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ABSTRACT 

Antimony(Sb)-doped tin oxide (SnO2) thin films were grown by sol-gel spin coating and post-annealed from 150 to 350 °C. XRD, 
FESEM, AFM, XPS, UV-VIS-NIR spectroscopy, and four-point probe technique were used to study the physical properties of Sb-doped 
SnO2 (ATO) films. XRD studies of Sb-doped SnO2 films exhibit a tetragonal rutile structure. The crystallite size of ATO films increased 
from 19 to 45 nm with post-annealing temperature. The morphology of ATO films shows a dense structure with a homogeneous grain 
distribution. The optical bandwidth of Sb-doped SnO2 films decreased from 3.36 to 3.08 eV due to reduced defect densities and grain 
boundaries. The electrical resistance of Sb-doped SnO2 films reduces from 2.64×10-3 to 1.74×10-3 Ω.cm due to improved crystallinity 
and decreased interstitial atoms with increased post-annealing temperature. 
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1. INTRODUCTION 

Tin oxide (SnO2) is a transparent conducting oxide (TCO) 
material with high optical transmittance, electrical 
conductivity in the visible region, high reflectivity at the 
near-infrared region, and a wide band gap (~3.6 eV). These 
materials had potential applications in optoelectronics, e.g., 
transparent electrodes, solar cells, field effect transistors, 
window materials for solar cells, gas sensors, etc., [1-3]. 
SnO2 exhibits higher thermal resistance than indium-doped 
tin oxide, so the films have good abrasion scratch resistance 
[4, 5]. Extrinsic or intrinsic dopants can alter the band gap 
of SnO2. Antimony (Sb) is an extrinsic doping material for 
SnO2 that gains versatility because of its cost-effectiveness 
and non-toxic properties compared to other dopants, such 
as fluorine and indium [6, 7]. The n-type doping in which a 
valence state Sb5+ increases the conductivity of SnO2 

because these ions occupy substitutional cations within the 
Sn4+ site, increasing the electron density. The presence of 
Sb5+ donor ions shifts the Fermi level (Ef) close to the 
conduction band [8]. The ionic radii of Sb5+~0.74 Å are close 
to Sn4+~0.83 Å, producing the lattice distortion from 
substitutional Sb5+ donors [9]. Sb-doped SnO2 (ATO) is an 
attractive material for gas sensor applications because the 
surface sensitivity of this material makes it a selective 
material [10-12]. The annealing treatment can enhance the 
performance of gas sensors and optoelectronic applications, 
leading to changes in the microstructural factors such as 
film density, pore size, and adsorption sites [13, 14]. 

Different deposition methods, such as sputtering [15], 
pulsed laser deposition (PLD) [16], spray pyrolysis [17], 
and sol-gel [18], have been used to prepare Sb-doped SnO2 
films. Among these, the sol-gel spin coating can be 
preferable because of good homogeneity, large area 
coatings, and low processing temperature. The present 
paper will focus on the annealing effect on the physical 
properties of Sb-doped SnO2 films. 

2. EXPERIMENTAL 

Sb-doped SnO2 (ATO) films were prepared with the 
chemicals of high purity (AR grade, Sigma-Aldrich) using tin 
(II) chloride dihydrate (SnCl2.2H2O) as a precursor, 
Antimony (III) chloride (SbCl3) as a dopant, 2-methoxy 
ethanol as a solvent, and monoethanolamine (MEA) as a 
stabilizer. First, 0.2M of SnCl2.2H2O and 0.05 M of SbCl3 had 
to be dissolved within 50 ml of distilled water individually, 
and then both solutions were stirred for two hours at 350 
rpm at 80 °C. The MEA is used as a stabilizer and added at a 
5 ml/minute drop rate to achieve a homogeneous and 
transparent solution. The final solution was aged for over 
48 hours to produce a sol-gel. The final gel solution had 
been spin-coated upon the glass substrates at a rotational 
speed of 2500 rpm to form ATO films and post-annealed 
from 150 to 300 °C. The measured film thickness from the 
spectroscopic ellipsometer (J.A. Woollam, Alpha-SE) is 165-
280 nm. The crystallinity of Sb-doped SnO2 films was 
studied with an X-ray diffractometer (Bruker D8) with CuKα 

radiation (λ=0.154nm). The morphological analysis of Sb-
doped SnO2 films was employed with FESEM and AFM 
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(Ultra 55, Karl Zeiss & Bruker Icon). XPS (Axis Ultra-165) 
analyzes the elemental composition of ATO films. The 
optical absorption of ATO films was employed using a UV-
Vis-NIR (Hitachi U-2900) spectrophotometer. The electrical 
resistivity of ATO films was measured with the four-point 
probe method using a Keithley 2450 source meter 
instrument. 

