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ABSTRACT

Class imbalance poses a significant challenge in machine learning, especially in critical
domains like fraud detection and healthcare. The dominance of majority classes often
overshadows minority classes, leading to models that inadequately recognize rare but
pivotal events, such as fraudulent transactions. This imbalance can compromise predictive
accuracy and fairness. Traditional methods, including resampling techniques and ensemble
methods, often suffer from overfitting and inadequate representation. This study explores
the use of Generative Adversarial Networks (GANs) to enhance predictive performance on
an imbalanced dataset of credit card transactions, comprising 95% legitimate and 5%
fraudulent transactions. The GAN architecture consists of a generator producing synthetic
samples of the minority class and a discriminator distinguishing between real and synthetic
data. Experimental results indicate models augmented with GANs achieve high accuracy,
with Random Forest models reaching 99.98%, Gradient Boosting models achieving 99.99%,
and Decision Tree models obtaining 99.82%. These findings underline GANs' effectiveness in
addressing class imbalance, enhancing predictive performance for minority classes and
providing reliable results in practical applications.

Keywords: Class Imbalance, Machine Learning, Classification Tasks, Generative
Adversarial Network

1. INTRODUCTION

Class imbalance is a prevalent concern in various fields, including medicine, banking and fraud
detection, where class distributions within datasets are significantly skewed. In these scenarios,
models trained on imbalanced datasets tend to favor the majority class, leading to suboptimal
predictive performance for the minority class. For instance, in credit card fraud detection, a
dataset comprising 95% legitimate transactions and only 5% fraudulent transactions can allow a
model to achieve high overall accuracy by predominantly predicting transactions as legitimate
[1]. However, this frequently results in elevated false negative rates and potential financial
repercussions for banks and customers due to undetected fraud.

In healthcare, the early detection of rare diseases, such as specific cancers, is crucial. A dataset
that includes 98% healthy patients and merely 2% with rare cancers can lead models to
predominantly predict health [2], resulting in missed diagnoses and delayed treatments,
adversely affecting patient outcomes. The implications of data imbalance in this context include
an inability to accurately diagnose rare diseases, with potentially severe consequences for patient
health [3].
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To enhance prediction accuracy for minority classes, several strategies can be employed.
Traditional approaches for managing class imbalance often utilize resampling techniques, such
as oversampling the minority class or undersampling the majority class. While these methods can
help achieve a more balanced dataset, they come with notable limitations. Oversampling involves
increasing the number of instances in the minority class, which can inadvertently lead to
overfitting, as the model may memorize duplicated samples rather than learning to generalize
from them [4]. Conversely, undersampling entails reducing the number of instances in the
majority class, risking the loss of valuable information and obscuring vital patterns within the
data. Both traditional methods primarily modify existing data points instead of generating new
ones, limiting their ability to accurately reflect the underlying distribution of the minority class
[5]- Therefore, there is a pressing need for advanced techniques capable of generating new,
realistic samples to improve model performance and ensure reliable predictions for minority
classes.

GANs have emerged as a powerful solution to challenges associated with imbalanced datasets. By
employing a dual architecture consisting of a generator and a discriminator [6], GANs are capable
of generating realistic samples from minority classes, enriching the dataset and improving
balance [7]. This paper investigates the application of GANs to improve the performance of
machine learning models on imbalanced classification tasks, enhancing model accuracy and
ensuring robust generalization to unseen data. The findings underscore GANs' ability to
effectively address the limitations of traditional resampling methods, such as overfitting and
information loss [8].

Experimental results highlight that the GAN-based methodology significantly enhances the
predictive performance of minority classes, yielding more reliable and equitable outcomes across
diverse applications. This work offers valuable insights into the evolving landscape of GANs,
paving the way for future research and practical applications aimed at improving the accuracy
and reliability of machine learning models in imbalanced classification scenarios.

This article is structured as follows: Section 1 presents the study of imbalanced datasets, while
Section 2 reviews related work. Section 3 details the GAN methodology used to address
imbalanced datasets. Section 4 discusses performance evaluation results for each machine
learning classifier. Finally, Section 5 summarizes main findings and outlines avenues for future
research.

2. LITERATURE REVIEW

Dealing with imbalanced datasets presents a significant challenge in ML, particularly as many
real-world applications demonstrate skewed class distributions. An imbalanced class
distribution occurs when examples from different classes are represented unevenly, with one
class (the majority class) containing more samples than another (the minority class) [9]. This
imbalance complicates the training of ML models and can lead to biased predictions.

