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ABSTRACT 
 

Music plays a crucial role in shaping emotions and experiences, making its classification an 
important area of research with applications in therapy, recommendation systems, and 
affective computing. This study develops a deep learning-based system to classify music into 
three emotional categories: "Angry," "Happy," and "Sad." The dataset, consisting of 22 audio 
files collected from YouTube, was manually labelled, segmented into 30-second clips, and 
augmented using pitch shifting and time stretching to enhance diversity. Features were 
extracted using Mel-Frequency Cepstral Coefficients (MFCC) and spectral contrast to analyse 
the harmonic and timbral characteristics of the audio. Three deep learning models, CNN, 
CNN-LSTM, and CNN-GRU, were evaluated. CNN-GRU achieved the highest weighted 
accuracy of 99.10%, demonstrating superior performance. Future work includes adding 
more emotion categories, diversifying the dataset, exploring advanced architectures like 
transformers, optimising hyperparameters, implementing real-time applications, and 
conducting user studies to assess effectiveness. This research successfully developed and 
evaluated a music emotion classification system, contributing to advancements in the field. 

 
Keywords: CNN, CNN-LSTM, CNN-GRU, Deep Learning, MFCC Extraction, Music Emotion 
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1.  INTRODUCTION  
 
Music is one of the fundamental pillars of human culture and life, shaping emotions and enhancing 
experiences. It has long been recognised for its ability to reflect and influence human emotions, 
serving as a source of entertainment, memory building, and emotional expression. The 
introduction of technology in music analysis has transformed it into a blend of art and science. 
 
The rise of digital music and streaming platforms has redefined how people engage with music, 
bringing about the need to explore its emotional content. While traditional systems categorise 
music by genre, artist, or beats per minute (BPM), they fail to address its emotional impact [1]. 
This gap has inspired researchers to investigate music classification methods that focus on 
emotional dimensions, paving the way for improved listening experiences, music therapy, and 
personalised recommendations. 
 
The global Artificial Intelligence (AI) in music market is projected to grow significantly, from USD 
3.9 billion in 2023 to USD 38.7 billion by 2033, at a compound annual growth rate (CAGR) of 
25.8%. Figure 1 shows this projected growth and highlights the increasing role of AI technologies 
in revolutionising music production, distribution, and consumption. AI technologies have 
revolutionised music production, distribution, and consumption, enabling applications such as 
personalised playlists, real-time composition, and immersive experiences through virtual and 
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augmented reality (VR/AR) [2]. These advancements have expanded the integration of AI into 
music therapy and user engagement. 
 

 
 

Figure 1. The projected growth of the global AI in music market [2] 
 

Deep learning models have shown immense potential in addressing complex problems like music 
emotion classification. By learning from large volumes of data, these models can capture irregular 
patterns and interpret elements such as melodies and harmonies to predict emotional states [3]. 
 
This project aims to apply deep learning architectures, including Convolutional Neural Networks 
(CNN), CNN-Long Short-Term Memory (CNN-LSTM), and CNN-Gated Recurrent Unit (CNN-GRU), 
to classify music into three emotional categories: "Angry," "Happy," and "Sad." These models will 
be implemented and evaluated on large datasets to ensure accurate emotion classification. The 
ultimate goal is to develop a reliable, versatile system that enhances user interaction with music 
and provides practical applications in therapy, recommendation systems, and entertainment. 
 
 
2. METHODOLOGY 
 
2.1 Data Collections 
 
The dataset comprises raw audio files sourced from publicly available content on YouTube, 
featuring music tracks labelled with emotional categories. These tracks were manually curated 
to correspond to the targeted emotional labels: Angry, Happy, and Sad. The diversity of these 
tracks ensures a representative dataset for robust training and evaluation of the deep learning 
models. 
 
While the files were selected to use royalty-free or Creative Commons content, some may be 
copyrighted. They were used strictly for academic, non-commercial purposes. As the original 
durations varied, all audio was standardised into 30-second clips for model training. Table 1 
shows the source links by emotion. 
 

