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ABSTRACT

This study reports the use of Morinda citrifolia leaf extract as a reducing and stabilizing agent in the green synthesis of tin oxide
nanoparticles (SnO, NPs). Extract concentrations of 1:1, 1:3, 1:5, 1:7, and 1:10 were examined for the influence on the structural, optical,
and chemical properties. XRD, FTIR, UV-DRS, and XPS were employed for characterization. XRD examination showed a tetragonal rutile
structure with different crystalline extent, maximum at 1:3 extract ratio. Meanwhile, the formation of Sn-0-Sn and Sn-OH functional
groups was verified by FTIR. UV-DRS revealed that the optical properties were tunable, ranging from 3.17 to 3.71 eV, and this depended
on the extract concentration. XPS characterization of the optimal low-band-gap sample (1:10) confirmed the presence of Sn** and lattice
oxygen. The study demonstrates that extract concentration significantly affects properties of SnO, NPs, highlighting the potential of M.
citrifolia for eco-friendly nanoparticle synthesis.
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1. INTRODUCTION

In recent years, nanotechnology has gained significant
prominence as a multidisciplinary research domain across
various scientific and industrial sectors [1][2]. This rapid
development is primarily driven by engineering
advancements that allow precise and efficient
manipulation of nanomaterials [3]. Due to their distinctive
properties, including high physicochemical stability and an
extensive surface area, nanoparticles have been
extensively employed in numerous applications such as
catalysis [4], biomedical sciences [5], energy [6], and
optoelectronic devices [7], often offering superior
performance compared to their bulk counterparts. Among
the broad range of nanomaterials, metal oxide
nanoparticles, particularly ZnO, TiO,, CuO, Ag,0, and SnO,
which have received substantial attention owing to their
high surface-to-volume ratios, tunable electronic band
gaps, and excellent optical properties [8].

Among various metal oxide nanomaterials, tin oxide
nanoparticles (SnO, NPs) stand out due to their wide band
gap, typically ranging between 3.6 and 4.0 eV, and their
classification as n-type semiconductors [9]. These
nanoparticles exhibit high carrier concentrations up to 6 x
1020 cm-3, attributed to oxygen vacancies that enhance
electron density, thus making them suitable for a broad
range of advanced applications [10]. SnO, NPs also offer
additional advantages such as low cost, non-toxicity, high
electron mobility ranging from 100 to 200 cm?2V-1s'1, notable
photosensitivity, and excellent stability with high optical
transmittance in the visible region [11][12]. Owing to these
features, they are widely applied in solar energy conversion
[13], chemical sensors [14], lithium-ion batteries[15],
supercapacitors [16], and photocatalytic systems [17]. The
efficiency of these applications is said to be strongly
influenced by the structural uniformity and adjustable
morphology of SnO, NPs, leading to a growing body of
research focused on tailoring these characteristics to
improve their sensitivity, selectivity, and response speed
[18].
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Multiple approaches can be used to synthesize SnO, NPs.
Even though they are easy to perform, they tend to be
costly, use dangerous substances, and may be difficult to
implement at scale, such as the sol-gel process [19][20],
laser ablation [21], chemical vapor deposition [22] and
microwave [23]. While these methods are straightforward
to execute, they come with expensive production costs, the
use of dangerous chemicals, and problems with large-scale
implementation. As a result, different ways to address the
problem, like green synthesis, are becoming more popular.
Green synthesis provides a more sustainable option for the
synthesis of materials, and it uses techniques that are more
in tune with the biological systems [24]. In this instance,
plant extracts help transform metal salt precursors into
nanoparticles, with phytochemicals like flavonoids,
phenolics, terpenoids, and alkaloids serving
multifunctionally as capping-reducing agents to metal ions
and capping agents [25]. Afterward, the remaining
phytochemicals adhere to the surfaces of the nanoparticles,
and the functional groups ensure stabilization by inhibiting
agglomeration and preventing direct interaction among
the nanoparticle nuclei. Inhibiting the agglomeration and
fusion of the nanoparticles helps to improve size control
[26]. Employing natural extracts reduces negative
environmental effects tied to traditional chemical methods,
making the route safer, biocompatible, and eco-friendly
[27]. Literature describes several studies focused on the
green synthesis of SnO, NPs using different plant extracts,
such as Stevia rebaudiana [28], Piper betle [29], Chromaena
odorata [30], Daphne alpina [31], Aloe barbadensis [32],
Aquilaria malaccensis [33], Tradescantia spathacea [34],
Pandanus amaryllifolius [35], Vernonia amygdalina [36],
and many more.

