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ABSTRACT 
 

Agriculture techniques, particularly fertilizer mixing, have significant impacts on crop 
productivity. Introducing IoT technology to agriculture can enhance productivity, and 
machine learning offers a mechanism to gain insights from data, making agricultural 
practices more efficient. This research aims to design an AI-assisted and IoT-based fertilizer 
mixing system for greenhouses. This system utilizes sensor data and AI algorithms, 
specifically the Support Vector Machine (SVM), to optimize fertilizer application. Results 
from the SVM classifier showed a 100% accuracy rate for temperature and humidity, 65% 
accuracy for phosphorus, 86% for nitrogen, and 100% for potassium. These findings 
demonstrate the potential of the proposed system to improve fertilizer efficiency while 
reducing labor and resource waste. 
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1.  INTRODUCTION  
 
The agricultural sector remains pivotal to the economic development and sustenance of many 
nations, serving as a linchpin for progress and globalization. However, traditional agricultural 
practices grapple with multiple challenges, notably inconsistent yields, vulnerability to climate 
change, expansive land requirements, and escalating labor costs. Such constraints amplify the 
looming risks of food scarcity. A seminal component of agricultural optimization is the strategic 
application of fertilizers, notably the Nitrogen, Phosphorus, and Potassium (NPK) mix. Most soils 
inherently lack the macronutrients crucial for optimal plant growth, making fertilization 
indispensable. Yet, manual approaches to nutrient provision are often imprecise, leading to 
resource wastage and suboptimal yields. With the advent of Industry 4.0 technologies, including 
AI, IoT, and machine learning, a transformative shift is underway. These technologies, as 
highlighted by Krstevska et al. [1] and Ramli et al. [2augment productivity and usher in tailored 
solutions that could revolutionize fertilizer application and overall agricultural efficiency. 
Addressing these challenges, this project seeks to harness the capabilities of AI and IoT, deploying 
a cost-effective fertilizer mixing system, fine-tuned by machine learning, to enhance nutrient 
provision and foster sustainable farming practices. 
 
 
2. LITERATURE REVIEW 
 

A series of innovative approaches to revolutionize traditional agricultural practices have emerged 
in recent years. Ramli et al. [2] introduced an automated nutrient solution mixing system that 
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leverages electrical conductivity (EC) to ensure precise fertigation for hydroponics. The solution 
is designed to automatically match the required EC level, effectively addressing the issues 
inherent in manual mixing. Elhassan Mohammed Elhassan Ahmed et al. [3] delved into the realm 
of farm automation using IoT. They proposed a system integrating soil moisture and climate 
sensors to monitor and regulate aspects such as irrigation, temperature, and humidity, ensuring 
optimal crop growth conditions. Garg et al. [4] emphasized the integration of IoT and machine 
learning for precision agriculture. Their multimodal approach employed state-of-the-art models 
for crop disease detection and damage prediction, advocating for comprehensive solutions 
incorporating image classification and machine learning techniques. Further exploring the 
combination of IoT and AI, Kanuru et al. [5] introduced an intelligent farming technique that 
employed machine learning algorithms to optimize pesticide and fertilizer applications based on 
sensor data. With similar intentions, Nyakuri et al. [6] highlighted a deep learning model designed 
for edge devices, focusing on intelligent irrigation and fertigation with remarkable accuracy. 
Meanwhile, Ragavi et al. [7] embarked on integrating agrobot systems with IoT and AI, offering 
an amalgamation of seed sowing, continuous monitoring, and data-driven agricultural insights. 
Lastly, Bhuvaneswari Swaminathan et al. [8] put forth a comprehensive system that combines 
multiple sensors with deep learning algorithms to provide tailored fertilizer recommendations to 
farmers, aiming for efficient fertilizer use and improved yields. 
 
Contrasting the research, our work uniquely combines AI-assisted IoT-based fertilizer mixing 
systems with machine learning methodologies tailored for specific nutrient provision to plants. 
Rather than focusing solely on fertigation or automation, we have amalgamated these domains to 
create a seamless, cost-effective, and efficient system. The fusion of these technologies aims to 
optimize resource utilization, reduce wastage, and ultimately amplify agricultural yields. This 
synthesis of machine learning, AI, and IoT, while taking cues from existing research, offers a fresh 
perspective and solution to the complexities of modern-day agriculture. 
 
