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ABSTRACT 
 

Class imbalance poses a significant challenge in machine learning, especially in critical 
domains like fraud detection and healthcare. The dominance of majority classes often 
overshadows minority classes, leading to models that inadequately recognize rare but 
pivotal events, such as fraudulent transactions. This imbalance can compromise predictive 
accuracy and fairness. Traditional methods, including resampling techniques and ensemble 
methods, often suffer from overfitting and inadequate representation. This study explores 
the use of Generative Adversarial Networks (GANs) to enhance predictive performance on 
an imbalanced dataset of credit card transactions, comprising 95% legitimate and 5% 
fraudulent transactions. The GAN architecture consists of a generator producing synthetic 
samples of the minority class and a discriminator distinguishing between real and synthetic 
data. Experimental results indicate models augmented with GANs achieve high accuracy, 
with Random Forest models reaching 99.98%, Gradient Boosting models achieving 99.99%, 
and Decision Tree models obtaining 99.82%. These findings underline GANs' effectiveness in 
addressing class imbalance, enhancing predictive performance for minority classes and 
providing reliable results in practical applications. 

 
Keywords: Class Imbalance, Machine Learning, Classification Tasks, Generative 
Adversarial Network  
 
  

1.  INTRODUCTION 
 
Class imbalance is a prevalent concern in various fields, including medicine, banking and fraud 
detection, where class distributions within datasets are significantly skewed. In these scenarios, 
models trained on imbalanced datasets tend to favor the majority class, leading to suboptimal 
predictive performance for the minority class. For instance, in credit card fraud detection, a 
dataset comprising 95% legitimate transactions and only 5% fraudulent transactions can allow a 
model to achieve high overall accuracy by predominantly predicting transactions as legitimate 
[1]. However, this frequently results in elevated false negative rates and potential financial 
repercussions for banks and customers due to undetected fraud. 
 
In healthcare, the early detection of rare diseases, such as specific cancers, is crucial. A dataset 
that includes 98% healthy patients and merely 2% with rare cancers can lead models to 
predominantly predict health [2], resulting in missed diagnoses and delayed treatments, 
adversely affecting patient outcomes. The implications of data imbalance in this context include 
an inability to accurately diagnose rare diseases, with potentially severe consequences for patient 
health [3]. 
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To enhance prediction accuracy for minority classes, several strategies can be employed. 
Traditional approaches for managing class imbalance often utilize resampling techniques, such 
as oversampling the minority class or undersampling the majority class. While these methods can 
help achieve a more balanced dataset, they come with notable limitations. Oversampling involves 
increasing the number of instances in the minority class, which can inadvertently lead to 
overfitting, as the model may memorize duplicated samples rather than learning to generalize 
from them [4]. Conversely, undersampling entails reducing the number of instances in the 
majority class, risking the loss of valuable information and obscuring vital patterns within the 
data. Both traditional methods primarily modify existing data points instead of generating new 
ones, limiting their ability to accurately reflect the underlying distribution of the minority class 
[5]. Therefore, there is a pressing need for advanced techniques capable of generating new, 
realistic samples to improve model performance and ensure reliable predictions for minority 
classes. 
 
GANs have emerged as a powerful solution to challenges associated with imbalanced datasets. By 
employing a dual architecture consisting of a generator and a discriminator [6], GANs are capable 
of generating realistic samples from minority classes, enriching the dataset and improving 
balance [7]. This paper investigates the application of GANs to improve the performance of 
machine learning models on imbalanced classification tasks, enhancing model accuracy and 
ensuring robust generalization to unseen data. The findings underscore GANs' ability to 
effectively address the limitations of traditional resampling methods, such as overfitting and 
information loss [8]. 
 
Experimental results highlight that the GAN-based methodology significantly enhances the 
predictive performance of minority classes, yielding more reliable and equitable outcomes across 
diverse applications. This work offers valuable insights into the evolving landscape of GANs, 
paving the way for future research and practical applications aimed at improving the accuracy 
and reliability of machine learning models in imbalanced classification scenarios. 
 