In this paper, the authors describe a straightforward,
inexpensive, and eco-friendly method to synthesize SnO,
NPs using Morinda citrifolia leaf extract as a reducing and
capping agent for tin chloride (precursor salt), which
contains hydroxyl-rich flavonoids [37][38]. This study
seeks to assess how varying the concentration of the
extract will affect the functional properties of the
nanoparticles that have been synthesized, which have not
been previously explored using this plant. Different
concentrations of the extract can result in changes to the
kinetics of reduction as well as the shape, size, stability, and
overall characteristics of the resultant nanoparticles
[39][40]. By optimizing the extract concentration, it is
possible to enhance the quality and functional properties of
the Sn0O, NPs. The extract concentration varied in five
variations: 1:1, 1:3, 1:5, 1:7, and 1:10, whereby the
precursor salt solution was maintained at constant
concentration. The characterizations involve the utilization
of several instruments: X-ray diffraction (XRD), Fourier
transform infrared (FTIR), UV-Vis diffuse reflectance (UV-
DRS), and X-ray photoelectron spectroscopy (XPS).

2. METHODOLOGY
2.1. Preparation of SnOz NPs

The methodology employed in this study was adapted from
a previously reported procedure, with modifications in the
precursor-to-extract ratios, which were extended to 1:7 and
1:10 [41]. M. citrifolia leaf extract was introduced gradually
into a twirling solution of tin chloride (Sigma-Aldrich, 98%
purity). A 1:1 volume ratio mixture was kept under
continuous stirring at room temperature for three hours.
Reaction was facilitated during this time. The colloidal
suspension obtained was centrifuged, and the gelatinous
precipitate obtained was dried for 12 hours at 50 °C. The
dried product was calcined for three hours at 800 °C. This
synthesis was repeated with different fill ratios of 1:3, 1:5,
1:7, and 1:10 for precursor and extract. The resulting
products were then subjected to comprehensive
characterization analyses.

2.2. Characterization

X-ray crystallographic analyses were performed utilizing an
X'Pert PRO PANalytical X-ray diffractometer incorporating
CuKa X-ray radiation (A = 0.154 nm) at 45 kV and 40 mA. For
a 26 configuration of 5°-90°, a diffraction pattern for the
specified configuration was produced at a scanning rate of
0.417782°/s. Estimation of the crystallite size was computed
using the Debye-Scherrer equation predicated upon the full
width at half maximum (FWHM) of the most intense
diffraction peaks. Functional group analysis was performed
using a PerkinElmer Spectrum 400 Fourier-transform
infrared (FTIR) spectrometer with an ATR accessory. The
4000-400 cm™ range of the sample was examined to identify
distinctive Sn-0-Sn and Sn-OH vibrations, which allowed for
the SnO, framework to be established. Evaluation of the
sample optical properties made use of UV-Visible diffuse
reflectance spectroscopy (UV-DRS) and a Varian Cary 5000
spectrophotometer. The reflectance data were analyzed to
determine the optical band gap energy using the Kubelka-
Munk function. X-ray photoelectron spectroscopy (XPS)
analysis for elemental composition and corresponding
chemical states of tin and oxygen was performed utilizing a
Shimadzu/Kratos AXIS Ultra DLD system. Survey spectra
were made with an acquisition resolution of 1.0 eV, and the
high-resolution spectra were made at 0.1 eV and averaged
over three scans to which were to improve accuracy.

3. RESULTS AND DISCUSSION
3.1. X-Ray Diffraction (XRD) Characterization

The X-ray diffraction patterns for different precursor salt-to-
extract ratios for synthesized SnO, NPs in Figure 1a show
well-defined diffraction peaks corresponding to the SnO,
rutile tetragonal phase SnO,. The peaks correspond to the
standard JCPDS card no. 01-077-0452 data confirming the
intended crystalline structure was formed. The center of the
diffraction peaks that correspond to the (110), (101), (200),
(211), (220), (002), (310), (112), (301), (202), (321) lattice
planes were observed at 27.08°, 34.35°, 38.39°, 52.29°,
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55.21°, 58.41°, 62.40°, 65.23°, 66.37°, 71.85°, and 79.83°,
respectively. These findings are consistent with previous
literature, further validating the structural integrity of the
synthesized SnO, NPs [42][43].