Table 1 YouTube source links by emotion 
 

No Angry Happy Sad 
1 https://youtu.be/m23Cl-E9Qkc https://youtu.be/rCHMqrkoyFA https://youtu.be/PLQvm6mbg9U 
2 https://youtu.be/EuaCVa_ET7U https://youtu.be/bn-ERrsr_wk https://youtu.be/_3noGaPV3UQ 
3 https://youtu.be/IPGekm9GZok https://youtu.be/00H4NcrSK1o  
4 https://youtu.be/1rxpUma1ROE https://youtu.be/gIyGfaYGOfE  
5 https://youtu.be/TqNQJUMhook https://youtu.be/PnXFz-01ONo  
6 https://youtu.be/NoFXCaFMgOs https://youtu.be/sxieXFrKByw  
7 https://youtu.be/XZVygeHwN5M https://youtu.be/TpMsGTu9kAI  
8 https://youtu.be/mSiWEjZj2aI https://youtu.be/X11EC849J78  
9 https://youtu.be/_SkUsk07Z-I https://youtu.be/8TIpMzTQpMg  

10 https://youtu.be/y6LhtZABxJQ https://youtu.be/WRudRSS7o2E  

https://youtu.be/m23Cl-E9Qkc
https://youtu.be/EuaCVa_ET7U
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2.2 Data Pre-processing 
 
Data pre-processing is a crucial step in preparing raw audio for MFCC extraction, spectral 
contrast, and model training. It involves several key stages that enhance the quality and 
consistency of the data while introducing variability to make the dataset more robust. 
 
The first stage is segmentation, which splits audio tracks into smaller, fixed-length segments with 
overlapping windows [4]. This helps the model better capture temporal patterns and variations 
in the music. Each segment is labelled with its related emotional category. 
 
Following segmentation, the dataset undergoes augmentation, a process aimed at enhancing the 
diversity and robustness of the audio data. Two augmentation techniques are applied: 
 
2.2.1 Pitch Shifting  
 
Pitch shifting changes the pitch of an audio track by adjusting its frequency, either higher or 
lower. It can be done without affecting the track's length, preserving emotional and timing 
qualities [5]. This adds variation to the dataset, helping models generalise better while keeping 
the music's original emotional feel. 
 
2.2.2 Time Stretching  
 
Time stretching is a technique that changes the duration of an audio sample without affecting its 
pitch. It uses algorithms to separate the time and frequency components of the sound. By slowing 
down or speeding up the audio, it creates timing differences while preserving the original sound 
quality. This adds variety to the dataset and helps the model learn and adapt to different rhythms 
and timing patterns [6]. Figure 2 below shows the flowchart of the pre-processing techniques. 
 

 
 

Figure 2. Data pre-processing steps 
 
2.3 MFCC Extraction 
 
Mel-Frequency Cepstral Coefficients (MFCC) extract important audio features by imitating how 
humans hear. The process begins by changing the audio from time to frequency using the Fourier 
Transform. Then, the frequency data is mapped to the Mel scale using triangular filters, which 
focus on sounds the human ear hears best. After that, the logarithm is applied to match how we 
hear loudness. Finally, the Discrete Cosine Transform (DCT) reduces the data into a few key 
numbers that capture the sound’s tone and quality [7]. 
 
2.4 Spectral Contrast 
 
Spectral Contrast measures the difference in energy between peaks (high energy) and valleys 
(low energy) in a sound spectrum across frequency bands. High contrast indicates clear, narrow-
band signals like harmonic tones, while low contrast reflects broadband noise or less defined 
sounds. This feature helps capture harmonic structure and timbral characteristics, making it 
useful for identifying musical genres and expressing emotions in audio [8]. 
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2.5 Encode Labels 
 
Label encoding changes category labels into numbers so the model can use them. Each label gets 
a different number. This method is simple, but it doesn’t show any order unless the data has one. 
It’s useful when numbers are needed as input, but should be used carefully with labels that don’t 
have a clear order to avoid confusion [9]. 
 
2.6 Convolutional Neural Networks (CNN) 
 
Convolutional Neural Networks (CNN) are commonly used in music signal analysis because they 
can extract important features from spectrograms and mel-spectrograms. CNN has convolutional, 
pooling, and fully connected layers, and each layer is trained using backpropagation to identify 
edges, shapes, and textures in the input signal. These patterns are thought to correspond with 
timbral and structural features which impact emotional perception in music. Early studies have 
explored the use of CNN for music emotion classification, proving that the model can learn high-
level representations directly from audio input without relying on handcrafted features [10]. 
Figure 3 shows a typical CNN architecture. 
 

