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ABSTRACT 
 

This study aimed to assess suitable water level sensor types and implement the automated 
monitoring of water levels within a Class A pan evaporation system using the Internet of 
Things (IoT). Both analogue and ultrasonic water level sensors underwent testing in 
controlled laboratory conditions for performance analysis. The results showed that the 
analogue water level sensor exhibited suboptimal output sensor responses compared to the 
ultrasonic sensor, primarily due to its susceptibility to variations in solution types and 
immersion depths. In contrast, ultrasonic sensors demonstrated strong performance with 
acceptable error rates, as evidenced by the Mean Absolute Error (MAE) of 1.03, Root Mean 
Squared Error (RMSE) of 1.42, and Coefficient of Determination (R²) of 0.94 during 
laboratory testing. However, the ultrasonic sensor's performance was somewhat reduced 
during field testing, exhibiting accuracy levels ranging from 6.7% to 51.2% within a 
greenhouse environment during rock melon cultivation. These discoveries highlight the 
feasibility of using ultrasonic sensors with environmental calibration to automate real-time 
evaporation measurements towards precision irrigation practices. 

 
Keywords: Ultrasonic sensor, Water level, Internet of Things, Precision irrigation, 
Evaporation 

 
  

1.  INTRODUCTION  
 
The spread of the Internet of Things (IoT) into agricultural fields has received the most excellent 
attention from scholars and farmers. IoT is a system that relates computing devices that connect 
sensors with unique identifiers and can communicate data over a network independently[1] IoT 
has been used in various applications such as crop growth monitoring, plant disease detection 
[2], [3], and irrigation management [4]–[8]. Sensors play a pivotal role in enabling the 
functionality and capabilities of IoT systems. One of the vital sensors for precision irrigation is 
the water level sensor, which has different mechanisms and functions. Sensors enable real-time 
data collection, transforming into actionable insights such as automation, device control, and 
decision support systems [9], [10].  
 
The ultrasonic sensor is explicitly designed for measuring the distance between two points. 
Among the applications of ultrasonic sensors in precision irrigation are measuring water levels 
and object detection[11]. Ultrasonic sensors emit short bursts of high-frequency sound waves 
and measure the time it takes to bounce off an object and return to the sensor. The sensor consists 
of a transmitter that sends sound waves and a receiver that detects the echoes. By detecting the 
duration of wave travel to the object and the subsequent return trip, the sensor can determine 
the distance to the object [12]. Factors like the speed of sound and signal processing techniques 
play a crucial role in achieving accurate distance calculations. Ultrasonic sensors offer the ability 
to measure distances accurately using sound waves, making them suitable for various 
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applications such as object detection, obstacle avoidance, and liquid-level monitoring [11], [13]–
[15]. Precision irrigation leverages water level data to deliver precise amounts of water where 
needed, conserving resources and enhancing crop health. Deep learning, combined with water 
level sensors, enables the creation of predictive models that optimize irrigation schedules based 
on historical data and real-time sensor inputs. By embedding these intelligent systems into 
agricultural practices, the farmer can enhance the efficiency of water usage in agriculture. 
 
Class A pan evaporation is a simple and widely used method to evaluate evaporation from open 
water surfaces. The evaporation and evapotranspiration concept is crucial in irrigation 
management since it depends on seasonal variation and real-time weather conditions. The 
evaporation data from the pan needs to be measured daily for irrigation management and crop 
surveillance. However, monitoring the water level in Class A pan evaporation is quite tiresome 
since the water level inside the pan needs to be monitored daily. Therefore, the present study 
aims to assess the effectiveness and potential of the water level sensor attached to Class A pan 
evaporation using the Internet of Things (IoT) approach. This study is specifically designed to 
achieve the following aims: (1) To assess the impact of analogue water level sensors on various 
solution types and immersion depths, (2) To estimate the performance of ultrasonic sensors at 
different water depth levels, and (3) To evaluate the performance of ultrasonic sensors under 
field conditions. 
 
 
2. MATERIAL AND METHODS  
 

This study used low-cost water level sensors to measure water levels inside Class A pan 
evaporation. Low-cost sensors refer to sensors or devices that are relatively cheap to produce 
compared to conventional sensors. These sensors are more widely available and appropriate for 
a variety of applications because they are made to deliver crucial data and measurements. This 
study was divided into laboratory experiments and field testing at the Institut of Sustainable 
Agrotechnology (INSAT), Universiti Malaysia Perlis (UNIMAP). 
 