Various traditional methods have been documented to address this issue, including resampling
techniques, cost-sensitive learning, and synthetic data generation. Resampling methods can be
divided into two main categories: minority class oversampling and majority class undersampling.
For instance, the Synthetic Minority Oversampling Technique (SMOTE) generates synthetic
examples to enhance classifier performance. However, it may also lead to overfitting by creating
overly similar instances of the minority class [10]. Conversely, undersampling the majority class
can result in the loss of valuable information, negatively impacting model performance. Recent
studies indicate that traditional methods often fall short in addressing the complexities inherent
in highly imbalanced datasets, underscoring the need for advanced techniques [11].
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Recent advances in machine learning have introduced more sophisticated methods for balancing
datasets, as summarized in Table 1. One notable approach is cost-sensitive learning, which
assigns different misclassification costs to classes. This technique encourages the model to
prioritize minority classes, but it often requires careful tuning of cost parameters, complicating
implementation [12][13]. Additionally, ensemble methods, such as Balanced Random Forests,
have demonstrated potential for improving classification performance in imbalanced scenarios.
These methods train a set of classifiers on balanced subsets of the data, leveraging the strengths
of multiple algorithms to enhance overall prediction accuracy [14].

Despite their advantages, both cost-sensitive learning and ensemble methods have limitations,
particularly in situations characterized by extreme class imbalance. Evaluations across various
domains have shown that their effectiveness can diminish when class distribution disparities are
pronounced [3]. This situation highlights the necessity for innovative solutions to tackle
persistent challenges posed by imbalanced datasets in machine learning.

Table 1 Imbalanced datasets method

Author Method Title Technique Used
[15] Resampling Handling class imbalance in credit SMOTE
card fraud using resampling methods ROS
RUS

[16] Class Weight

Weighting methods for rare event
identification from imbalanced
datasets

Adaptive algorithm
Boosting style algorithm

[17] Ensemble
Methods

A novel ensemble method for
classifying imbalanced data

Random splitting (SplitBal)
Clustering (ClusterBal)
Ensemble rule

[18] Cost-Sensitive

Cost-sensitive decision tree ensembles

Evolutionary algorithm

augmentation

Learning for effective imbalanced classification
[19] Algorithm A hybrid supervised ML classifier Nature-inspired algorithms
Selection system for breast cancer prognosis Wrapper-based feature
using feature selection and data selection approach
imbalance handling approaches
[20] Data Solving the class imbalance problem Counterfactual
Augmentation using a counterfactual method for data Augmentation (CFA)

[21] Anomaly
Detection

The optimized anomaly detection
models based on an approach of
dealing with imbalanced dataset for
credit card fraud detection

AdaBoost
Isolation Forest (IForest)

One-Class Support Vector
Machine (OCSVM)

Given the limitations of traditional methods for addressing class imbalance, GANs have emerged
as a compelling alternative. GANs consist of two neural networks—a generator and a
discriminator—that are trained concurrently. This architecture facilitates the generation of
effective artificial samples for the minority class, tackling the core issue of class imbalance by
enriching the dataset with realistic examples that closely mimic the underlying distribution of the
minority class [22]. GAN framework can be seen in Figure 1.

The generator’s primary function is to create new data points from random noise, learning to
produce samples indistinguishable from authentic instances of the minority class [23].
Simultaneously, the discriminator evaluates whether these samples are real or synthetic.
Through this adversarial training process, both networks enhance their respective capabilities:
the generator becomes more proficient at crafting realistic samples, while the discriminator
improves its accuracy in distinguishing between real and generated data [8]. This dynamic
interplay makes GANs particularly well-suited for mitigating class imbalance. Empirical studies,
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as summarized in Table 2, demonstrate that GANs can outperform traditional resampling
methods by generating diverse and representative samples.
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Figure 1. The framework of GAN [24]

To improve the efficiency of GANs in generating samples for balanced datasets, several variants
have been proposed. One notable variant is the Conditional GAN (cGAN), which enables targeted
generation by conditioning on class labels. This feature allows for the production of specific
examples of minority classes, making cGANs particularly useful in scenarios where precise
control over the generated samples is required [25]. Additionally, techniques such as Wasserstein
GANs (WGANSs) have been developed to enhance both training stability and the quality of
generated samples. By reformulating the loss function, WGANs address issues related to mode
collapse and provide a more meaningful measure of the distance between distributions. This
results in more reliable and diverse sample generation, which is critical for effectively addressing
class imbalance [26]. These advancements highlight the adaptability of GANs across various
contexts, including medical imaging and fraud detection, where class imbalances are prevalent.
By leveraging these specialized GAN variants, researchers and practitioners can better tackle the
challenges posed by imbalanced datasets, ultimately improving the performance and reliability
of ML models in critical applications.

The literature outlines a diverse array of techniques for managing class imbalance, encompassing
both traditional resampling methods and advanced generative models such as GANs. While
conventional approaches offer certain benefits, they frequently fall short in complex scenarios
marked by substantial class imbalance.