 
 

Figure 3. CNN architecture [11] 
 

2.7 CNN-LSTM 
 
It has been observed by researchers that CNN with Long Short-Term Memory (LSTM) works well 
in combining the spatial and temporal parts of music signals [12]. This architecture uses CNN 
layers to extract spatial features from spectrogram inputs and capture local pitch, timbre, and 
rhythm time-frequency patterns. These high-level features are sent to LSTM layers to model 
music's temporal progression and sequential structure. Furthermore, by incorporating both 
audio features and lyrical content, the CNN-LSTM model enhances its ability to classify music 
emotions with greater accuracy and contextual understanding. Figure 4 shows the structure of a 
CNN-LSTM model. 

 

 
 

Figure 4. CNN-LSTM architecture [13] 
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2.8 CNN-GRU 
 
Similar to the CNN-LSTM structure, the CNN-GRU model combines CNN with Gated Recurrent 
Units (GRU) to capture spatial and temporal features in music signals. In this model, CNN layers 
extract spatial features from spectrograms, identifying patterns like timbral textures and spectral 
shapes. These features are then passed to GRU layers, which learn the timing and sequence of 
changes in the audio. GRU use a simpler structure than LSTM, allowing faster training and lower 
computational cost while still performing well in sequence tasks. This model has proven effective 
in classifying music emotions by learning how emotional cues change over time [14]. Figure 5 
shows an example of the CNN-GRU architecture. 

 

 
 

Figure 5. CNN-GRU architecture [15] 
 

2.9 Model Training, Validation and Testing 
 
In developing the music emotion classification system, the dataset is split into 70% for training, 
15% for validation, and 15% for testing. This ensures the model learns effectively from training 
data while using the validation set for fine-tuning and the test set for final performance 
evaluation. 
 
During training, the goal is to optimise the model to minimise errors and maximise weighted 
accuracy. The categorical cross-entropy loss function measures the difference between true and 
predicted labels, making it ideal for multi-class classification. The Adam optimiser adjusts the 
learning rate dynamically for stable and efficient convergence. Key training parameters include 
epochs, batch size and learning rate. 
 
2.10 Model Evaluation 
 
The performance of each model is evaluated using the following metrics: 
 
2.10.1 Accuracy 
 
Accuracy is a basic yet widely used metric that measures the proportion of correct predictions 
made by a classification model. It considers both true positives (TP), where the model correctly 
identifies a positive case, and true negatives (TN), where it correctly identifies a negative case. 
Conversely, false positives (FP) occur when a negative case is incorrectly predicted as positive, 
and false negatives (FN) occur when a positive case is wrongly classified as negative. The formula 
is presented in Equation (1): 
 
Accuracy = TP+TN

TP+TN+FP+FN
                                                                                                                                   (1) 

 
2.10.2 Weighted Accuracy 
 
Weighted accuracy addresses class imbalance by assigning a weight to each class based on its 
sample size. It calculates the accuracy for each class and then computes a weighted average. In 
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this context, Total TP refers to the sum of true positives across all classes, and Total Support refers 
to the total number of actual samples from all classes. The formula is shown in Equation (2): 
 
AccuracyWeighted = Total TP

Total Support
                                                                                                                               (2) 

 
2.10.3 Precision 
 
Precision evaluates the correctness of positive predictions. It is the proportion of predicted 
positive cases out of all predicted positives. High precision indicates fewer false positives, which 
is important in scenarios where false alarms are costly. This is shown in Equation (3): 
 
Precision = TP

TP+FP
                                                                                                                                                      (3) 

 
2.10.4 Recall 
 
Recall measures the model’s ability to identify all actual positive cases. It is the ratio of correctly 
predicted positives to all actual positives. A high recall means the model misses fewer relevant 
results, making it important in applications where missing positive cases is critical. Recall is 
shown in Equation (4): 
 
Recall = TP

TP+FN
                                                                                                                                                  (4)   

 
2.10.5 F1-score 
 
The F1-score is the harmonic mean of precision and recall. It balances both metrics and is 
especially useful when the dataset is imbalanced or when both false positives and false negatives 
must be minimised. It is calculated using Equation (5): 
 
F1-score = 2 × Precision×Recall

Precision+Recall
                                                                                                                                                  (5)   

 
 
3. RESULTS AND DISCUSSION 
 
This section discusses the results and discussion of three deep learning models: CNN, CNN-LSTM, 
and CNN-GRU, for music emotion classification. 
 
3.1 Data Pre-processing 
 
The pre-processing phase focused on preparing raw audio data collected from YouTube by 
enhancing its quality and introducing variability, ensuring it was suitable for MFCC extraction, 
spectral contrast and effective model training. This process comprised two main steps: 
segmentation and data augmentation. 
 