This article is structured as follows: Section 1 presents the study of imbalanced datasets, while 
Section 2 reviews related work. Section 3 details the GAN methodology used to address 
imbalanced datasets. Section 4 discusses performance evaluation results for each machine 
learning classifier. Finally, Section 5 summarizes main findings and outlines avenues for future 
research. 
 
 
2. LITERATURE REVIEW 
 
Dealing with imbalanced datasets presents a significant challenge in ML, particularly as many 
real-world applications demonstrate skewed class distributions. An imbalanced class 
distribution occurs when examples from different classes are represented unevenly, with one 
class (the majority class) containing more samples than another (the minority class) [9]. This 
imbalance complicates the training of ML models and can lead to biased predictions. 
 
Various traditional methods have been documented to address this issue, including resampling 
techniques, cost-sensitive learning, and synthetic data generation. Resampling methods can be 
divided into two main categories: minority class oversampling and majority class undersampling. 
For instance, the Synthetic Minority Oversampling Technique (SMOTE) generates synthetic 
examples to enhance classifier performance. However, it may also lead to overfitting by creating 
overly similar instances of the minority class [10]. Conversely, undersampling the majority class 
can result in the loss of valuable information, negatively impacting model performance. Recent 
studies indicate that traditional methods often fall short in addressing the complexities inherent 
in highly imbalanced datasets, underscoring the need for advanced techniques [11]. 
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Recent advances in machine learning have introduced more sophisticated methods for balancing 
datasets, as summarized in Table 1. One notable approach is cost-sensitive learning, which 
assigns different misclassification costs to classes. This technique encourages the model to 
prioritize minority classes, but it often requires careful tuning of cost parameters, complicating 
implementation [12][13]. Additionally, ensemble methods, such as Balanced Random Forests, 
have demonstrated potential for improving classification performance in imbalanced scenarios. 
These methods train a set of classifiers on balanced subsets of the data, leveraging the strengths 
of multiple algorithms to enhance overall prediction accuracy [14]. 
 
Despite their advantages, both cost-sensitive learning and ensemble methods have limitations, 
particularly in situations characterized by extreme class imbalance. Evaluations across various 
domains have shown that their effectiveness can diminish when class distribution disparities are 
pronounced [3]. This situation highlights the necessity for innovative solutions to tackle 
persistent challenges posed by imbalanced datasets in machine learning. 
 

Table 1 Imbalanced datasets method 
 

Author Method Title  Technique Used 
[15] Resampling Handling class imbalance in credit 

card fraud using resampling methods 
• SMOTE 
• ROS 
• RUS 

[16] Class Weight Weighting methods for rare event 
identification from imbalanced 
datasets 

• Adaptive algorithm  
• Boosting style algorithm 

[17] Ensemble 
Methods 

A novel ensemble method for 
classifying imbalanced data 

• Random splitting (SplitBal) 
• Clustering (ClusterBal) 
• Ensemble rule 

[18] Cost-Sensitive 
Learning 

Cost-sensitive decision tree ensembles 
for effective imbalanced classification 

• Evolutionary algorithm 

[19] Algorithm 
Selection 

A hybrid supervised ML classifier 
system for breast cancer prognosis 
using feature selection and data 
imbalance handling approaches 

• Nature-inspired algorithms 
• Wrapper-based feature 

selection approach 

[20] Data 
Augmentation 

Solving the class imbalance problem 
using a counterfactual method for data 
augmentation 

• Counterfactual 
Augmentation (CFA) 

[21] Anomaly 
Detection 

The optimized anomaly detection 
models based on an approach of 
dealing with imbalanced dataset for 
credit card fraud detection 

• AdaBoost 
• Isolation Forest (IForest) 
• One-Class Support Vector 

Machine (OCSVM) 
 
Given the limitations of traditional methods for addressing class imbalance, GANs have emerged 
as a compelling alternative. GANs consist of two neural networks—a generator and a 
discriminator—that are trained concurrently. This architecture facilitates the generation of 
effective artificial samples for the minority class, tackling the core issue of class imbalance by 
enriching the dataset with realistic examples that closely mimic the underlying distribution of the 
minority class [22]. GAN framework can be seen in Figure 1. 
 
