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ABSTRACT 

The electronic properties like (HOMO, LUMO levels and Energy gap), and spectroscopic properties (IR spectra) in addition to 
thermodynamics characteristics like (Gibbs free Energy, Enthalpy, Entropy, and Heat capacity) of Coronene C24 and reduced Coronene 
oxide C24Ox where x=1-5 is a number of oxygen atoms and different temperature from (298 – 398) K were studied. The methodology 
utilized in this study involved the application of Density Functional Theory (DFT) using the Hybrid functional B3LYP (Becke, 3-
parameters, Lee –Yang-Parr) with 6-311G** basis sets. The band gap of Coronene (C24) 3.5 eV was calculated, while for reduced 
coronene oxide C24O - C24O5 has been varied from (1.68 to 0.89) eV due to broken symmetry and adding levels inside the energy gap. 
The IR intensity of C24O5 increases with increasing temperature between (298 and 398) K because of the number of excited atoms, the 
spectroscopic properties were compared with experimental results, in particular the Longitudinal Optical (LO) mode of vibration for 
graphene oxide 1582 cm-1 which agreed well. The Gibbs free energy and enthalpy decreased (in the negative sign) with an increased 
number of oxygen atoms and temperatures which means an exergonic reaction. 

Keywords: Coronene oxide, Electronic, Spectroscopic, Thermodynamics properties, DFT 

 
1. INTRODUCTION 

Coronene, a polyaromatic hydrocarbon (PAH) molecule 
characterized by a core ring shared with six surrounding 
rings, is recognized as a distinctive super benzene molecule. 
It is naturally present in sedimentary rock and can also be 
detected during the hydrocracking process in petroleum 
refining [1-5]. The sp2 carbon structure has garnered 
significant attention in the synthesis of several π-
conjugated organic compounds [6-10]. And further 
electronic [11]. Coronene is classified as a polycyclic 
aromatic hydrocarbon (PAH) because of its molecular 
structure, which consists of six benzene rings that are fused 
together in a peri arrangement. This unique arrangement 
allows for the electrons within Coronene to be completely 
delocalized among the benzene rings. Their unique planar 
electrical structure allows Coronene molecules to tightly 
stack, which promotes efficient self-assembly and increased 
electron mobility [12-17]. Carbon nanotubes and graphene, 
two materials with remarkable electron conductivity, are 
thought to represent extensions of the Coronene structure. 
Several attempts have been made to create Coronene 
derivatives with a variety of electrical and electronic 
characteristics [18-24]. The first use of graphene was in the 
field of electronic devices, focusing on its electronic 
properties [25-27]. Graphene has been applied in numerous 
fields, such as energy storage devices like lithium-ion 
batteries, supercapacitors, gas detection and conducting 
electrodes [28-30]. Previous studies used Coronene 
(C24H12) as a model to analyze spectroscopic and structural 

 

changes in graphene oxide (GO) due to oxygenated groups. 
Geometry optimization, vibrational IR, and Raman spectra 
of functionalized Coronene molecules are performed. The 
results provide valuable data for GO IR and Raman spectra 
analysis, revealing more detailed structural effects [31]. 
Studied analysed the molecular structure of Coronene and 
Coronene-Y molecules using geometrical optimization. It 
was found that Y atoms interacting with Coronene resulted 
in new bonds and reduced ionization potential but 
increased electron affinity. Coronene acted as a donor in 
Coronene-Y, while Coronene-B and C had an energy gap 
similar to semiconductors. Coronene-In was the most 
polarizable molecule, while Coronene-C and Coronene-O 
were anti-ferromagnetic [32]. Benzene, Coronene, and 
Circumcoronene of graphene quantum dots (GQDs) with 
zigzag edges were studied, utilizing the DFT theory and PBE 
functional, this study examines the alteration of individual 
properties about the quantity of atoms present in the 
graphene quantum dots (GQDs), while also noticing both 
linear and nonlinear fluctuations. This work additionally 
examines the utilization of Raman spectroscopy in the 
context of comparing the PBE and B3LYP functional for 
various sizes of graphene quantum dots (GQDs). 
Furthermore, the investigation explores the changes 
observed in the G peak for each function. The calculations 
were conducted using the Gaussian 09W software tool, 
employing 3-21G Gaussian basis sets. The results of this 
study have substantial implications in several disciplines, 
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such as materials science and the field of energy storage 
[33]. In our previous study the electronic properties of 
Coronene (C24), reduced Coronene oxide (C24O5) and the 
interaction between C24O5 and nitrogen dioxide using DFT, 
and Gaussian view 05 software [34]. Also the electronic 
characteristics such as band gap HOMO and LUMO level, as 
well as the spectroscopic properties like IR and Raman 
spectra of Coronene C24H12 after removing hydrogen atoms 
and substituting with oxygen to get reduced Coronene oxide 
(C24O- C24O5), were studied [35]. In the present work adds 
the variation of temperature as well as the number of 
oxygen atoms to give a complete aspect of the electronic, 
spectroscopic and thermodynamic properties of Coronene 
C24 and Reduced Coronene Oxide C24OX where x=1-5 which 
is a very important Nanostructure in optoelectronics 
devices. 