2.1 Laboratory Experiment 
 

In the laboratory stage, two water level sensors were evaluated and tested before being selected 
for the water level monitoring system. The first is an analogue water level sensor, and the second 
is an ultrasonic water level sensor (Figure 1). The analogue and ultrasonic water level sensors 
were obtained from local online platforms. The analogue water level sensor has three pins: the 
analogue signal pin, the power pin, and the ground pin. The analogue pin, power pin and ground 
pin of the water level sensor were connected to the analogue pin (A0), 5 V power supply, and 
ground pin of the Arduino Uno microcontroller, respectively. Both sensor data were displayed via 
a serial monitor of the Arduino Uno Integrated Development Environment (IDE) version 1.8.19.  
 
The working mechanism of the analogue water level sensor was based on sensor depth immersed 
in the solution. The tip of the water level sensor was inserted into a 100 mL beaker with different 
solutions at different depths beginning from 10, 20, 30, and 40 mm. The depth selection was based 
on the allowable sensor exposure. The tested solutions used are tap water, distilled water, 
rainwater, lake water, solution with 2.0 electrical conductivity (EC), solution with 4.0 EC, solution 
with 8.0 EC, calibration solution of pH 4.01, calibration solution of pH 6.86 and calibration 
solution of pH 9.18. Tab water and distilled water were obtained from the INSAT laboratory. Lake 
water was obtained from a retained pond in INSAT, while rainwater used was harvested and 
collected one hour before the experiment began. A solution with EC 2.0, 4.0, and 8.0 mS/cm was 
prepared by mixing rock melon fertilizer A and B solutions. After being submerged for about 2 
minutes and achieving equilibrium, the data was recorded every 10 seconds for 2 minutes. Before 
moving to the next solution, the sensor tip was washed with distilled water. 
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Figure 1: Analogue (a) and ultrasonic water level sensor (b). 

 
The ultrasonic sensor (HC-SR04) was tested at the various heights of the sensor to the tap water 
column surface by using a 1000 mL measuring cylinder and measuring tape. The ultrasonic 
sensor data was collected every 4 seconds for 5 minutes for every testing number. The detailed 
setting of the experiment is shown in Table 1 and Figure 2. In this experiment, the original height 
of the ultrasonic sensor was fixed at a constant position throughout the experiment. The range of 
depth selected was based on the maximum and minimum height of the experimental setup. The 
tap water was added until it reached the required depth. Later, the water depth in the measuring 
cylinder and the volume of water added to the measuring cylinder were measured. The ultrasonic 
sensor has four pins: power pin, ground pin, trigger pin, and echo pin. The power pin, ground pin, 
trigger pin, and echo pin of the ultrasonic sensor were connected to the 5V power pin, ground pin, 
digital pin 9, and digital pin 10 of the Arduino Uno Microcontroller, respectively. The trigger pin 
initiates and triggers ultrasonic sound pulses by setting it as high for 10µs. Upon transmission of 
the ultrasonic burst, the echo pin becomes high and stays that way until the sensor gets an echo, 
which turns low. The distance can be determined by timing how long the Echo pin remains high. 
 

Table 1: The detailed setting of the ultrasonic sensor. 
Test No. Depth of Ultrasonic Sensor 

to Water Surface (cm) 
Depth of 
Water (cm) 

The volume of Water in the 
Measuring Cylinder (mL) 

1 43.4 0.0 0.0 
2 42.0 1.4 47.0 
3 39.0 4.4 149.0 
4 35.0 8.4 260 
5 30 13.4 400 
6 20 23.4 690 
7 5 38.4 1137 
8 3 40.4 1197 
9 2 41.4 1227 

10 1 42.4 1257 
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Figure 2: Ultrasonic sensor testing at the laboratory. The components are (1) Ultrasonic sensor, no (2) 

Retort stand, (3) Measuring cylinder, (4) Measuring tape, (5) Arduino Uno microcontroller, and (6) Serial 
monitor. 

 

2.2 Water Level Measurement in Greenhouse 
 

The sensors were attached to the Class A pan evaporation in the field test, as shown in Figure 3. 
The Class A pan evaporation was installed inside a greenhouse at the Institute of Sustainable 
Agriculture (INSAT), Universiti Malaysia Perlis, Padang Besar, Malaysia (6o39’15.78” N, 
100o15’51.21” E). Before the experimental setting, the ground surface was levelled using an 
aluminium water level. Class A pan evaporation with a standardized container (stainless steel, 
1207 mm diameter, 250 mm height) was placed on the wooden pallet at a height of 50 mm from 
the ground surface. The data was taken during rock melon var Glamour (Cucumis melo) 
cultivation between March and May 2023. The Class A pan is positioned at the frontal edge inside 
the greenhouse, adjacent to the rock melon cultivation area. 
 
