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ABSTRACT 
 

The Simulation-Based Unmanned Aerial Vehicle Fleet Management and Control System for 
Urban U-Space (S-UFMC) is an advanced framework designed to manage high-density UAV 
traffic within complex urban environments. To ensure safe, efficient and scalable 
operations, the system employs a grid-based airspace model that segments the urban 
environment into manageable 3D corridors. This structure is governed by a synthesis of 
artificial intelligence (AI), A* (A-STAR) pathfinding algorithms and a suite of simulated 
sensors. Performance monitoring relies on simulated IoT sensors, which operate using data 
models derived from extensive research and testing. These simulations track key metrics 
such as speed, total path length and average velocity to guide operational decisions. Safety 
is paramount, enforced by an anti-collision system that uses simulated LiDAR and proximity 
sensors to predict and resolve potential conflicts in real time. The system's AI core, enhanced 
by reinforcement learning, facilitates intelligent decision-making. This allows for real-time 
trajectory adjustments and dynamic rerouting to navigate obstacles, fluctuating traffic 
density and other environmental changes. A robust simulation platform validates the entire 
system, allowing for comprehensive testing of algorithms and behaviours across diverse 
operational scenarios to ensure real-world reliability which sets a new standard for urban 
air traffic, enabling safe drone applications in smart cities. 

Keywords: UAV, Urban Air Traffic Management System, A* Algorithm, Reinforcement 
Learning, Grid-based Airspace  
 
  

1.  INTRODUCTION 
 
The rapid advancement of Unmanned Aerial Vehicles (UAVs) has revolutionized sectors such as 
logistics and agriculture, yet their integration into dense urban environments remains 
challenging due to physical obstacles and unpredictable traffic patterns [1][2][3]. Existing air 
traffic control systems are ill-equipped to handle these unique low-altitude operations, 
necessitating specialized management structures for collision avoidance and real-time 
adaptation to environmental hazards. To address the issue, this research proposes a Simulation-
Based Unmanned Aerial Vehicle Fleet Management and Control System for Urban U-Space (S-
UFMC) that utilizes IoT technologies and advanced algorithms to facilitate dynamic 
communication [4]. Furthermore, the system implements a grid-based airspace model to divide 
complex urban environments into manageable zones, thereby enhancing monitoring precision 
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and control. This project focuses on developing a scalable, simulation-based proof of concept to 
ensure the safe and efficient coordination of future urban drone traffic [5]. 
 
This research aims to bridge the gap between theoretical UAV traffic management and practical 
urban application. The main contributions of this work are: 

• Design of a 3D Grid-Based Architecture: We designed a UFMC architecture that uses a 
grid-based model to manage complex urban U-Space. 

• Integration of Pathfinding Algorithms: We integrated A* and 3D Q-learning algorithms 
to ensure safe path planning and trajectory optimization. 

• Multi-UAV Simulation with Dynamic Hazards: We implemented a simulation for up to 
three UAVs that adapts to dynamic weather zones and static obstacles. 

• Cloud-Based IoT Dashboard: We developed a real-time monitoring dashboard using 
Firebase and React to visualize critical telemetry data. 

 
1.1 Overview of UAV and Urban Airspace Management 
 
UAVs are revolutionizing industries in logistics and surveillance through advancements in AI and 
IoT, necessitating specialized UAV Traffic Management Systems (UTM) to ensure safe and 
efficient operations [6]. These systems rely on essential elements like collision avoidance and 
dynamic pathfinding using algorithms such as A* and Particle Swarm Optimization [7]. Originally 
developed for military use, these pilotless aircraft have expanded into civilian sectors like 
agriculture and infrastructure inspection [8]. As UAVs become central to urban and 
environmental applications, adherence to low-altitude airspace regulations, such as those 
overseen by Malaysia’s CAAM, is critical for safety [9]. To address these challenges, the S-UFMC 
integrates Graph Theory and Air Traffic Flow Theories to create structured, manageable 
environments for operations. By employing grid-based airspace modelling, the system effectively 
prevents collisions and reduces congestion in urban areas.  
 