The most prominent diffraction peaks were associated
with the (110), (101) and (211) planes. The presence of all
characteristic diffraction peaks across samples synthesized
with varying precursor salt-to-extract ratios demonstrates
a crystal lattice that shows a highly ordered atomic
arrangement, confirming the successful formation of the
SnO;, crystalline framework. The absence of any extraneous
peaks associated with impurities further validates the
synthesis of pure, single-phase SnO, NPs. Pure SnO, NPs
emerged from the synthesis, as no stray peaks from
impurities cluttered the XRD patterns. The standout
performer came from the 1:3 ratio of precursor salt to
extract, where the diffraction peak hit its peak intensity and
signaled top-notch crystallinity, probably due to the perfect
balance of hydroxyl groups teaming up as dispersants [44].
They kept the particles apart, cutting down on clumps and
boosting overall steadiness. This is the reason the (110)
plane stood out sharp and bold, hinting at a tougher build
for Sn0; in that orientation over others. Later, the Debye-
Scherrer equation (Equation 1) is applied to figure out the
crystallite sizes (D). The analysis of both crystallite size and
FWHM centered on the (110) plane, a common practice in
Sn0, studies due to this plane's high atomic density [45].
Equations (2-4) helped to calculate the interplanar spacing
(d), dislocation density (6), and lattice strain (€) [46][47].
Table 1 lays out all these XRD details.

D=1 = )
5=~ (3)
&= 4tfn6 (4)
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The highest peak intensity is recorded for the sample with a
1:3 ratio, as shown in Figure 1b, which also exhibited the
largest crystallite size among all samples measured at 33.43
nm. In the interim, the enlargements showing Figure 1c
details on the (110) diffraction peak describe its positional
and intensity variations. Increasing the extract
concentration above 1:1 extends the 1:3 ratio through 1:10
as 20 increments decrease on the diffraction peaks. Even
with the observed shifts, SnO, NPs that were synthesized
maintain their crystalline structure and phase purity.
Meanwhile, Figure 1c presents an enlarged view of the
relative shift and intensity of the (110) diffraction peaks. As
the extract concentration increases beyond the 1:1 ratio, a
noticeable shift in the diffraction peaks toward lower 26
angles is observed for ratios ranging from 1:3 to 1:10.
However, this shift does not significantly affect the
crystalline structure or phase purity of the synthesized SnO,
NPs. This behavior may be associated with variations in the
lattice constant, influenced by stress within the crystal
grains [48], as detailed in Table 1. When chelation between
OH groups and Sn** ions is complete, the magnitude of the
chelation bonding might differ with individual
concentration. By increasing the extract volume, OH groups
start fighting over capping duties, creating a messy chelation
scene that leaves some Sn** ions exposed. Heat from
calcination then pushes atoms around wildly, stretching
bonds in unpredictable ways [49].

Yet crystallite size and FWHM refused to follow a straight
path with rising extract levels. That clashes with studies on
tomato extract from Lycopersicon esculentum [50] and
Camellia sinensis [51], where more extract dialed down
crystallinity and muddied the patterns. Here, the ups and
downs show up in dislocation density and lattice strain, both
tied to those shifts. Higher extract doses sparked swings in
FWHM and size, pointing to patchy order in the crystal
lattice, no matter what the ratio. Such chaos could ripple
grain  boundaries, where interface glitches stir
the pot [52][53]. Furthermore, the variation in extract
concentration may cause uneven capping of Sn** ions by
hydroxyl groups, resulting in uneven bonding or steric
hindrance. Such effects could contribute to inconsistent
crystallite growth and irregular lattice dislocation, and
strain.
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Figure 1. (a) XRD Profiles of SnO, NPs synthesized with varying precursor salt-to-extract ratios; (b) Magnified view of the (110)
diffraction peaks; (c) Intensity of the (110) diffraction peaks at approximately 27.08°.
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Table 1 XRD Parameters of SnO, NPs synthesized with different precursor salt-to-extract ratios

Precursor salt: Extract
Parameter

1:1 1:3 1:5 1:7 1:10
Crystallite size D (nm) 12.62 33.43 11.33 27.92 10.16
FWHM (°) 0.67 0.25 0.75 0.30 0.84
Lattice spacing (d) 0.3285 0.3289 0.3298 0.3292 0.3289
Dislocation density (§) 0.0063 0.0009 0.0078 0.0013 0.0097
Lattice distortion (&) 0.2379 0.0899 0.2660 0.1078 0.2959

3.2. Fourier Transform Infrared (FTIR) Spectroscopic
Analysis

The FTIR spectra of SnO, NPs samples synthesized at
different precursor salt-to-extract ratios (Figure 2) show
two predominant clusters of absorption bands. The Sn-0-
Sn asymmetric stretching vibrations are recorded in the
range of 529 to 748 cm™, while the stretching vibration of
the Sn-OH group appears between 921 and 1132 cm™
[54][55]. These findings confirm the presence of key
functional groups across all samples and validate the

formation of the SnO, framework. Notably, the peaks
corresponding to Sn-0-Sn groups are most intense at the 1:3
ratio, suggesting that this ratio yields the highest production
of Sn0O, NPs. This enhancement may be attributed to an
optimal capping effect from hydroxyl-rich flavonoids, which
effectively stabilize Sn** ions during synthesis. In contrast,
other ratios may result in weaker or inconsistent capping
due to either an insufficient or excessive amount of hydroxyl
groups.
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Figure 2. The FTIR spectra demonstrate the characteristic Sn-0-Sn asymmetric stretching vibrations, as well as the stretching modes
corresponding to the Sn-OH groups.

