs on planar substrate with DEX. b. Osteoprogenitors on DSQ50 formed dense</td>
<td>a. After 21 cultured, MSCs on SQ show fibroblastic appearance and on RAND show osteoblastic appearance. b. MSCs on DSQ20 show significant osteoblastic</td>
<td>MSCs osteogenesis were rapidly induce by interact it with controlled nanodisorder.</td>
</tr>
</tbody>
</table>
To harness the interactions between cells and nanotopography, a comprehensive understanding of cell adhesion is likely the most crucial aspect. Cells that adhere to surfaces through cellular adhesion receptors are known as integrins. Cells exhibit distinct responses to variations in mechanical force [18], surface topography[19] and surface chemistry[55]. In describing cell adhesion, Dalby et al. [13] provided an analogy, a cell can be likened to a tent, where the pegs represent integrin clusters serving as anchors that secure the tent to the ground. Nevertheless, cells have the ability to determine the location of integrin clusters by modifying their cytoskeleton. When a surface features a nanostructure with dimensions similar to those of the cell's integrin, signals can be relayed to the cell via the integrin,

Cells cannot interact directly with any synthetic material. Instead, it can adhere to the protein layer adsorbed on the material surface[62]. Cell adhesion can be studied using the spatial organization of arginine-glycine-aspartic acid (RGD) ligands[64]–[66]. In a previous study, Cavalcanti-Adam et al. [67] produced a threshold density (70 nm) for the RGD spacing for the focal adhesion to be formed. Cell adhesion decreases significantly when the RGD spacing is greater than 67 nm[68]–[70].

3. DEVELOPMENT IN NANOTOPOGRAPHY FABRICATION

The integral part of shifting the application of cell-nanotopography interaction from laboratory to industrial scale is the nanotopography fabrication. There are many methods for fabricating nanostructure from random fabrication to precise fabrication. The applications of these methods are attributed to many factors such as cost, precision, repeatability and many more. Randomize method, such as blasting, can produce nanostructures more easily, while top down fabrication techniques, such as reactive ion etching and electron beam lithography has the capability to achieve features as small as 10 nm. [71]. Although precise techniques yield more controlled and consistent outcomes in contrast to random methods, they often entail higher costs and require expertise to attain the desired nanostructure.[72],[73]. Moreover, these methods are labor-intensive and time-consuming, rendering them impractical for large-scale production. To stimulate innovation and propel research in cell-nanotopography technology, it is essential to develop low-cost, high-throughput, and high-resolution nanolithography techniques nanolithography[74]. The rapid progress in the semiconductor industry has notably hastened the development of micro/nanofabrication techniques. Innovations like nanoimprint lithography (NIL) and electropinning now empower researchers to construct and fabricate nanostructures on larger substrates at a more cost-effective rate[75]. NIL was first introduced by Chou in 1995 [76] demonstrating promising potential to offer a cost-effective and high-throughput method for producing continuous high-resolution nanostructures [77]. In NIL, the mold created is transferred onto a resist using specialized printing equipment [78]. In this approach, the master mold is generated through precise fabrication techniques, such as focused ion beam or electron beam lithography [79]. The nanostructure can be replicated repeatedly by imprinting it onto a suitable substrate.

Figure 1. SEM images of 60nm features on quartz substrate [79].

Figure 2 depicts a difference between two types of nanoimprint Lithography (NIL) which are thermal NIL and ultraviolet (UV) NIL. In thermal NIL, the mold used for imprinting is heated just beyond the glass transition temperature, Tg of the resists. The elevated temperature softens the resist, allowing it to fill the cavities and create a reverse pattern of the mold. Subsequently, the mold is cooled to a temperature below the glass transition temperature, Tg of the resist before being disjointed. In UV NIL, the entire process, including resist UV-curing and the demolding process, is carried out at room temperature, eliminating the need for elevated temperatures. [81]. Unlike thermal Nanoimprint Lithography (NIL), which depends on phase changes corresponding to temperature adjustments, UV NIL induces resist hardening through increased cross-linking