 
3. METHODOLOGY  
 

The methodology employed in this research is bifurcated into two primary segments: the 
integration and functioning of the IoT hardware and the development and deployment of the 
Machine Learning model. These components work synergistically to ensure efficient data 
collection, analysis, and dissemination of information through a user-friendly web interface. 
Figure 1 shows the overall block diagram of the system. Figure 1 shows the overall block diagram 
of the system.  
 

 
Figure 1: Block diagram of the system. 
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3.1 IoT Hardware Integration and Data Collection 
 
This research employs a comprehensive IoT-based approach to collect and transmit critical 
agricultural data. At the heart of this system is the ESP8266 module. Programmed using the 
Arduino IDE, this module connects wirelessly to the internet via its built-in Wi-Fi capabilities. 
 
The NPK sensor, a crucial component, is interfaced with the ESP8266 module. This sensor offers 
real-time monitoring of essential soil nutrients, namely nitrogen, phosphorus, and potassium. By 
doing so, it provides insights crucial for understanding plant growth and health dynamics. 
 
Parallelly, the DHT11 sensor is integrated into the system, which is responsible for gauging 
temperature and humidity. This sensor continuously records environmental conditions, 
presenting data indispensable for accurate plant health assessments. Connected to a 
microcontroller, the DHT11 ensures regular retrieval and transmission of these environmental 
parameters. 
 
Data from both sensors is systematically collected by the ESP8266 module and transmitted via 
HTTP POST requests to an Apache-hosted web server. Once this data is successfully uploaded, it's 
stored in a MySQL database, setting the stage for subsequent analysis and machine learning 
applications. 
 
3.2 Machine Learning Model  
 
Our methodology was rooted in the comprehensive data collection phase that spanned two 
weeks. During this time, sensors diligently recorded data hourly, capturing intricate details that 
would serve as the foundation for our predictive model. With its high granularity, this rich dataset 
was stored in a MySQL database, from where it was fetched for further analysis. 
 
After extracting the data, the initial challenge was handling missing values and ensuring the 
dataset's integrity. We addressed gaps either by statistically imputing these values or, if deemed 
necessary, removing the affected entries. Following this, the numerical data underwent scaling 
and normalization processes to ensure equal treatment of every feature during the predictive 
phase. To amplify the depth of our dataset, we embarked on feature engineering. This process, 
aimed at capturing hidden patterns and relationships, enriched our data further, setting the stage 
for a robust predictive model. 
 
Given the classification nature of our objective—distinguishing parameters like NPK ratios, 
temperature, and humidity into 'Normal' and 'Not Normal' categories—we turned to the Support 
Vector Machine (SVM) classifier. SVM was chosen due to its proven track record in handling linear 
and non-linear data while providing reliable predictions. 
 
Training the SVM was meticulous. Its hyperplanes were calibrated to categorize our parameters 
adeptly. To ensure the model's consistent performance, a cross-validation approach was adopted. 
By splitting our dataset into multiple subsets and cycling through various train-test combinations, 
we could gauge the SVM's reliability and fine-tune its parameters. 
 
Post-training, the SVM predictions were integrated into our web system dashboard. This 
dashboard showcased the results from the SVM classifier and proffered actionable 
recommendations. Whenever a parameter, temperature, humidity, or NPK ratio veered away 
from its optimal range, the system immediately suggested corrective measures. 
 
In essence, our comprehensive methodology, from meticulous data collection to a user-centric 
dashboard, was designed to ensure timely and accurate insights for optimal plant nutrition, 
paving the way for enhanced agricultural productivity. 
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4. RESULTS AND DISCUSSION 
 

Our system was implemented at UniMAP Green House in Padang Besar, Perlis, Malaysia. The 
system was tested for a month at the farm. Figure 2 below shows the system setup at the 
greenhouse.  
 

 
Figure 2: System setup at UniMAP Green House. 

 
The collected data is stored in the database and can be accessed on our web system. The web 
system displays the latest DHT11 and NPK sensor data. Figure 3 below shows the example web 
page from our system. 
 

 
Figure 3: Main web page from the web system. 

  
4.1 Model Evaluation 
 
Utilizing the Support Vector Machines (SVM) for predictions, we conducted a thorough evaluation 
based on the collected dataset. Our results varied across parameters: The model performance on 
temperature, humidity and potassium displayed an impeccable 100% accuracy, evidenced by the 
precision, recall, and F1-score metrics all resting at 1.00. Conversely, the phosphorus and 
nitrogen, standing at 65% accuracy and 86%, revealed challenges, with a significant number of 
misclassifications. In particular, these models struggled to predict instances of nutrient 
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deficiency, underscoring areas for potential refinement in our machine learning system. Figure 4 
below shows the model performance for each data.  
 