3. RESULTS AND DISCUSSION 

3.1.  Structural studies 

XRD spectra of Sb-doped SnO2 (ATO) films post-annealed 
from 150 to 350 °C are shown in Figure 1. The XRD spectra 
show intense diffraction peaks with orientation along        (1 
1 0), (1 0 1), and (2 1 1). The ATO films exhibit rutile 
tetragonal structure of SnO2 compared with XRD peak 
positions corresponding to those on JCPDS Card #41-1445. 
The diffraction peaks become sharper and more crystalline 
with increased annealing treatment from 150 to 350 °C. The 
lattice constants a, c, and volume of ATO films were 
calculated using the formulas reported by Ramarajan et al. 
[19]. The lattice constant values increase with post-
annealing temperature, weakening the interatomic bonding 
strength, generating more stacked carriers, and decreasing 
the band gap between the shells of conduction and valence. 

 

Figure 1. XRD patterns of ATO films  

ATO film’s crystallite size (D) has been determined using the 
Debye–Scherrer equation [20]. The thermal annealing 
treatment increased the average crystallite size from 19 to 
45 nm. As the thermal annealing rises from 150 to 350 °C, 
the FWHM of XRD peaks decreases, resulting in an increase 
in crystallite size and a decrease in dislocation density from 
2.77 × 1015 to 0.45 × 1015 nm-2. The ATO film's micro-strain 
was evaluated by the formula ε = β/tanθ. It is noticed that 
the micro-strain values decreased. The higher post-
annealing temperature makes it more mechanically strong, 
enabling the deforming forces to reduce the crystallinity 
and lattice deformation misalignment. The observed XRD 

results agreed with reported values in the literature [21-
23]. 

The microstructural parameters of ATO films were analyzed 

using δ = [1/D2], 
σ = [E* ε ]

and
2

dE = [0.5*E ε ]〈 〉  (E∼200 
GPa for SnO2-Young’s Modulus) [24]. Table 1 lists the 
structural parameters of post-annealed ATO films. 
Cassiterite SnO2 has a tetragonal structure (space group: 
P42/mnm )and D144h symmetry. The following equations (1) 
and (2) were used to calculate the apical (d1) and equatorial 
(d2) distances between O and Sn. 

1d = 2ua                                                                                     (1) 

  

2 2

2

2

1 c
d = 2 -u .a +

2 2

   
   
                                                                (2) 

where a and c represent lattice constants, and u is the 
internal parameter which represents O2− ions position at 
±(0.5+u, 0.5–u, 1/2) and ± (u, u, 0) [25-27]. The basal angle 
(θ) is determined from the relation cos θ = 
[a2(1−4u+8u2)−1] /[c2+ 4a2(0.5−u)2+4a2u2] [28]. The 
variation in the d1, d2 values indicates more distorted 
octahedron symmetry, and the basal angle (θ) decreases 
with Sb5+/Sn4+ ions. The obtained values of d1, d2, and θ for 
ATO films were tabulated in Table 2. 

3.2 Surface morphological analysis 

FESEM images of ATO films annealed from 150 to 350 °C are 
depicted in Figure 2. The film's morphology reveals a dense 
structure with uniformly distributed grains, smooth 
surfaces free of cracks, and strong substrate adhesion. The 
films post-annealed at 350 °C show more uniform, compact, 
and agglomerated [29]. The enhanced grain size was 
observed with thermal treatment, indicating improved 
crystallinity and nucleation growth rate. These results 
matched with XRD measurements. 

Figure 2. FESEM images of ATO films 
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3.3 AFM analysis 

Figure 3 illustrates the morphology (2×2 μm2) of ATO films 
annealed from 150 to 350 ℃. The grains distribute more 
uniformly with an increase in annealing treatment. The 
surface roughness parameters Ra, Rq, Rrms, Rku, and Rsk were 
reported in Table 3. Post-annealing treatment increased Ra 
and Rq roughness readings from 7.20 to 14.85 nm and 8.98 
to 18.63 nm. The roughness varies due to changes in grain 
growth kinetics during film formation [30, 31]. The increase 
in the roughness is due to the agglomeration of grains, 
which may affect the optical and electrical properties. The 
kurtosis (Rku) and skewness (Rsk) roughness parameters 
can evaluate the surface symmetry distribution. The 
positive values of Rsk for Sb-doped SnO2 films indicate many 
bumps. These roughness factors can enhance the 
photocatalytic capabilities of photo-detectors. 