1.2 Algorithms and Core Components of S-UFMC   
 
The S-UFMC employs primary algorithms like A* to optimize route planning and handle obstacle 
avoidance within both static and dynamic environments. This algorithmic approach is supported 
by Grid-Based Airspace Modelling, which divides urban airspace into manageable sectors for 
better control. Advanced technologies such as Machine Learning refine pathfinding, while 
Reinforcement Learning enables UAVs to dynamically adjust to changing conditions based on 
real-time feedback [10]. For operations involving multiple drones, Swarm Intelligence allows for 
collaborative navigation, ensuring efficiency in high-density areas [11]. The system’s architecture 
relies on simulated sensors, including LiDAR and GPS, to replicate real-world data for stability 
and positioning. Crucial to this setup are communication modules supporting Vehicle-to-
Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) links, which ensure low-latency control and 
prevent mid-air collisions [12]. Globally, while standardized commercial systems are not yet in 
place, organizations like NASA are leading progress with proposed frameworks for Urban Air 
Mobility. Simulation platforms such as MATLAB and Gazebo are essential for testing these 
dynamic pathfinding technologies. Despite existing regulatory challenges, ongoing research 
points towards a promising future for the large-scale implementation of these systems in urban 
settings. 
 
The S-UFMC framework addresses critical operational challenges such as loss of communication 
and unreachable targets through a combination of automated fail-safe protocols and adaptive 
algorithms. To mitigate the risks associated with communication failure, the system's flight 
controller module simulates specific fail-safe mechanisms, including an automated return-to-
home function that guides the UAV back to a safe location if the connection to the ground control 
station is severed. This is reinforced by Command-and-Control links designed with redundancy 
to maintain control even if primary channels fail. In scenarios where targets become unreachable 
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due to environmental hazards, the system employs a strict mission halt protocol. If a UAV's 
planned path intersects with dynamic threats like bad weather zones or static restrictions like 
no-fly zones, the system immediately stops the mission to prevent the aircraft from entering 
dangerous conditions. Furthermore, for targets obstructed by complex obstacles rather than 
absolute restrictions, the system utilizes Reinforcement Learning; specifically, the UAV employs 
Q-learning to adapt its trajectory through trial and error, attempting to identify alternative 
optimal paths that avoid obstacles while minimizing penalties. 
 
1.3 Summary of Previous Works 
 
A review of previous works in UAV fleet management and control reveals significant progress in 
optimizing urban airspace for drone operations, though challenges remain. Studies like [12] work 
on the UTM framework for urban environments demonstrated real-world trials with 
communication technologies like V2V and V2I, achieving high automation in UAV traffic 
management but missing grid-based airspace modeling and dynamic path planning. In [13], 
researchers are studying on public air route network planning used Voronoi diagrams and A* 
algorithm to optimize urban UAV paths, enhancing safety and efficiency by reducing flight times 
and risk, but lacked IoT integration. Particle Swarm Optimization (PSO) was used for swarm 
intelligence-based UAV navigation showed improvements in scalability and memory efficiency 
for multi-agent systems, but didn't incorporate reinforcement learning (RL) or real-time updates 
[11]. Similarly, smart city integration with GIS-based navigation and automated systems are used 
in [7] for UAVs provided efficient, conflict-free operations but was limited by its reliance on fixed 
air routes. Finally, work in [8] integrated UAVs into intelligent transportation systems through 
data collection and real-time monitoring improved traffic management but lacked specific 
collision avoidance algorithms. Collectively, while these studies showcase substantial progress, 
further research is required in areas like dynamic pathfinding, real-time data integration, and 
scalable systems for effective urban UAV traffic management. 
 
To address these limitations, this research proposes the Simulation-Based Unmanned Aerial 
Vehicle Fleet Management and Control System for urban U-Space (S-UFMC). Unlike previous 
frameworks, the S-UFMC integrates grid-based airspace modeling with a robust IoT architecture 
to enable precise, real-time monitoring of high-density traffic. Furthermore, the system 
synthesizes the A algorithm* for efficient obstacle avoidance and RL, specifically 3D Q-learning, 
to allow for autonomous, dynamic pathfinding and trajectory optimization that adapts to 
environmental changes like weather hazards. By combining these advanced algorithms with 
cloud-based telemetry visualization, the proposed system offers a scalable, conflict-free solution 
that overcomes the reliance on fixed routes and static planning seen in earlier studies. 
 