3.1.1 Segmentation 
 
The audio files were first converted to mono format with a sampling rate of 16 kHz to standardise 
the input. Large files over 4GB were split into smaller chunks to avoid system issues. All audio 
was then divided into uniform 30-second segments, expanding the dataset from 22 original files 
to 1,726 segments. This ensured consistent input and supported effective model training. Table 
2 shows the number of segments for each emotion, “Angry,” “Happy,” and “Sad”, with “Happy” 
and “Sad” having more segments due to their longer recordings. 
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Table 2 Segmentation results for each emotion category 
 

Emotion Initial Files Segment Files Total Duration (HH:MM:SS) 
Angry 10 237 01:55:21 
Happy 10 767 06:21:06 

Sad 2 722 06:00:07 
Total 22 1726 14:16:35 

 
3.1.2 Augmentation 
 
The augmentation process was used to expand the dataset and improve its diversity, allowing the 
models to generalise more effectively. By increasing variability in the audio samples, the models 
could better recognise different emotional patterns. 
 
One of the techniques used was pitch shifting. This method changes the pitch of an audio file by 
±2 semitones without affecting its duration. It introduces subtle differences in tonal quality while 
keeping the emotional tone intact, making the dataset more varied and robust. 
 
Another technique applied was time stretching. This adjusts the speed of the audio playback, 
slower or faster typically by factors of 0.8x and 1.2x, without changing the pitch. It creates 
variations in rhythm and timing, helping the model learn from different temporal patterns in the 
audio. 
 
A summary of the waveform effects for each method is shown in Table 3, which compares the 
original audio with the pitch-shifted and time-stretched versions. 
 

Table 3 Comparison of original, pitch shifted and time stretched audio waveforms 
 

Description Waveform 

Original Audio Segment 

 

After Pitch Shifting 

 

After Time Stretching 
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Table 4 shows the augmented dataset, detailing the number of files and total duration across 
emotion categories. This process increased the dataset size to 5,178 audio files, significantly 
improving the training diversity. 
 

Table 4 Augmentation results for each emotion category 
 

Emotion Augmented Files Total Duration (HH:MM:SS) 
Angry 711 05:49:43 
Happy 2301 19:18:38 

Sad 2166 18:16:27 
Total 5178 43:24:49 

 
3.1.3 Data Splitting and Class Balancing 
 
The dataset was divided into three subsets: 70% for training, 15% for validation, and 15% for 
testing. This ensured most data was used for training, with enough samples reserved for 
validation and testing. The number of samples in each subset was calculated using the following 
formula: 
 
Samples in Subset = Total Samples × Subset Percentage                                                        (6)                                                                                        
 
Table 5 shows the dataset distribution after splitting into training, validation, and testing subsets. 

 
Table 5 Dataset splitting results 

 
Subset Samples 

Training Set 3624 
Validation Set 777 

Testing Set 777 
Total 5178 

 
Class balancing addressed the dataset's natural imbalance, where "Angry" had the fewest 
samples. To mitigate this, inverse frequency-based class weights were calculated and applied 
during training. Table 6 shows the data distribution and class weights, with the "Angry" class 
assigned a weight of 242.76% to increase its influence. This adjustment helps reduce bias towards 
more frequent classes and improves overall model performance. 

 
Table 6 Class balancing weights 

 
Emotion Augmented Files Total Duration (HH:MM:SS) Class Weight (%) 

Angry 711 05:49:43 242.76 
Happy 2301 19:18:38 75.01 

Sad 2166 18:16:27 79.69 
 
3.2 Classification Result for Each Model 
 
This section shows the results of the three deep learning models, each trained for 150 epochs 
with a batch size of 64. Their performance is measured using weighted accuracy, precision, recall, 
and F1-score. Visuals and data summaries, such as training/validation accuracy, loss, and 
confusion matrices, show the strengths and weaknesses of each model. 
 
3.2.1 Training and Validation Accuracy and Loss 
 
The accuracy and loss curves show how well each model learned during training and how well it 
performed on unseen data. All models were trained under the same settings. The results are 
shown in Table 7. 
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Table 7 Training and validation accuracy and loss for each model 
 

Model Training and Validation Accuracy and Loss  

CNN 

 

CNN-LSTM 

 

CNN-GRU 

 
 
3.2.2 Confusion Matrix and Classification Report 
 
The confusion matrix shows how well each model predicted the emotions "Angry," "Happy," and 
"Sad," including both correct and incorrect results. The classification report includes precision, 
recall, and F1-score. Table 8 presents the confusion matrices for all three models. 
 