[a] RGD = arginine glycine-aspartic acid
SQ = square Array ; HEX = hexagonal array ; DSQ20 = disordered square array with dots randomly displaced by up to 20 nm along both axes from their positions in a true square ; DSQ50 = disordered square array with dots randomly displaced by up to 50nm along both axes from their original positions in a perfectly square arrangement. ; RAND = pits placed randomly over a 150 μm X 150 μm field, repeated to fill a 1 cm² area [b] MSCs = Mesenchymal Cells; MC3T3-E1 = mouse osteoblastic cell line [c] PMMA = polymethylmethacrylate [d] DEX = dexamethosane
in UV-sensitive polymer [82]. UV NIL necessitates smaller imprint pressure compared to thermal NIL because it employs a less viscous photoresist. In addition to UV NIL and thermal NIL, there are also variants of Nanoimprint Lithography (NIL) that combine both UV and thermal curing, such as (STU®) imprint technology by Obducat Technologies [85]. These techniques allow the Nanoimprint Lithography (NIL) cycle to be carried out at a constant temperature by simultaneously employing both thermal curing and UV curing. NIL based on imprint contact encompasses three variants: roll-to-roll (R2R), plate-to-plate (P2P) and roll-to-plate (R2P), Figure 3 shows the differences between these three NIL methods. In terms of potential for mass production, R2R NIL holds significant promise for industry-scale applications. The R2R NIL concept is rooted in roll-to-roll manufacturing processes, enabling the continuous and high-throughput production of products.[86], [87]. Roll-to-roll (R2R) NIL presents greater advantages compared to conventional plate-to-plate (P2P) NIL in terms of equipment size, imprint force and output. [88]. Wong et al. [89] has successfully demonstrated the double-sided R2R NIL which able micro or nanostructure imprinted to both side of targeted substrate. Table 4 present the collection of studies and research that using different type of NIL.

Another method for producing inexpensive, relatively easy and high throughput nanostructures is electrospinning[79]. Electrospinning has been used for mass production for decades. However, this method is not preferred compared to other spinning methods due to its lower production rate. As a result, many studies have been conducted to improve electrospinning. For instance, the Karpov Institute of Physical Chemistry used swirling air jet to form multiple solution-spinning jet[95]. A study conducted in Korea using cylinder-type multi nozzle electrospinnini system showed great potential for mass production of nanofibers[96].

Cellular responses to molecular-scaled structures in contact surfaces were first proposed in 1963 by Rosenberg[97]. However, it was in 1999 when Laurencin et al. [98] reported that fibroblastic cells are adhered and realigned properly with fibers with a diameter smaller than the diameter of the cell. Numerous research have been done to investigate the behavior of cells when interacting with nanofiber scaffolds. Electrospinning is a simple method to produce nanofibrous scaffold for cell-nanotopography interactions. Electrospinning was first introduced and patented by Formalas in 1934[99]. Prior to that, researchers focused on electrospinning as a method to produce fibers which are used to reinforce composite materials, thereby improving mechanical properties[100]. Figure 4 shows the schematic set up to produce uniaxial nanofibers.

<table>
<thead>
<tr>
<th>Researcher</th>
<th>NIL Type</th>
<th>Mold</th>
<th>Resist</th>
<th>Final Product</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. Chen et al. 2021</td>
<td>P2P</td>
<td>SiO₂ (quartz) template</td>
<td>Polystyrene</td>
<td>Sub-10 nm width ribbon of hexagonal graphene nanomesh (GNMS).</td>
<td>Sub-10 nm of ribbon width.</td>
</tr>
<tr>
<td>Potejanasak 2021</td>
<td>P2P</td>
<td>SiO₂ (quartz) template</td>
<td>TR-21 from Tokyo Gosei Co. Ltd.</td>
<td>120 nm diameter of CoPt nanodots.</td>
<td>120 nm diameter of nanodot.</td>
</tr>
<tr>
<td>Ye et al. 2010</td>
<td>P2P</td>
<td>Hydrogensilsesquioxane(HSQ)</td>
<td>Polysset® epoxy siloxane nanoimprint resist from Polysset Company Inc., Mechanicville, New York, USA</td>
<td>50nm lines and dot with high aspect ratio are successfully replicated using PDMS soft mold.</td>
<td>sub-100 nm of periodic nanoline and array of nanodot.</td>
</tr>
<tr>
<td>Sousa et al. 2017</td>
<td>R2P</td>
<td>Thin Ni film</td>
<td>PMMA</td>
<td>Sub-100 nm of PMMA nanogratings.</td>
<td>Sub-100 nm of nanograting.</td>
</tr>
<tr>
<td>Ahn and Guo 2009</td>
<td>R2P</td>
<td>Ethylene Tetrafluoroethylene (ETFE)</td>
<td>Epoxysilicone</td>
<td>300 nm line width and 600 nm of epoxysilicone nanogratings.</td>
<td>300 nm line width of nanograting.</td>
</tr>
<tr>
<td>Schleunitz et al. 2011</td>
<td>R2R</td>
<td>OrmoStamp coated with antisticking layer (ASL)</td>
<td>Celluose Acetate (CA) film</td>
<td>200 nm depth and width of CA. (A continuous 40 m of CA printed).</td>
<td>200 nm line width of nanograting.</td>
</tr>
<tr>
<td>Nagato et al. 2010</td>
<td>R2R</td>
<td>Si(Silicon) template</td>
<td>PMMA</td>
<td>Multilayer nanograting with 800nm pitch.</td>
<td>300 nm depth of multilayer nanograting.</td>
</tr>
<tr>
<td>Lee et al. 2018</td>
<td>R2R</td>
<td>Polyurethane acrylate</td>
<td>PDMS</td>
<td>Gecko-foot-inspired hierarchical nanostructure.</td>
<td>200nm nanopore.</td>
</tr>
<tr>
<td>Wong et al. 2018</td>
<td>R2R</td>
<td>UV-curable resin</td>
<td>PDMS</td>
<td>Micro-nano structure fabricated/imprinted on both side of targeted substrate (double sided).</td>
<td>200nm nanopore.</td>
</tr>
</tbody>
</table>
Figure 2. Comparison between Thermal NIL and Ultra-Violet NIL.
Figure 3. Nanoimprint lithography variation based on imprint techniques.
When a high voltage is applied between the conducting syringe and conduction collector (i.e., rotating disk), the voltage bias will convert the polymer droplets on the syringe needle into a polymer jet. Nano-sized polymer jets are collected by rotating disk producing uniaxial nanofibers. The final product can vary by changing collectors. The rotating disk collector will produce uniaxial nanofiber, plate collector will produce random nanofiber, and rotating drum collector can produce uniaxial nanofiber. Random nanofiber are produced depends on the bias voltage.