 
2. MATERIAL AND METHODS  
 
The methodology outlines the development of S-UFMC, designed to manage urban drone traffic 
through simulation. The system's architecture relies on a grid-based airspace model, integrating 
IoT, machine learning, and cloud platforms for scalable operations. Key algorithms include A* for 
collision avoidance and RL for dynamic path optimization, with IoT protocols facilitating real-
time communication. The project follows a structured five-phase development process: it begins 
with System Design to define the architecture, followed by Software Development to implement 
the A* and RL algorithms and communication protocols like MQTT. Next, Operational Testing uses 
MATLAB simulations to validate the system in realistic urban scenarios. This is followed by Data 
Integration, which establishes real-time IoT data transfer to the cloud (like Firebase) for AI-
driven analytics. Finally, Interface Development involves creating dashboards and mobile apps 
for operators to monitor and control the UAV fleet. The project follows a structured five-phase 
development process, as illustrated in Figure 1. 
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Figure 1. Project development flowchart 
 
2.1 System Design Planning  
 
The system design planning phase establishes the foundational architecture of the S-UFMC, 
utilizing a grid-based airspace model to divide urban environments into manageable sections for 
precise control. This phase coordinates core components, such as UAV control systems and 
communication modules, while defining critical operational parameters like flight paths and real-
time data exchange protocols. Additionally, optimization algorithms such as A* and 
Reinforcement Learning are integrated to ensure safe navigation and effective obstacle avoidance 
within high-density urban airspaces. 
 
By referring to Figure 2, the No-Fly Zone is a red dome-shaped within the 3D airspace, 
representing restricted areas like military bases or airports. It is integrated into the occupancy 
map, preventing the UAV from entering, while the pathfinding algorithms (A* and Reinforcement 
Learning) ensure the UAV avoids these areas. The zone is visualized with semi-transparency and 
labelled to emphasize its importance.  Meanwhile, the Bad Weather Zone is a blue cylindrical 
region, simulating dynamic weather conditions such as storms or turbulence. Its position and size 
are dynamically generated, and the UAV's pathfinding algorithms are forced to adjust to avoid 
this hazardous area. The zone is integrated into the occupancy map to ensure the UAV navigates 
around it safely, testing the system’s adaptability to changing environmental factors. 
 
The system defines the following start and goal station coordinates for the UAVs:  
Start Stations:  

• Station 1: [190, 190, 1]  
• Station 2: [190, 90, 1]  
• Station 3: [190, 10, 1]  

 
Goal Stations:  

• Station 1: [10, 190, 1]  
• Station 2: [10, 90, 1]  
• Station 3: [10, 10, 1]  

 
These coordinates are used to set the starting and destination points for each UAV, which can be 
customized by the user for different flight scenarios. 
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Figure 2. 3D environment with No-Fly Zone and Bad Weather Zone 

 
2.2 Software Development – A* Algorithm  
 
The software development for S-UFMC includes the implementation of pathfinding algorithms 
like A* for trajectory optimization, which is a crucial component of the system.  
 
2.2.1 2D A* Path Planning and Obstacle Avoidance 
 
In the initial phase, the A* algorithm was implemented in a 2D grid environment, as shown in 
Figure 3, where each cell represented either free space or an obstacle. The algorithm prioritized 
paths by calculating the g-cost (actual cost to reach a node), h-cost (heuristic estimate of the cost 
to the goal), and f-cost (total estimated cost). Testing involved simple and complex scenarios, 
including paths with obstacles and multiple UAVs, to assess the algorithm's ability to dynamically 
adjust when obstacles were introduced. The algorithm successfully recalculated optimal paths 
around obstacles, demonstrating its efficiency in grid-based environments. 
 
 
 

 

 

 

 

 

 

 

 

Figure 3. 2D A* path planning with obstacles 
 
2.2.2 3D A* Path Planning and Obstacle Avoidance 

 
Following the success of 2D testing, the A* algorithm was adapted to a 3D environment, as shown 
in Figure 4. This required incorporating altitude into the grid, adding the complexity of movement 
across three axes (X, Y, and Z). The transition from 2D to 3D introduced additional challenges, 
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including the need to consider vertical movement and the potential for collisions in the airspace. 
The UAVs' paths were recalculated dynamically, ensuring safe navigation through both horizontal 
and vertical spaces, with obstacles effectively avoided in all directions. This adaptation made the 
system more suitable for real-world urban airspace simulations where UAVs must navigate 
through complex three-dimensional environments. The A* algorithm, when implemented in both 
2D and 3D, successfully ensures efficient and safe navigation by recalculating paths to avoid 
obstacles and adapt to dynamic changes in the environment. 
 