The generator’s primary function is to create new data points from random noise, learning to 
produce samples indistinguishable from authentic instances of the minority class [23]. 
Simultaneously, the discriminator evaluates whether these samples are real or synthetic. 
Through this adversarial training process, both networks enhance their respective capabilities: 
the generator becomes more proficient at crafting realistic samples, while the discriminator 
improves its accuracy in distinguishing between real and generated data [8]. This dynamic 
interplay makes GANs particularly well-suited for mitigating class imbalance. Empirical studies, 
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as summarized in Table 2, demonstrate that GANs can outperform traditional resampling 
methods by generating diverse and representative samples. 
 

 
 

Figure 1. The framework of GAN [24] 
 
To improve the efficiency of GANs in generating samples for balanced datasets, several variants 
have been proposed. One notable variant is the Conditional GAN (cGAN), which enables targeted 
generation by conditioning on class labels. This feature allows for the production of specific 
examples of minority classes, making cGANs particularly useful in scenarios where precise 
control over the generated samples is required [25]. Additionally, techniques such as Wasserstein 
GANs (WGANs) have been developed to enhance both training stability and the quality of 
generated samples. By reformulating the loss function, WGANs address issues related to mode 
collapse and provide a more meaningful measure of the distance between distributions. This 
results in more reliable and diverse sample generation, which is critical for effectively addressing 
class imbalance [26]. These advancements highlight the adaptability of GANs across various 
contexts, including medical imaging and fraud detection, where class imbalances are prevalent. 
By leveraging these specialized GAN variants, researchers and practitioners can better tackle the 
challenges posed by imbalanced datasets, ultimately improving the performance and reliability 
of ML models in critical applications. 
 
The literature outlines a diverse array of techniques for managing class imbalance, encompassing 
both traditional resampling methods and advanced generative models such as GANs. While 
conventional approaches offer certain benefits, they frequently fall short in complex scenarios 
marked by substantial class imbalance. 
 
The advent of GANs and their various derivatives signifies a promising direction for future 
research. These models not only provide innovative solutions for generating realistic synthetic 
samples but also enhance the overall robustness of ML algorithms. By refining strategies to 
effectively manage imbalanced datasets, GANs hold the potential to significantly improve 
predictive performance in a wide range of applications, ultimately leading to more accurate and 
reliable outcomes. As research continues to evolve, exploring the capabilities of GANs and their 
adaptations will be crucial in addressing the ongoing challenges posed by class imbalance in ML. 
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Table 2 Imbalanced datasets applications with GAN 
 

Author Technique Used Contribution Findings 
[27] • CNN 

• GAN 
Implement code visualization 
methods and use GANs to generate 
more samples of malicious code 
variants 

CNN as well as GAN models 
can achieve higher 
classification accuracy than 
related work 

[28] • Dynamic 
ensemble 
algorithm 

Propose a dynamic ensemble 
algorithm for anomaly detection in 
the Internet of Things (IoT) 

The proposed algorithm 
outperforms comparative 
anomaly detection methods 
in IoT scenarios 

[29] • Hybrid deep 
learning 
(CBGRU) 

Propose a new hybrid deep learning 
model named CBGRU that combines 
different word embedding 
techniques 

The CBGRU model shows 
superior performance in 
vulnerability detection 
compared to previous models 

[30] • RGAN-EL Introduces a hybrid framework 
called RGAN-EL, which combines 
GAN with ensemble learning to 
improve classification performance 
on imbalanced datasets 

RGAN-EL significantly 
outperforms six common 
ensemble learning methods 

[31] • WGAN Investigates the use of WGAN as a 
technique for dealing with 
imbalanced data sets in ML 

WGAN outperforms basic 
GAN and enhanced GAN in 
producing high-quality and 
diverse synthetic data 

 
 
3. GENERATIVE ADVERSARIAL NETWORKS (GANs) FOR IMBALANCED DATASETS 
 
This section outlines the methodology employed to address the challenges of imbalanced datasets 
using GANs. 
 