 

Figure 3. AFM images of ATO films 

3.4 Composition analysis 

The chemical valence states of ATO films were examined 
using XPS. The XPS complete survey spectrum for ATO film 
annealed at 300 °C is illustrated in Figure 4(a). XPS spectra 
exhibit peaks of Sn (4d), C (1s), Sn (3d), O (1s), Sn (3p), Sn 
(3s), and Sb (3d). Hydrocarbons may have provided the C 
element throughout the synthesis process. Sn 3d5/2 and Sn 
3d3/2 orbitals represent the two significant peaks in the XPS 
spectra at 489.4 and 497.8 eV binding energies, 
respectively, in Figure 4(b). These two orbitals are 
separated by 8.4 eV, and spin-orbit splitting is assigned to 
Sn4+ ions in SnO2 [32, 33]. Figure 4(c) demonstrates the 
peak corresponding to the Sb 3d core level binding. The 
533.4 and 542 eV peaks belong to the trivalent states of Sb 
3d5/2 and Sb3d3/2 [34]. The XPS spectrum of O1s is exhibited 
in Figure 4 (d). The 532.9 eV peak corresponds to the O 1s 
spectrum and is assigned to the adsorbed oxygen species 
[35, 36]. 

 

Figure 4. XPS characterization of ATO film annealed at  300 °C:     
a) full spectrum, b) 3d Sn ,  c) 3d Sb , d) 1s O spectra 

3.5 Optical studies 

Figure 5(a) shows the optical absorption spectra of ATO 
films post-annealed from 150 to 350 °C. The absorption 
edge of the films exhibits a red shift, leading to a reduction 
in carrier confinement due to enhanced crystallite size. 
Tauc’s equation relates the absorption coefficient and 
photon energy as 

( )
1/2

gαhν = A hν-E
                                                                   (3) 

 
The extrapolation from the curve (αhν)2 versus hν of ATO 
films is shown in Figure 5b. The band gap reduced from 3.36 
to 3.08 eV by increasing post-annealing temperature from 
150 to 350 °C. The red shift in the optical band gap is due to 
reduced defect densities and grain boundaries [37, 38]. The 
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Burstein-Moss effect describes a variation of Eg with ‘n’ and 
is given by the relation. [39]    

 

2/32
BM 2/3

g *

e

h 3
ΔE = n

8m π

 
 
                                              (4) 

where h, m∗e, and n represent Planck’s constant, the effective 
mass of the electron, and carrier concentration. The carrier 
concentration of ATO films is significantly affected by post-
annealing temperature. Increased Sb5+ ions increased 
carrier concentration from 3.43 × 1021 to 3.91 × 1021  cm-3, 
as they added two electrons. The same behavior trend in 
increasing carrier concentration has been discovered in 
other research works [40, 41].                                   

The electronegativity concept is utilized for estimating the 
edge potentials of the conduction band (EVB) as well as the 
valence band (EVB) of ATO thin films with [42] 

  VB e gE = χ - E + 0.5E
                                              (5)                               

CB VB gE = E - E
                                                                      (6) 

where χ (for SnO2~6.24 eV) represents electronegativity. Ee 
refers to the free electron energy ~4.5 eV. The EVB values for 
ATO thin films annealed at 150, 250, 300, and 350 °C were 
obtained as 3.42, 3.39, 3.34, and 3.28. The related ECB values 
are 0.06, 0.09, 0.14, and 0.20 eV. 

 

Figure 5. Plots of (a) Optical absorption spectra and (b) (αhν)2 
versus hν for ATO films 

The variation of refractive index (n) with wavelength for 
ATO films annealed from 150 to 350 °C was illustrated in 
Figure 6(a). The refractive index shows normal dispersion 
behavior with the wavelength. It may be due to the reduced 
absorption coefficient with wavelength. The increase in ‘n’ 
with annealing treatment proves the Egn4 ∼ constant given 
by the Moss relation [43]. Refractive index enhancement 
accompanies decreases in the band gap value. The ‘n’ of ATO 
films was estimated from the relation Moss [44, 45] 

4

gE n =k                                                                (7) 

where k =108 eV. The relation between Eg  and n given by 
Herve and Vandamme (HV) [46, 47] as 

  

2

g

A
n = 1+

E +B

 
  
                                                     (8) 

where A=13.6 and B=3.4 eV are constant at 13.6 and 3.4 eV, 
respectively. Figure 6(b) depicts the refractive index 
computed based on the above relations at various post-
annealing temperatures. The ‘n’ value increased from 2.38 
to 2.43 (Moss relation) and from 2.24 to 2.32 (HV relation). 
The variation in ‘n’ values with post-annealing temperature 
indicates improved crystallinity and decreased defects. The 
increase in the refractive index values could also be 
attributed to a decrease in carrier concentration and grain 
size enhancement [48]. The dielectric properties of the 
materials, such as static and high-frequency constants, were 
critical for electro-optical devices.  

 

Figure 6. Variation of (a) n vs λ and (b) Eg with post-annealing 
temperature for ATO films 

The high-frequency and static dielectric constant (ε∞ and εo) 
of ATO films were estimated from the equations [49] 

  
2ε = n                                                                                (9) 

  o gε = 18.52 - 3.08 E
                                                       (10) 

Table 4 reports the higher ε∞ and εo values due to atom 
composition and structure changes. The post-annealing 
temperature improves the optical properties of ATO films 
compared to previously reported results [50,51]. 