 
 

 
 

 

 

 

 

 

 

 

Figure 4.  A* path planning in 3D environment 
 
2.3 Software Development – Reinforcement Learning 
 
The S-UFMC applies a 3D Q-learning algorithm to UAV pathfinding, as shown in Figure 5, enabling 
an agent to navigate from a designated start position to a goal while avoiding randomly placed 
static obstacles. Through reinforcement learning, the UAV autonomously updates a Q-table via 
trial and error, optimizing its trajectory to minimize travel distance and ensure safety, which is 
visualized as a series of connected blue dots. The algorithm is specifically tuned for rapid 
adaptation and extensive exploration using a high learning rate (alpha = 0.6), for quick strategy 
updates and a discount factor (gamma = 0.95), to prioritize long-term objectives. Additionally, the 
exploration rate (epsilon) begins at 0.9 and decays slowly by 0.999 per episode to a floor of 0.05, 
ensuring the agent thoroughly explores the environment to avoid suboptimal paths before 
converging on the best route for complex 3D navigation.  A reward structure in the Q-learning 
algorithm is designed to guide the UAV toward optimal navigation behaviours by balancing 
primary objectives with safety and efficiency constraints. At the core of this structure is a 
significant positive reward of 500 for successfully reaching the goal coordinates, which serves as 
the ultimate target for the agent. To ensure safety, the system applies a severe penalty of -200 
whenever the UAV collides with an obstacle or attempts to move outside the grid boundaries, 
effectively teaching the agent to avoid hazardous areas. Operational efficiency is encouraged 
through a small base step cost of -0.005 for every move taken, which penalizes longer paths and 
promotes the discovery of the shortest route. Additionally, a dynamic progress reward, weighted 
at 20, provides immediate feedback by calculating the difference in distance to the goal between 
the current and previous steps, rewarding movement toward the target and penalizing 
movement away from it. 
 
Specific flight behaviours are enforced through a set of altitude-based constraints designed to 
simulate realistic flight patterns. The system encourages the UAV to maintain a specific cruise 
altitude of 20 meters by applying a penalty factor of 0.5 based on the vertical deviation from this 
target height. To prioritize safe lift-off, a heavy penalty of -10 is imposed if the UAV is below the 
cruise altitude and takes an action that does not increase its height. Furthermore, a penalty of -2 
is applied to horizontal movements made while the UAV is still below the designated cruise 
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altitude. Together, these constraints condition the UAV to prioritize ascending vertically to a safe 
height before initiating horizontal travel toward the destination. 
 

 

 

 

 

 
 

 

 

Figure 5. 3D Q-learning path planning 
 
2.4 Operational System Development 
 
The Operational System Development phase validates the transition from theoretical design to 
practical urban simulations. utilizing the A algorithm* for pathfinding and Euclidean distance 
monitoring for collision avoidance, the system successfully coordinates multi-UAV setups, as can 
be seen in Figure 6 and Figure 7. This phase ensures safe navigation around static and dynamic 
hazards (such as bad weather), proving the system's scalability and real-time decision-making 
capabilities. 
 
 
 

 

 

 

 

 

 
 
                          Figure 6. Path planned for 2 UAVs               Figure 7. Path planned for 3 UAVs 
 
2.5 Data Integration and Analytics 
 
The data integration and analytics phase is critical for the safe and efficient operation of the UAV 
fleet by establishing a robust infrastructure for real-time data exchange between drones and 
cloud systems. At the core of this architecture is the Pixhawk Pro microcontroller, as shown in 
Figure 8, which collects telemetry data such as altitude and speed using the MAVLink protocol 
and integrates advanced sensors like GPS and LiDAR for enhanced navigation. To facilitate cloud 
connectivity, a Python script functions as a bridge, processing raw data and pushing updates 
every second to the Firebase Realtime Database, as shown in Figure 9, where information is 
organized into individual nodes to ensure the system remains scalable as more drones are added. 
This setup enables operators to monitor critical parameters continuously and make immediate, 
informed decisions like rerouting, ultimately supporting a user-friendly application for 
comprehensive fleet control. 
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Figure 8. Pixhawk Pro used                               Figure 9. Real-time database in Firebase 
                         for S-UFMC                
 
2.6 Development of Application 
 
The frontend of the S-UFMC is developed using React for its flexibility and real-time data 
integration with Firebase. The application provides a user-friendly dashboard that displays real-
time telemetry data such as altitude, ground speed, yaw and vertical speed, with dynamic updates 
from Firebase. Pico.css is used for minimalistic styling, ensuring a clean and responsive design. 
Users can select individual UAVs to monitor, and data is visualized through gauges and progress 
bars for quick interpretation of key metrics. React’s state management ensures real-time 
synchronization, allowing automatic updates of UAV data without page refresh. 
 