Table 5 Summary of various studies that using different material and collector for electrospinning

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Collector Type</th>
<th>Material</th>
<th>Fiber Diameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasouri et al. (2012)</td>
<td>Rotating drum for random nanofiber</td>
<td>PAN/DMF</td>
<td>80-162nm</td>
<td>Flow rate: 0.25mL/h Voltage: 25kV Distance: 12cm</td>
</tr>
<tr>
<td>Yu et al. (2014)</td>
<td>Flat plate for random nanofiber</td>
<td>Collagen/PCL/Chloroform/CNTs</td>
<td>564nm</td>
<td>Flow rate: 2mL/h Voltage: 16kV Distance: 12cm</td>
</tr>
<tr>
<td>Zhu et al. (2015)</td>
<td>Parallel metal plates for aligned microfiber</td>
<td>Collagen/silk/HFIP</td>
<td>1-2μm</td>
<td>Flow rate: 5mL/h Voltage: 15-25kV Distance: 10-20cm</td>
</tr>
<tr>
<td>Cho et al. (2016)</td>
<td>Rotating custom-made drum for random/aligned nanofiber</td>
<td>PCL/DCM/DMF</td>
<td>750-1000nm</td>
<td>Flow rate: 1mL/h Voltage: 14-16V Distance: 19cm</td>
</tr>
<tr>
<td>Johnson et al. (2016)</td>
<td>Rotating disc for aligned microfiber</td>
<td>PLLA/Chloroform</td>
<td>170-200μm</td>
<td>Flow rate: 2mL/h Voltage: 10kV Distance: 5cm</td>
</tr>
<tr>
<td>Roman et al. (2016)</td>
<td>Rotating disc for aligned microfiber</td>
<td>PLLA/Chloroform/DMF</td>
<td>1.36-1.56 μm</td>
<td>Flow rate: 1.1mL/h Voltage: 10V Distance: 10cm</td>
</tr>
<tr>
<td>Shafei et al. (2017)</td>
<td>Rotating drum for random nanofiber</td>
<td>PCL/DMF/Tetrahydrofuran</td>
<td>450-1150nm</td>
<td>Flow rate: 2mL/h Voltage: 13kV Distance: 20cm</td>
</tr>
</tbody>
</table>

4. **CELL-NANOTOPOGRAPHY APPLICATIONS FOR MASS PRODUCTION**

The cellular reaction to the nanostructure can be harnessed for various applications. One such application that can leverage this cellular response is the development of antimicrobial surfaces. Similar surfaces can be found naturally in dragonfly wing [107] and gecko skin [108] and researcher around the world try to replicate these surfaces in antimicrobial. As an example, research conducted by Ivanova and her colleagues revealed that dragonfly wings, characterized by nanocones with dimensions of 50-70 nm in base diameter and a height of 240 nm, exhibit distinct antibacterial properties. [107]. In another study by Kelleher et al., it was observed that the nanopillars present on cicada wings demonstrate effective antimicrobial properties against gram-negative bacteria, specifically Pseudomonas aeruginosa [109]. Table 6 summarized the list of artificial nanostructured bactericidal surfaces with their preparation method. The table exhibits the artificial antibacterial surfaces with various patterns such as silicon-based surfaces, titania-based surfaces and flexible polymer surfaces. These
Artificial antibacterial surfaces were fabricated with different preparation methods such as RIE, hydrothermal process, anodization, thermal oxidation, NIL, direct laser interference patterning and EBL technique.