 
Figure 4: SVM model performance.  

 
4.1.1 Temperature Prediction Results 
 
Table 1 showcases the results of sensor data after SVM model prediction. The temperatures are 
classified based on a threshold, where a reading between 31 to 35 degrees is classified as  
"Normal". Any deviation from this range prompts a recommended action. For instance, a sample 
showing a temperature below this range suggests an increase in temperature, while those above 
are advised to decrease to bring it within the normal range. 
 

Table 1: Temperature Prediction Results. 
Temperature(°C)  Status Recommended Action 

32 Normal No action required 

28 Not Normal Turn on heater 

40 Not Normal Turn on Fan  

35 Normal No action required 
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4.1.2 Humidity Prediction Results 
 
The humidity data post-processing results are depicted in Table 2. Humidity levels between 70 
and 100% are deemed "Normal". Readings outside this range are labeled "Not Normal", with 
accompanying recommendations to adjust the humidity. Humidity levels that are over 100% are 
classified as abnormal while giving the error action, indicating an error in sensor reading.  
 

Table 2: Humidity Prediction Results. 
Humidity(%)  Status Recommended Action 

70 Normal No action required 

65 Not Normal Irrigation needed 

90 Normal  No action required 

1000 Not Normal Error  

 
4.1.3 Nitrogen Prediction Results 
 
For nitrogen (Table 3), the "Normal" range is set between 50-200 mg/l. Readings falling below 
50 mg/l are flagged as deficient, and the system advises necessary adjustments to increase 
nitrogen levels. Readings exceeding 200 mg/l indicate an excess, and recommendations are made 
to curtail the nitrogen concentration. 
 

Table 3: Nitrogen Prediction Results. 
Nitrogen(mg/l)  Status Recommended Action 

125 Normal No action required 

40 Not Normal 
Nitrogen deficient, increase nitrogen 

concentration 

250 Not Normal 
 Nitrogen excess, decrease nitrogen 

concentration 

200 Normal No action required 

 
4.1.4 Potassium Prediction Results 
 
The SVM model predictions results of potassium sensor analysis (Table 4) indicate that readings 
within the 120-250 mg/l range are classified as "Normal" for potassium. Readings below 120 
mg/l indicate a deficiency and require a system recommendation to elevate potassium levels. 
Similarly, a reading above 250 mg/l indicates an excess and would prompt a recommendation to 
reduce potassium concentrations. 
 

Table 4: Humidity Prediction Results. 
Potassium(mg/l)  Status Recommended Action 

80 Not Normal 
Potassium deficient, increase 

potassium concentration 

175 Normal Irrigation needed 

250 Normal  No action required 

300 Not Normal 
Potassium excess, decrease 

potassium concentration 
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4.1.5 Phosphorus Prediction Results 
 
For phosphorus (Table 5), readings between 20-50 mg/l are deemed "Normal". Results falling 
below 20 mg/l would be considered deficient, and the system would suggest steps to augment 
phosphorus concentrations. Conversely, readings above 50 mg/l indicate an excess, and 
corresponding recommendations will be provided to lower the phosphorus levels.  

 
Table 5: Humidity Prediction Results. 

Phosphorus(mg/l)  Status Recommended Action 

34 Normal No action required 

50  Normal Irrigation needed 

80 Not Normal 
 Phosphorus excess, decrease 

phosphorus concentration 

10 Not Normal 
Phosphorus deficient, increase 

phosphorus concentration 

 

 
5. CONCLUSION 
 

Our AI and IoT-driven fertilizer mixing system, utilizing the Support Vector Machine (SVM) 
algorithm, has displayed varying levels of accuracy across its parameters. With a commendable 
100% accuracy in predicting temperature, humidity, and potassium levels, it underscores the 
system's proficiency in harnessing real-time data from NPK fluid and DHT11 sensors. However, 
the model faced challenges with phosphorus and nitrogen predictions, achieving 65% and 86% 
accuracy, respectively. Despite these impressive results, the system's efficacy remains contingent 
on sensors' reliability, training data quality, and consistent internet connectivity, emphasizing the 
need for careful calibration tailored to diverse agricultural needs. Future improvements are 
evident: incorporating a broader range of sensors, refining the SVM model with diverse datasets, 
engaging with agricultural experts, and integrating real-time weather data will enhance its 
precision and adaptability. As the system evolves, the potential of this AI and IoT combination to 
redefine global farming practices is palpable and promising. 
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