 
3. RESULTS AND DISCUSSION 
 
3.1 Operational System 
 
The S-UFMC operates within a structured 3D grid-based airspace (U-Space), designed to simulate 
and manage complex urban UAV operations. This environment divides the airspace into a 
manageable cubic grid (e.g., 200x200x150m), which simplifies pathfinding and ensures 
predictable, safe navigation. This virtual space is populated with obstacles to test algorithm 
robustness, including randomly generated static obstacles like buildings (with safety margins) 
and dome-shaped No-Fly Zones, as well as dynamic obstacles like "Bad Weather Zones" that shift 
during flight to challenge the system's real-time adaptability. 

The S-UFMC simulation is interactive and scalable. Users begin by selecting the number of UAVs 
they wish to simulate, either 1, 2, or 3 UAVs, as shown in Figure 10, 11 and 12 respectively, which 
then calls the appropriate function. After assigning start and goal stations for each drone, the 
system employs the A* algorithm to calculate an optimal flight path. This path is intelligently 
planned in three distinct phases: a vertical ascent to a safe cruising altitude, a horizontal path 
planned on a 2D grid, and a final descent to the goal, all while automatically routing around the 
static obstacles. 
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A key feature of the system is its management of dynamic hazards and multi-UAV deconfliction. 
To prevent inter-UAV collisions, the system continuously monitors the Euclidean distance 
between all drones. If any two UAVs breach a predefined safe distance of 5 meters, one is 
automatically paused until safe separation is restored. Furthermore, if a UAV's path intersects a 
"Bad Weather Zone," its mission is automatically halted to ensure safety. Users can monitor the 
entire operation via a real-time 3D animation with unique markers for each UAV and interactive 
controls to start or reset flights and receive a full flight summary and data log upon completion. 

 
3.2 S-UFMC using Reinforcement Learning 
 
This final simulation demonstrates 3D UAV path planning using RL, specifically the Q-learning 
algorithm, as shown in Figure 13. The system trains a UAV to autonomously navigate a 3D 
occupancy grid populated with randomly generated obstacles, like buildings. The UAV learns 
through trial and error by interacting with its environment, choosing from 26 possible 3D 
movements. Its decision-making is guided by a reward system that encourages moving closer to 
the goal and penalizes obstacle collisions or incorrect altitudes. The agent uses an epsilon-greedy 
strategy to balance exploring new actions with exploiting known good paths, improving its 
efficiency over time. Once training, like the one shown in Figure 14, is complete, the UAV utilizes 
its learned Q-table to find the optimal path from a start to a goal station. This final path and the 
UAV's autonomous decision-making process are then showcased in a 3D visualization with 
animations. 
 

 

 

 

 

Figure 13. Q-learning for UAV path planning Figure 14. Progression of RL during UAV path 
planning 

Figure 10. One-UAV system Figure 11. Two-UAV system Figure 12. Three-UAV system 
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3.3 Flight Log Summary 
 
During the mission, the flight log captures detailed data, including the start and goal coordinates, 
the full path with all waypoints, velocity, total time, total path length and timestamps for each 
movement. This allows for a granular analysis of the UAV's progress and its behaviour when 
encountering obstacles or restricted zones. At the end of the mission, a summary as shown in 
Figure 15, provides a high-level overview of key performance indicators, such as mission 
completion status, total path length, total time taken and average velocity. Together with 
information such as safe distances to prevent collision between UAVs and command output as 
shown in Figure 16 and Figure 17, these metrics ensure transparency and allow for the 
optimization and safety of the mission to be evaluated by assessing the UAV's overall speed and 
efficiency. 

 

 

  

 

 

 
3.4 IoT Data Visualization 
 
The IoT dashboard, as shown in Figure 18, provides an intuitive interface for real-time 
visualization of telemetry data, such as altitude, ground speed, yaw and vertical speed, allowing 
operators to easily monitor drone performance. The dashboard fetches the latest data from 
Firebase, ensuring the interface is continuously updated with the most current information.  A 
login page is integrated into the UAV Fleet Management and Control System, requiring user 
authentication with an email and password to prevent unauthorized access. Once authenticated, 
users can access the main interface to manage drone missions, view telemetry data, and oversee 
fleet operations, as can be seen in Figure 19. This integration of hardware, cloud storage, user 
authentication and a real-time dashboard facilitates secure remote monitoring and control of 
UAVs, providing a comprehensive solution for managing drone operations while ensuring that 
only authorized personnel can access sensitive data and controls. 
 