3.6 Electrical properties 

Figure 7 illustrates ATO films n, μ, and ρ with varying post-
annealing temperatures. The electrical resistivity (ρ) of ATO 
films decreased from 2.64 × 10-3 to 1.74 × 10-3 Ω.cm. The 
reduced electrical resistivity is due to the substitutional 
doping of Sb and the decreased interstitial atoms. The 
carrier concentration(n) depends on the dopant charge 
state and concentration. The carrier mobility(µ) varies with 
the surface defects, oxygen stoichiometry, structural 
defects, etc. [52]. The sheet resistance values for ATO thin 
films were evaluated using the formula, Rs = ρ/t. The Rs 
values of ATO films annealed at 150, 250, 300, and 350°C 
were obtained as 94.3, 80.4, 68.6, and 62.1 Ω/sq. The 
decreased sheet resistance with increased post-annealing 
temperature is due to improved free carrier concentration. 
This behaviour is because of Sb5+ substitution by Sn4+ ions 
in the SnO2 lattice, which introduces the charge carriers by 
generating excess electrons. The post-annealing effect 
enhanced the ATO film’s electrical properties compared to 
previously reported values [53, 54]. 
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Figure 7. Plot of  n, ρ, and µ of ATO films 

Table 1. Structural parameters of ATO films 
 

Structural parameters Annealing temperature (°C) 

150 250 300 350 

FWHM,β (°) 4.32 3.55 2.82 2.28 

d-value (nm) 0.3305 0.3374 0.3404 0.3411 

Lattice constant, a (Å) 0.4673 0.4771 0.4813 0.4824 

Lattice constant, c (Å) 0.3188 0.3224 0.3258 0.3326 

Volume, V =a2c (Å)3 69.6 73.41 75.48 77.4 

Crystallite size, D (nm) 19 23 32 45 

Micro strain, ε (line-2.m-4) 0.018 0.015 0.012 0.0096 

Dislocation density, δ, ×1015 (nm-2) 2.77 1.89 0.97 0.45 

Stress, σ (GPa) 3.664 3.014 2.395 1.937 

Energy density, Ed ×106     (J.m-3) 33.56 22.72 14.34 9.38 

 
Table 2. Apical and equatorial (d1 and d2) distances, internal parameter (u), and basal angle (θ) of ATO films 

 
 

 
 
 

 
 
              
 
    

    

Table 3. Surface roughness parameters of ATO films 

 
 
 
 
 
 
 
 
 

 
 

Annealing 
temperature (°C) 

 
 u 

 
 d1 (Å) 

 
 d2(Å) 

 
 θ (˚) 

150 0.341 2.254 1.908 24.42 

250 0.338 2.280 1.948 23.99 

300 0.334 2.303 1.965 23.76 

350 0.344 2.352 1.972 23.56 

Annealing 
temperature (°C) 

Rq 

 (nm) 
Ra 

(nm) 
Rku Rsk 

150 8.98 7.20 0.063 2.86 

250 11.46 10.83 0.090 2.68 

300 13.38 11.67 0.548 2.33 

350 18.63 14.06 0.385 3.29 
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Table 4. Eg, n,  ε∞ , and εo values for ATO films 
 

Annealing 
temperature 

(°C) 

Eg 
(eV) 

Moss relation Herve & 
Vandamme 

 
εo 

n ε∞ n ε∞ 

150 3.36 2.38 5.67 2.24 5.04 8.17 
250 3.30 2.39 5.72 2.26 5.12 8.35 
300 3.20 2.41 5.80 2.29 5.24 8.66 
350 3.08 2.43 5.92 2.32 5.40 9.03 

 
 

4. CONCLUSIONS 

ATO films were grown by sol-gel spin coating and post-
annealed in the 150-350 °C range. XRD patterns of ATO 
films exhibit a rutile tetragonal structure. The FWHM 
values of the peaks decreased from 4.32 to 2.28°, and the 
intensities of the diffraction peaks increased with post-
annealing treatment, indicating improved crystallinity and 
defect minimization. The surface morphology of ATO films 
exhibits higher surface roughness with post-annealing 
treatment. The absorption edge moves towards higher 
wavelengths, reducing the band gap from 3.36 to 3.08 eV. 
The thermal annealing treatment expands the crystal 
lattice, weakens the interatomic bonds, and reduces the 
bandgap. The reduction in the ATO film’s electrical 
resistivity and sheet resistance can be due to increased 
oxygen (O) vacancies, which facilitate charge carrier 
concentration. The results obtained for thermally annealed 
ATO films indicate they might be a viable electrode for 
optoelectronic device applications. 
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