3.3. UV-Vis Diffuse Reflectance (UV-DRS) Analysis

As shown in Figure 3a, all Sn0, samples demonstrate visible
spectrum reflectance edges between 450 and 480 nm. The
employment of higher extract concentration induces a
slight excitonic transition within the SnO, phase, resulting
in a minor extension of the reflectance edge toward
hypsochromic shift with variation of reflectance [56]. This
reflects the previous analysis of XRD and FTIR, which
contains variation in the parameter. It was observed that
the highest reflectance percentages were recorded as 62 %
for the ratio 1:1 and the lowest with 39 % using the ratio
1:7. This trend suggests that with higher extract
concentrations, the reflectance might be reduced due to
increased light absorption or more irregular surfaces.

Using the reflectance data, the Kubelka-Munk method
utilized the reflectance data, whereby the square root of the
function was plotted against the photon energy to obtain
the optical band gap. The optical band gap was obtained by
extrapolating the linear portion of the band gap graph to the
energy axis intersection point [57]. As presented in Figure
3b, the band gap increases up to 3.71 eV at the 1:3 ratio
before decreasing with the higher extract concentration.
The 1:10 ratio provides the band gap of 3.17 eV, while the
1:3 ratio gives the maximum band gap of 3.71 eV as
presented in Table 2. The obtained band gap values
correlate with the changes in the linear graph dispersed in
the optical band gap. The gap is less because of the crystal
defects, which provide local energy position, and allow Sn**
d-shell electron transition in the conduction band and
valence band [58][59]. The increase in the gap, however, is
plausible due to the quantum confinement effect [60].
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Table 2 Reflectance and optical band gap values of SnO, NPs synthesized at different extract concentrations

Precursor salt: Extract
Parameter
1:1 1:3 1:5 1:7 1:10
Reflectance (%) 62 51 46 39 47
Energy band gap (eV) 3.61 3.71 3.27 3.33 3.17
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Figure 3. (a) Reflectance spectra and (b) Tauc plots of SnO, NPs synthesized with different extract concentrations.

3.4. X-ray Photoelectron Spectroscopy (XPS)

A decreased energy band gap can reduce the electron-
transfer process from the valence band to the conduction
one. Consequently, the SnO, 1:10 sample, which had the
smallest band gap (3.17 eV), was selected for study. The
phase composition and chemical states of Sn and O
elements were analyzed. The survey spectrum (Figure 4a)
shows the presence of Sn, O, and C elements. It is evident
that the high-resolution Sn 3d (Figure 4b) signal consists of
two splitting peaks at the binding energy of 487.5 and
495.9 eV for Sn 3ds/, and Sn 3d3/,, respectively, implying
that tin in SnO: has a well-defined oxidation state.
Additionally, for the O 1s XPS spectrum (Fig. 4c), a well-
defined peak at 531.4 eV is observed, which can be
assigned to lattice oxygen and its interaction with O, ions of
the tetragonal structure formed by Sn* species. The
synthesized SnO, NPs exhibited atomic concentrations of
49.66% for O 1s and 22.91% for Sn 3d. These findings are
consistent with values reported in earlier studies [61][62].
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Figure 4. XPS analysis of Sn0, NPs: (a) survey spectrum, (b) high-resolution Sn 3d peaks, and (c) O 1s peak for the sample synthesized
ata 1:10 extract ratio.

4. CONCLUSION

Green synthesis of SnO, NPs using M. citrifolia leaf extract
has been fully accomplished, with the extract concentration
greatly impacting the characteristics of the resultant
nanoparticles. The 1:3 precursor-to-extract ratio produced
Sn0, NPs with superior crystallinity, optimal Sn-O bonding,
and the highest energy band gap (3.71 eV), indicating
strong quantum confinement and minimal structural
defects. Conversely, the 1:10 ratio showed a significant
band gap reduction (3.17 eV), likely due to increased lattice
disorder and oxygen vacancies. XRD, FTIR, UV-DRS, and
XPS analyses consistently validated the formation of high-
purity SnO, NPs with tunable optical and structural
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properties. This shows M. citrifolia’s great potential as a
biodiversity secure and environmentally friendly means for
the green synthesis of Sn0O, NPs with tailored functionalities
suitable for applications in optoelectronics, sensors, and
photocatalysis.
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