Table 8 Confusion matrix for each model 
 

Model Confusion Matrix 

CNN 
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CNN-LSTM 

 

CNN-GRU 

 
 
Table 9 shows the classification report for each model, focusing on weighted accuracy across all 
emotional categories. CNN-GRU performs best with a weighted accuracy of 99.10%, effectively 
generalising across the dataset. CNN-LSTM follows with 98.58%, excelling in capturing spatial 
and temporal features. CNN achieves 98.33%, performing well in extracting spatial features but 
lagging behind the hybrid models. 
 

Table 9 Classification report for each model 
 

Model Metric Angry Happy Sad Macro Avg Weighted Avg Weighted Accuracy (%) 

CNN 
Precision 0.89 1.00 1.00 0.96 0.99 

98.33 Recall 1.00 0.96 1.00 0.99 0.98 
F1-Score 0.94 0.98 1.00 0.97 0.98 

CNN-
LSTM 

Precision 0.98 0.98 0.99 0.98 0.99 
98.58 Recall 0.95 0.99 1.00 0.97 0.98 

F1-Score 0.97 0.98 0.99 0.97 0.98 

CNN-
GRU 

Precision 0.96 0.99 1.00 0.98 0.99 
99.10 Recall 0.97 0.99 1.00 0.99 0.99 

F1-Score 0.97 0.99 1.00 0.99 0.99 

 
3.3 Discussion 
 
This section discusses the performance of CNN, CNN-LSTM, and CNN-GRU models based on 
weighted accuracy, precision, recall, F1-score, and misclassification analysis. Each model's 
strengths and weaknesses were examined in addressing challenges such as class imbalance and 
overlapping audio features. 
 
The CNN model, serving as the baseline, achieved a weighted accuracy of 98.33%, demonstrating 
its ability to extract spatial features effectively. However, it struggled to capture temporal 
dynamics, leading to a misclassification rate of 1.67%. Most errors involved misclassifying 
"Happy" segments as "Angry" due to overlapping tonal characteristics. Despite these limitations, 
CNN achieved perfect precision and recall for "Sad" segments. 
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The CNN-LSTM model improved performance by capturing both spatial and temporal features. It 
achieved a higher weighted accuracy of 98.58% and a lower misclassification rate of 1.42%. The 
model performed well in identifying "Happy" and "Sad" segments, but occasionally confused 
"Happy" with "Angry" or "Sad" and misclassified some "Angry" segments as "Happy." This 
indicates better generalisation compared to CNN, although challenges with overlapping rhythmic 
and tonal patterns remained. 
 
The CNN-GRU model delivered the best results, achieving a weighted accuracy of 99.10% and the 
lowest misclassification rate of 0.90%. It effectively balanced spatial and temporal feature 
extraction, resulting in fewer errors. Most misclassifications occurred between "Angry" and 
"Happy" segments, but the model achieved higher precision, recall, and F1-scores across all 
categories, reflecting its robust handling of complex audio features and class imbalances. 
 
Overall, the CNN-GRU model emerged as the most suitable for this project due to its superior 
accuracy and reduced misclassification rate. While CNN and CNN-LSTM performed well, their 
higher error rates in specific emotional categories limit their practicality. The misclassifications 
observed in all models highlight the inherent challenge of overlapping tonal and rhythmic 
features in audio classification. 
 
 
4. CONCLUSION 
 
This research explored the potential of deep learning models for music emotion classification, 
focusing on three models: CNN, CNN-LSTM, and CNN-GRU. The study successfully developed a 
system capable of classifying music into three emotional categories: "Angry," "Happy," and "Sad," 
by utilising features extracted through MFCC and spectral contrast techniques. The dataset was 
enhanced through segmentation and augmentation, ensuring robustness and diversity. 
 
Among the models evaluated, CNN-GRU achieved the highest weighted accuracy of 99.10%, 
demonstrating superior performance in capturing both spatial and temporal features. While CNN 
and CNN-LSTM showed competitive results, CNN-GRU outperformed in terms of weighted 
accuracy, precision, recall, and F1-score. This highlights its robustness in handling complex 
emotional features in music. 
 
The findings of this research contribute to advancements in music emotion classification, 
providing a foundation for future exploration. Potential improvements include expanding the 
dataset to include more emotional categories, exploring advanced architectures such as 
transformers, optimising hyperparameters, and enabling real-time applications. 
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