 
 

Figure 15. Summary of 
UAV mission 

Figure 16. Sample of distance data Figure 17. Command output when 
mission is halted 

Figure 18. Login page to the IoT dashboard Figure 19. Data visualization of UAV 
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3.5 Comparative Analysis  
 
The S-UFMC fundamentally transforms UAV operations by introducing a grid-based 3D U-Space 
architecture. This system moves beyond traditional planar navigation by segmenting the urban 
environment into volumetric corridors, allowing drones to utilize vertical space for more efficient 
trajectories. The operational superiority of the S-UFMC is driven by the synergistic integration of 
two distinct algorithms: the A algorithm*, upgraded from a standard 2D implementation to a 3D 
solver for global route planning, and RL, specifically 3D Q-learning, for dynamic adaptability. 
Additionally, the system ensures scalability and safety through automated fleet management, 
integrating an IoT framework with cloud connectivity to transition isolated drone operations into 
a cohesive, monitored fleet. 
 
A qualitative comparison between the A* algorithm and RL within the S-UFMC system reveals a 
distinct trade-off between immediate optimality and dynamic adaptability. A* serves as the "gold 
standard" for precision in static environments, mathematically guaranteeing the shortest path by 
calculating the lowest estimated total cost. This ensures strict adherence to constraints like 
cruising altitudes and no-fly zones. However, its rigidity becomes a limitation in dynamic settings, 
as it typically requires computationally expensive recalculations whenever environmental 
factors change. In contrast, RL excels in adaptability, empowering UAVs to make real-time, 
autonomous decisions in response to unpredictable stressors such as shifting weather patterns 
or sudden obstacles. While RL initially involves a learning curve characterized by suboptimal 
behaviours during early training episodes, it eventually converges on highly efficient navigation 
strategies through trial-and-error. Ultimately, the system benefits from a complementary 
approach, utilizing A* for reliable initial planning in known environments and RL for the 
intelligent, responsive handling of complex, high-density traffic scenarios where rule-based 
algorithms may fail. 
 
The implementation of the S-UFMC creates a fundamental shift in operational capabilities when 
compared to traditional methods. In the absence of such a system, UAV operations often rely on 
two-dimensional path planning or manual piloting, treating airspace as a flat plane. This force 
drones to navigate the perimeter of obstacles rather than utilizing vertical space, leading to 
inefficient flight paths and increased energy consumption. Furthermore, coordinating multiple 
UAVs is hazardous due to the lack of real-time communication and separation monitoring, 
increasing the risk of mid-air collisions. These systems also lack dynamic adaptability, meaning 
UAVs on fixed routes cannot autonomously react to sudden environmental changes, often 
requiring human intervention to abort missions. With S-UFMC, these limitations are addressed 
by enabling drones to fly over low-rise buildings via the Z-axis, significantly optimizing trajectory 
efficiency. It ensures scalability and safety through automated fleet management, utilizing real-
time telemetry and Euclidean distance monitoring to coordinate up to three UAVs 
simultaneously. By integrating an IoT framework, the system allows for immediate ground-
control decision-making and the seamless integration of new flight units into the existing traffic 
flow, ensuring robust navigation in complex, high-density urban settings. 
 
 
4. CONCLUSION 
 
The S-UFMC has successfully establishes a robust framework for optimizing UAV operations in 
complex urban environments. By integrating RL, a grid-based 3D airspace model and real-time 
IoT protocols like MQTT, the system significantly improves pathfinding efficiency, dynamic 
obstacle avoidance and fleet synchronization. MATLAB simulations validated the system's 
effectiveness, demonstrating that RL-trained UAVs can navigate dynamic challenges such as no-
fly zones and adverse weather. 
However, the system is primarily limited as a simulation-based proof of concept without real-
world hardware validation against physical factors like sensor noise. Computational constraints 
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restricted scalability to only three UAVs, preventing assessment of high-density traffic 
management. Navigational precision is currently limited by 8-directional movement rather than 
a more complex 26-directional model, and the airspace model needs refinement for cluttered 
urban settings. Future work should focus on scaling to larger fleets, enhancing movement 
precision, migrating to advanced simulators like AirSim or Gazebo and addressing low-latency 
communication challenges for real-world deployment. 
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