The advent of GANs and their various derivatives signifies a promising direction for future
research. These models not only provide innovative solutions for generating realistic synthetic
samples but also enhance the overall robustness of ML algorithms. By refining strategies to
effectively manage imbalanced datasets, GANs hold the potential to significantly improve
predictive performance in a wide range of applications, ultimately leading to more accurate and
reliable outcomes. As research continues to evolve, exploring the capabilities of GANs and their
adaptations will be crucial in addressing the ongoing challenges posed by class imbalance in ML.
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Table 2 Imbalanced datasets applications with GAN

Author Technique Used Contribution Findings
[27] e CNN Implement code visualization CNN as well as GAN models
e GAN methods and use GANSs to generate can achieve higher
more samples of malicious code classification accuracy than
variants related work
[28] e Dynamic Propose a dynamic ensemble The proposed algorithm
ensemble algorithm for anomaly detection in outperforms comparative
algorithm the Internet of Things (IoT) anomaly detection methods
in IoT scenarios
[29] e Hybrid deep Propose a new hybrid deep learning | The CBGRU model shows
learning model named CBGRU that combines | superior performance in
(CBGRU) different word embedding vulnerability detection
techniques compared to previous models
[30] e RGAN-EL Introduces a hybrid framework RGAN-EL significantly
called RGAN-EL, which combines outperforms six common
GAN with ensemble learning to ensemble learning methods
improve classification performance
on imbalanced datasets
[31] e WGAN Investigates the use of WGAN as a WGAN outperforms basic
technique for dealing with GAN and enhanced GAN in
imbalanced data sets in ML producing high-quality and
diverse synthetic data

3. GENERATIVE ADVERSARIAL NETWORKS (GANs) FOR IMBALANCED DATASETS

This section outlines the methodology employed to address the challenges of imbalanced datasets
using GANs.

3.1 Data Selection and Preprocessing

The process initiates with the selection of a credit card transaction dataset sourced from [32].
This dataset is loaded using the Pandas library, from which the target variable, ‘Class’, is extracted.
This operation results in two distinct variables: x for features and y for labels. Following this
extraction, the data undergoes normalization using StandardScaler, ensuring that the GAN
operates on normalized values and facilitates effective training and sample generation [33]. To
address class imbalance, both the majority and minority classes are identified and isolated. The
majority class is then further divided into training and test sets (“20:80”, “30:70”, and “40:60").
This structured approach balances the dataset while preparing it for GAN training, ultimately
enhancing the model's ability to generate realistic minority class samples.

3.2 GANSs Architecture

GANs comprise two primary components: the generator and the discriminator. The generator is
responsible for creating synthetic data from random noise. It employs several dense layers
equipped with ReLU (Rectified Linear Unit) activation functions, along with batch normalization
to balance the training process. The output layer utilizes a Tanh activation function, which is well-
suited for adjusting to the feature scale of the real dataset. This design enables the generator to
produce high-quality synthetic samples that closely mimic the characteristics of the actual data.

Conversely, the discriminator's role is to accurately distinguish between real and fake data. It
features a dense layer with dropout to mitigate the risk of overfitting. The discriminator
ultimately produces a sigmoid output representing class probabilities that indicate the likelihood
of a sample being real or fake. This dual architecture is effective in generating high-quality
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synthetic data that aligns firmly with the underlying distribution of the minority class, as
supported by previous research. The interplay between the generator and discriminator fosters
an adversarial training process that enhances the overall performance of the GAN [8][24].

3.3 Training Procedure

The training of the GAN is conducted in two main steps. The process utilizes the Adam optimizer
with a learning rate of 0.0002 and a batch size of 64. Initially, the discriminator is trained using
batches of both real and synthetic data generated by the generator. During this phase, the loss for
both datasets is computed and smoothed to enhance training stability. Following the
discriminator's training, the generator is then trained with the goal of deceiving the discriminator
into classifying its synthetic samples as real. The loss for the generator is calculated based on the
discriminator’s ability to discriminate between real and fake data. This cyclic training process is
replicated for a predetermined number of epochs, set at 10 in this instance. Throughout the
training, loss values are recorded to monitor progress. Figure 2 shows the GAN algorithm used.

Algorithm 1: GAN Training

INITIALIZE G (Generator)
INITIALIZE D (Discriminator)

FOR each epoch DO
# Train Discriminator (D)
D less = - (log(D(real)) + log(l - D(fake)))
UPDATE D USING D_loss

# Train Generator (G)
G loss = - log(D(fake))
UPDATE G USING G_loss

PRINT D loss
PRINT G loss
END FOR

Figure 2. GAN training algorithm

3.4 Data Augmentation

After the successful training of the GAN, synthetic samples of the minority class are generated to
create a balanced dataset. The extent of this expansion is determined by the original class
distribution, with the goal of achieving a balanced 1:1 ratio between the minority and majority
classes. The newly generated synthetic examples are then integrated into the original dataset,
ensuring a diverse representation of both classes. This method aligns with findings that
demonstrate GANs' capability to synthesize diverse data that accurately reflects the distribution
of the minority class [7][34]. By enriching the dataset with these realistic samples, the model's
performance on minority class predictions is significantly enhanced.