2. METHODOLOGY 

The DFT is the most dependable technique for 
comprehending the characteristics and structure of 
molecules and nanostructures. DFT has gained a reputation 
because of its strong match to experimental data. Among the 
most often used DFT methods is B3LYP [36-41]. It was 
discovered that the B3LYP was better than other functional 
that encouraged its utilization. Energy from exchange-
correlation sources is combined with HF exchange in the 
hybrid functional B3LYP [42]. For light atoms such as C and 
O, we will adopt 6-311G** basic states in this investigation 
[43, 44]. In order to account for the frequency of vibration, 
scaling factors with a value of 0.967 were employed [45]. 
The geometric analysis was carried out using Gaussian view 
05, while the computations were carried out using Gaussian 
09W software [46] as shown in Figure 1. 

3. RESULTS AND DISCUSSION 

3.1. Electronic Properties 

The energy gap, also known as the band gap, refers to the 
change in energy levels between the highest occupied 
molecular orbital (HOMO) and the lowest unoccupied 
molecular orbital (LUMO) [47]. 

𝐸𝑔 = |𝐿𝑈𝑀𝑂 − 𝐻𝑂𝑀𝑂| (1) 

The energy gap (Eg) can be found from differences between 
the first low unoccupied molecular orbital (LUMO) which is 
similar to the conduction band (C.B) and the last high 
occupied molecular orbital (HOMO) which is equal to the 
valance band (V.B) of Coronene (C24) and reduced coronene 
oxide (C24OX) where (X=1-5) as a function of a number of 
oxygen atoms as shown in Figure 2 which shows the energy 
levels (HOMO and LUMO). Figure 3 The energy gap of 
Coronene C24 and reduced coronene oxide C24O-C24O5 with 
fluctuations because of the small number of atoms which 
are within the computer capabilities compared with the 
experimental value (1.4) eV for Graphene [48] and a range 
of (1-2.2) eV for graphene oxide (GO) [49, 50]. 

The energy band gap of Coronene (C24) is determined to be 
3.5 eV, primarily attributed to the strong symmetry of the 
Coronene nanostructure. The band gap of quasiparticles is 
significantly influenced by both the Coulomb interaction 
and the quantum confinement geometry [51]. There was a 
decrease in the energy gap with an increase in the number 
of oxygen atoms adding to a Coronene (C24) because of the 
symmetry broken and adding level inside of the energy gap. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Geometrical optimization of (a) Coronene C24 and (b, c, d, e, f) reduced Coronene oxide (C24O - C24O5) 
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Figure 2. Energy levels (HOMO and LUMO) of Coronene C24 and 
reduced Coronene oxide (C24O - C24O5) as a function of a number 

of oxygen atoms 

 

Figure 3. The energy gap of Coronene C24 and reduced Coronene 
oxide (C24O - C24O5) according to the oxygen atoms 

3.2. Thermodynamics Properties 

Figure 4 and Table 1 show the variation of the Gibbs free 
energy (∆G), Enthalpy (∆H), Entropy (∆S) and Heat capacity 
(CV) with a number of oxygen atoms at room temperature 
298 K. Figure 5 and Table 2 shows the thermodynamics 
properties at different temperature from (298-398) K for 
Coronene C24 and reduced coronene oxide C24O-C24O5. It has 
been found that when the number of oxygen atoms 
increases, the system size increases and interaction 
between the atoms causes Gibbs free energy and enthalpy 
to decrease (negative sign), while with the increased 
temperature that ∆G decreased according to the Eq. (2), 
which indicate an exergonic reaction. Both the heat capacity 
and entropy increase with the number of oxygen atoms and 
 

temperature; this results in greater disorder within the 
system and a higher material temperature, as shown in the 
following Eqs. (2) and (3) [52,53]: 

∆G=∆H-∆ST (2) 

where, ΔH is change in the enthalpy and ΔS is change in the 
entropy. 