3.1 Data Selection and Preprocessing 
 
The process initiates with the selection of a credit card transaction dataset sourced from [32]. 
This dataset is loaded using the Pandas library, from which the target variable, ‘Class’, is extracted. 
This operation results in two distinct variables: x for features and y for labels. Following this 
extraction, the data undergoes normalization using StandardScaler, ensuring that the GAN 
operates on normalized values and facilitates effective training and sample generation [33]. To 
address class imbalance, both the majority and minority classes are identified and isolated. The 
majority class is then further divided into training and test sets (“20:80”, “30:70”, and “40:60”). 
This structured approach balances the dataset while preparing it for GAN training, ultimately 
enhancing the model's ability to generate realistic minority class samples. 
 
3.2 GANs Architecture 
 
GANs comprise two primary components: the generator and the discriminator. The generator is 
responsible for creating synthetic data from random noise. It employs several dense layers 
equipped with ReLU (Rectified Linear Unit) activation functions, along with batch normalization 
to balance the training process. The output layer utilizes a Tanh activation function, which is well-
suited for adjusting to the feature scale of the real dataset. This design enables the generator to 
produce high-quality synthetic samples that closely mimic the characteristics of the actual data.  
 
Conversely, the discriminator's role is to accurately distinguish between real and fake data. It 
features a dense layer with dropout to mitigate the risk of overfitting. The discriminator 
ultimately produces a sigmoid output representing class probabilities that indicate the likelihood 
of a sample being real or fake. This dual architecture is effective in generating high-quality 
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synthetic data that aligns firmly with the underlying distribution of the minority class, as 
supported by previous research. The interplay between the generator and discriminator fosters 
an adversarial training process that enhances the overall performance of the GAN [8][24]. 
 
3.3 Training Procedure 
 
The training of the GAN is conducted in two main steps. The process utilizes the Adam optimizer 
with a learning rate of 0.0002 and a batch size of 64. Initially, the discriminator is trained using 
batches of both real and synthetic data generated by the generator. During this phase, the loss for 
both datasets is computed and smoothed to enhance training stability. Following the 
discriminator's training, the generator is then trained with the goal of deceiving the discriminator 
into classifying its synthetic samples as real. The loss for the generator is calculated based on the 
discriminator’s ability to discriminate between real and fake data. This cyclic training process is 
replicated for a predetermined number of epochs, set at 10 in this instance. Throughout the 
training, loss values are recorded to monitor progress. Figure 2 shows the GAN algorithm used. 
 

 
 

Figure 2. GAN training algorithm 
 
3.4 Data Augmentation 
 
After the successful training of the GAN, synthetic samples of the minority class are generated to 
create a balanced dataset. The extent of this expansion is determined by the original class 
distribution, with the goal of achieving a balanced 1:1 ratio between the minority and majority 
classes. The newly generated synthetic examples are then integrated into the original dataset, 
ensuring a diverse representation of both classes. This method aligns with findings that 
demonstrate GANs' capability to synthesize diverse data that accurately reflects the distribution 
of the minority class [7][34]. By enriching the dataset with these realistic samples, the model's 
performance on minority class predictions is significantly enhanced. 
 
3.5 Model Evaluation 
 
To assess the impact of synthesized data on model performance, several classifiers—including 
Random Forest (RF), Gradient Boosting (GB) and Decision Tree (DT)—are evaluated using both 
the original imbalanced dataset and an augmented dataset that includes synthetic samples. The 
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performance of these models is measured based on key metrics such as precision, recall, F1 score, 
and accuracy. This rigorous methodology is crucial for validating the effectiveness of synthetic 
data in enhancing classification tasks, ensuring that improvements in model performance are 
both measurable and significant [3]. 
 