3.5 Model Evaluation
To assess the impact of synthesized data on model performance, several classifiers—including

Random Forest (RF), Gradient Boosting (GB) and Decision Tree (DT)—are evaluated using both
the original imbalanced dataset and an augmented dataset that includes synthetic samples. The
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performance of these models is measured based on key metrics such as precision, recall, F1 score,
and accuracy. This rigorous methodology is crucial for validating the effectiveness of synthetic
data in enhancing classification tasks, ensuring that improvements in model performance are
both measurable and significant [3].

4. RESULTS AND DISCUSSION

This section presents the results obtained from the experiments addressing the challenges of GAN
using imbalanced datasets.

Table 3 summarizes the findings from our experiments. The RF classifier performs exceptionally
well across all data splits, consistently achieving perfect precision (1.00). This indicates the model
is always correct when predicting positive results, a significant advantage in applications where
false positives can incur substantial costs. However, while precision remains high, recall varies,
particularly showing lower values in the 40:60 split. Nevertheless, RF's computational efficiency
is commendable, delivering results within a reasonable timeframe, making it suitable for
scenarios where speed is critical.

Table 3 Model evaluation

Techniques Accuracy | Precision Recall F1-Score | Time (s)

20:80 | Random Forest 0.999772 1.00 0.845238 0.916129 36.05

Gradient 0.999877 | 0.987342 0.928571 0.957055 243.09

Boosting

Decision Tree 0.998982 0.632653 0.738095 0.681319 4.70
30:70 | Random Forest 0.999754 1.00 0.838462 0.912134 33.14

Gradient 0.999895 | 0.991870 0.938462 0.964427 196.32

Boosting

Decision Tree 0.999356 0.790698 0.784615 0.787645 3.96
40:60 | Random Forest 0.999552 1.00 0.722826 0.839117 28.01

Gradient 0.999763 | 0.943503 0.907609 0.925208 178.56

Boosting

Decision Tree 0.999228 0.792683 0.706522 0.747127 3.20

GB is noted for its accuracy, particularly in the 30:70 split, where it achieves the highest accuracy
of 0.999895. Additionally, it demonstrates impressive recall across all splits, indicating its
effectiveness in identifying true positives. GB balances precision and recall well, as reflected in its
high F1 scores, which are the best among the classifiers tested. However, this performance comes
with a trade-off in computational time, suggesting it may be better suited for applications where
accuracy takes precedence over speed.

Despite being the fastest of the classifiers, DT exhibits lower overall performance metrics. Its
accuracy ranges from 0.998982 to 0.999228, but precision and recall are comparatively lower,
especially in the 20:80 and 40:60 splits. The simplicity of DT facilitates rapid calculations, making
it a viable option for scenarios requiring quick predictions. However, its limitations in precision
and recall suggest it may not be optimal for tasks where accuracy is paramount.

GB emerges as the best classifier due to its highest accuracy, recall and F1 scores, reflecting its
capability to handle the classification task effectively. It identifies positive instances while
maintaining a high level of precision. Conversely, RF remains a strong contender, particularly for
applications prioritizing computational efficiency and minimizing false positives. Ultimately, the
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selection of a classifier should be guided by the specific demands of the task, weighing the need
for accuracy against computational speed and the significance of precision in predictions.

5. CONCLUSION

Addressing class imbalances continues to pose significant challenges across various domains,
particularly in applications where accurate predictions for minority classes—such as in
healthcare and fraud detection—can have substantial consequences. Traditional resampling
methods, including oversampling and undersampling, often fail to capture the complexity of
minority class distributions. This limitation can lead to suboptimal model performance, as these
methods may not adequately reflect the intricate characteristics of minority classes.

This paper demonstrates that GANs offer a robust alternative by generating realistic synthetic
samples that enhance the learning process of ML models. By integrating GANs into the data
preprocessing pipeline, model accuracy and generalization can be significantly improved,
resulting in enhanced performance on imbalanced classification tasks.

Additionally, the study underscores the importance of carefully designing GAN architectures to
maximize their effectiveness. This includes optimizing the training process, ensuring diversity in
generated samples, and appropriately balancing the ratio of real to synthetic data. Future
research should explore further enhancements to GANs and evaluate their applicability across
various imbalanced datasets, ultimately aiming to refine predictive models and achieve more
equitable outcomes in machine learning applications.
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