C=Q/m∆T (3) 

where C is heat capacity (J/(kg·K), Q is the amount of heat 
(in joules), m is the mass of the sample, and ΔT is the change 
between starting and end temperatures. 

  
(a) (b) 

  
(c) (d) 

Figure 4. The thermodynamics properties of reduced Coronene oxide (C24O-C24O5) compare with Coronene C24 for (a) Gibbs free energy, 
(b) Enthalpy, (c) Entropy and (d) Heat capacity of a number of oxygen atoms 
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(a) (b) 

  
(c) (d) 

Figure 5. The thermodynamics properties of reduced Coronene oxide (C24O5) for (a) Gibbs free energy, (b) enthalpy, (c) entropy and (d) 
heat capacity at different temperatures 

Table 1. The thermodynamics properties of C24 and C24O-C24O5 

Thermodynamics properties C24 C24O C24O2 C24O3 C24O4 C24O5 
∆G (a.u) -913.97 -989.20 -1064.41 -1139.62 -1214.85 -1290.07 
∆H (a.u) -913.92 -989.14 -1064.35 -1139.55 -1214.79 -1290 

∆S (Cal/Mol-K) 117.25 122.91 127.76 133.57 138.86 143.20 
CV (Cal/Mol-K) 61.92 65.25 68.74 72.74 76.20 79.19 

 
Table 2. The thermodynamics properties of C24O5 at different temperatures from (298 - 398) K 

Thermodynamics properties 298 K 323 K 348 K 373 K 398 K 
∆G (a.u) -1290.070 -1290.076 -1290.082 -1290.089 -1290.095 
∆H (a.u) -1290.002 -1289.999 -1289.996 -1289.992 -1289.988 

∆S (Cal/Mol-K) 143.20 149.90 156.50 162.97 169.30 
CV (Cal/Mol-K) 79.19 84.22 88.98 93.46 97.65 

 
3.3. Spectroscopic Properties 

Figure 6 and Table 3 illustrate how the intensity of the IR 
absorption spectra of reduced coronene oxide (C24O5) 
increases with temperature between (298 and 398) K 
because of an increase in the number of excited atoms 
according to Maxwell Boltzmann distribution, comparison 
with the experimental value of Longitudinal optical (LO) 
mode of frequency 1582 cm-1 for graphene oxide [54]. 

4. CONCLUSIONS 

Density functional theory with Hybrid functional B3LYP and 
6-311G** basis sets were used to study the Coronene 
molecule with a variation of the number of oxygen atoms 
and the temperature. The obtained results can be 
summarized as follows. 

1. The energy gap of the Coronene molecule was high 
because of the quantum confinement effect and 
Coulomb interaction. 

2. It was found that the energy gap decreased with the 
substituting of oxygen atoms instead of hydrogen of 
Coronene molecule due to broken symmetry and 
adding level inside of the energy gap. 

3. The Gibbs free energy decreased (in the negative 
sign) with an increase of oxygen atoms and variation 
of the temperature which means exergonic reaction 
with more stable as the definition of Gibbs free 
energy requires. 

4. The intensity of the IR absorption spectrum of C24O5 
was increased with increased temperature due to an 
increase in the number of excited atoms according to 
Maxwell Boltzmann distribution. 
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(a) (b) 

Figure 6. IR spectra for reduced Coronene oxide C24O5 as a function of frequency for (a) at 298 K and (b) at 398 k 

Table 3. The IR intensity and frequency values of C24O5 at 
different temperatures (298 and 398) K 

Temperature 
(k) 

IR 
Intensity 

(a.u) 

Theoretical 
Frequency 

(cm-1) 

Experimental 
Frequency (cm-

1) [54] 
298 3264.46  1695 1582 
398 4549.22  1695 1582 
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