 
4. RESULTS AND DISCUSSION 
 
This section presents the results obtained from the experiments addressing the challenges of GAN 
using imbalanced datasets. 
 
Table 3 summarizes the findings from our experiments. The RF classifier performs exceptionally 
well across all data splits, consistently achieving perfect precision (1.00). This indicates the model 
is always correct when predicting positive results, a significant advantage in applications where 
false positives can incur substantial costs. However, while precision remains high, recall varies, 
particularly showing lower values in the 40:60 split. Nevertheless, RF's computational efficiency 
is commendable, delivering results within a reasonable timeframe, making it suitable for 
scenarios where speed is critical. 
 

Table 3 Model evaluation 
 

 Techniques Accuracy Precision Recall F1-Score Time (s) 
20:80 Random Forest 0.999772 1.00 0.845238 0.916129 36.05 

Gradient 
Boosting 

0.999877 0.987342 0.928571 0.957055 243.09 

Decision Tree 0.998982 0.632653 0.738095 0.681319 4.70 
 

30:70 Random Forest 0.999754 1.00 0.838462 0.912134 33.14 
Gradient 
Boosting  

0.999895 0.991870 0.938462 0.964427 196.32 

Decision Tree 0.999356 0.790698 0.784615 0.787645 3.96 
 

40:60 Random Forest 0.999552 1.00 0.722826 0.839117 28.01 
Gradient 
Boosting 

0.999763 0.943503 0.907609 0.925208 178.56 

Decision Tree 0.999228 0.792683 0.706522 0.747127 3.20 
 
GB is noted for its accuracy, particularly in the 30:70 split, where it achieves the highest accuracy 
of 0.999895. Additionally, it demonstrates impressive recall across all splits, indicating its 
effectiveness in identifying true positives. GB balances precision and recall well, as reflected in its 
high F1 scores, which are the best among the classifiers tested. However, this performance comes 
with a trade-off in computational time, suggesting it may be better suited for applications where 
accuracy takes precedence over speed. 
 
Despite being the fastest of the classifiers, DT exhibits lower overall performance metrics. Its 
accuracy ranges from 0.998982 to 0.999228, but precision and recall are comparatively lower, 
especially in the 20:80 and 40:60 splits. The simplicity of DT facilitates rapid calculations, making 
it a viable option for scenarios requiring quick predictions. However, its limitations in precision 
and recall suggest it may not be optimal for tasks where accuracy is paramount. 
 
GB emerges as the best classifier due to its highest accuracy, recall and F1 scores, reflecting its 
capability to handle the classification task effectively. It identifies positive instances while 
maintaining a high level of precision. Conversely, RF remains a strong contender, particularly for 
applications prioritizing computational efficiency and minimizing false positives. Ultimately, the 
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selection of a classifier should be guided by the specific demands of the task, weighing the need 
for accuracy against computational speed and the significance of precision in predictions. 
 
 
5. CONCLUSION 
 
Addressing class imbalances continues to pose significant challenges across various domains, 
particularly in applications where accurate predictions for minority classes—such as in 
healthcare and fraud detection—can have substantial consequences. Traditional resampling 
methods, including oversampling and undersampling, often fail to capture the complexity of 
minority class distributions. This limitation can lead to suboptimal model performance, as these 
methods may not adequately reflect the intricate characteristics of minority classes. 
 
This paper demonstrates that GANs offer a robust alternative by generating realistic synthetic 
samples that enhance the learning process of ML models. By integrating GANs into the data 
preprocessing pipeline, model accuracy and generalization can be significantly improved, 
resulting in enhanced performance on imbalanced classification tasks. 
 
Additionally, the study underscores the importance of carefully designing GAN architectures to 
maximize their effectiveness. This includes optimizing the training process, ensuring diversity in 
generated samples, and appropriately balancing the ratio of real to synthetic data. Future 
research should explore further enhancements to GANs and evaluate their applicability across 
various imbalanced datasets, ultimately aiming to refine predictive models and achieve more 
equitable outcomes in machine learning applications. 
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