<table>
<thead>
<tr>
<th>Researchers</th>
<th>Surface</th>
<th>Preparation method</th>
<th>Surface features and size</th>
<th>Bactericidal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasan et al. (2015)</td>
<td>Black silicon</td>
<td>DRIE</td>
<td>Nanograss Diameter 220 nm Height 4000 nm</td>
<td>Lethal to E-coli and S-aureus</td>
</tr>
<tr>
<td>Fisher et al. (2016)</td>
<td>Diamond nanocone surface</td>
<td>RIE</td>
<td>Nanocones Width 0.3-1.2 µm Height 3500 nm</td>
<td>Lethal to P-aeruginosa</td>
</tr>
<tr>
<td>May et al. (2016)</td>
<td>Diamond coated black silicon</td>
<td>RIE</td>
<td>Nanoneedles Height 0.5-1.4 µm Height 15-20 µm</td>
<td>Lethal to P-aeruginosa</td>
</tr>
<tr>
<td>Hizal et al. (2015)</td>
<td>Ti alloy nanospike surface</td>
<td>Anodization</td>
<td>Nanospikes Diameter 100 nm Spacing 2 µm Height 2 µm</td>
<td>Lethal to S-aureus</td>
</tr>
<tr>
<td>Sjostrom et al. (2016)</td>
<td>Ti alloy nanospike surface</td>
<td>Thermal oxidation</td>
<td>Nanospikes Diameter 20 nm</td>
<td>Lethal to E-coli</td>
</tr>
<tr>
<td>Dickson et al. (2015)</td>
<td>Nanopatterned PMMA surface</td>
<td>NIL</td>
<td>Nanopillar Diameter 70-215 nm Height 200-300 nm</td>
<td>Lethal to E-coli</td>
</tr>
<tr>
<td>Kim et al. (2015)</td>
<td>Nanopatterned PMMA film</td>
<td>NIL</td>
<td>Nanospores Depth 460 nm Spacing 300 nm</td>
<td>Restricted attachment of bacterial</td>
</tr>
</tbody>
</table>

The development of bactericidal surfaces has gained traction in recent years due to the fact that bacteria can develop resistance toward antibiotic [120]. COVID 19 pandemic has strengthened the need of anti-bacteria or anti-viral surfaces in our daily life. Bacterial infections start with bacteria attachment or adhesion to the surface of medical devices, hospital tools, implants, and food packaging. After bacterial attachment, bacteria will form biofilms, which is the formation that has high resistance against antibacterial agents[121], [122]. These materials provide preventive measure for infection by stopping adhesion of bacteria or virus.

Contrary to antimicrobial application, cell-nanotopography interactions can be harnessed to create an environment that accelerates tissue repair and wound healing. Biologically inspired nanoscaffold and nanopattern has help researchers narrow down the pattern suitable for tissue repair and regeneration[123], [124]. With the comprehensive research and suitable fabrication for mass production, these biologically inspired nanoscaffold will have advances regenerative medicine and tissue engineering. Many studies and research have been conducted to utilize the biophysical cues from cell-substrate interaction for cardiovascular disease therapy. In vitro study show that when hESC-CMs (human embryonic stem cell-derived cardiomyocytes), in contact with nano-micro surfaces will effect cardiomyocyte response[125], [126]. The cell morphology changes such as increase in alignment help regional cardiomyocyte which ultimately help the arrangement of cardiac muscle fiber[125], [126]. Cell reaction from nanotopographical cues also apparent in neural tissue regeneration and repair. Many bio-inspired nano-scaffolds are proven in helping for suitable environment for regeneration of various stem cell. Klymov et al. has reported that for neuron cell, PC12 show axonal growth in contact with nanogrooves with pitch 150-1000nm and depth 30-150nm[127]. Similar study by Genchi et al. show that PC12 cell adhesion and proliferation when in contact with 1µm random PHB fiber and parallel PHB fiber[127].

162
5. CONCLUSION AND PERSPECTIVES

In years after the cell first contact response, considerable progress has been made in establishing the fundamental of cell response to nanostructure. The future of cell-nanotopography interaction applications largely depends on advancement for high-throughput, cost effective nanofabrication techniques. Method such as nanoimprint lithography and electrospinning offer potential solutions of such applications.

Parallel developments in semiconductor industry, MEMs/NEMs and polymer research help tremendously for low cost cell-nanotopography-related devices. In the wake of COVID 19, applications like antimicrobial surfaces has create awareness for an pre-emptive approach from infections. The combinations of research for better nanofabrication, the demand for cell-nanotopographical applications and the continuous awareness campaign are hope to propel the nanotechnology implementation in health science.

AKNOWLEDGEMENT

This work was supported by the Universiti Sains Malaysia under USM Short Term (Grant No. 304 / PMEKANIK / 6315767).

[85] P. C. Sousa et al., “Nanoimprint lithography for large-scale fabrication of micro-and nanostructures”.