The system monitored and collected the water level, water temperature, indoor ambient relative 
humidity, outdoor ambient relative humidity, indoor ambient temperature, outdoor ambient 
temperature, and light intensity (LDR) data. Water level, water temperature, and LDR data were 
measured by ultrasonic sensor, DS18B20 temperature sensor, and LDR sensor, respectively, 
while ambient temperature and relative humidity were measured by DHT22 sensor. Later, the 
data is stored on the ThingSpeak™ IoT platform via the ESP8266 Wi-Fi module attached to the 
Arduino Uno Microcontroller. The internet connectivity was based on an Umobile sim card 
connected to the wireless router. The water level data inside the Class A pan was manually 
measured using J-Hook daily at 10:00 a.m. The water level was allowed to fluctuate between 50 
mm (minimum level) and 70 mm (maximum level) depth from the pan top. If the water level 
drops below the maximum level, the water from the storage tank is filled into the Class A pan until 
it reaches the minimum level.  
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Figure 3: Class A pan evaporation with IoT devices (a) and rock melon plant at 50 days of planting (b). 

2.3 Statistical Analysis and Data Visualization 
 
The data on water level was subjected to a non-parametric test (IBM SPSS Statistic Version 25) 
using the Kruskal-Wallis test since the normality assumptions were not met[16]. A pairwise 
comparison analysis between groups was performed if significant differences were detected. The 
significant level was set at a 95% confidence level (p=0.05). The data was plotted using Microsoft 
Excel and R programming language. 
 
 

3. RESULTS AND DISCUSSION 
 
3.1 Effect of Immersion Depth and Type of Solution on Analog Sensor Output 
 
Figure 4 shows the trends of analogue sensor reading on different solution types. The solution 
tested can be classified into three classes. Class I as fresh water (tap water, distilled water, 
rainwater, and lake water), Class II as fertilizer solution (Solution with 2.0, 4.0, and 6.0EC) and 
Class III as acidity water (solution with pH 4.01, 6.86, and 9.18). The analogue sensor gives a 
positive sensor reading response when immersed in distilled water at different depths. The 
variation of sensor reading can be seen clearly with a significant increasing trend from 10 mm to 
40 mm. Although tap water showed an increasing reading trend with increasing immersion 
sensor depth, the sensor reading is insignificant from each depth setting. Other Class I of the 
freshwater category majority showed insignificant fluctuation of sensor reading for each depth 
setting (see Table 2).  
 
The analogue water level reading on Class II of fertilizer solution reveals that electrical 
conductivity concentrations influenced the sensor reading. The analogue sensor values for three 
fertilizer solutions vary between 600 and 650 mV when tested at 4 different depths. The result 
also discloses that the hydrogen ion concentration in a solution influences the analogue sensor 
reading. Interestingly, the sensor reading showed the lowest value (400 mV) compared to other 
water classes but the highest at approximately 600 mV. Table 3 represents the correlation matrix 
for different solutions. In general, different types of solutions will influence the sensor reading. 
This experimental testing shows that the chemical properties of water and the immersion depth 
influenced the output of the analogue sensor. The analogue water level sensor has five exposed 
copper and five exposed sense traces. When immersed in the solution, power and sense traces 
are connected. The sensor's conductivity improves, and resistance decreases with increased 
water immersion. Conversely, reduced water immersion leads to decreased conductivity and 
increased resistance. We suggested that for water level reading in the class A pan, the water level 
sensor selected and used in the water level monitoring system is the contactless water level 
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sensor type since the water used in the class A pan is tap water or rainwater for ease of handling 
by the practitioner. 
 

 
 

Figure 4:  Sensor reading trends on different solution types 

 
3.2 Performance of Ultrasonic Sensor 
 
Figure 5 presents the ultrasonic sensor's estimated and actual reading with the 1:1 line. The 
plotting point between both readings demonstrated good fitting with the coefficient of 
determination (R²) of 0.94, suggesting that the estimated readings can explain about 94.0% of the 
variance in the actual readings. However, the last reading shows poor fitting to the straight line. 
The mean absolute error (MAE) is approximately 1.03 from the performance parameter. This 
means, on average, the estimated readings are off by about 1.03 units from the actual readings. 
The absolute error percentage (AEP) ranges from approximately 0.00% to 360.00%. A 
percentage above 100% indicates that the estimated reading was off by more than the actual 
reading. The root means squared error (RMSE) is 1.42, which shows the average magnitude of 
errors between estimated and actual readings. The estimated readings have an average 
percentage error of about 39.69% compared to the actual readings based on mean absolute 
percentage error (MAPE).  
 

The mean percentage error (MPE) for this data set is approximately -34.31%. This indicates that, 
on average, the estimated readings have a negative percentage error of about 34.31% compared 
to the actual readings. A negative MPE suggests that the model tends to underestimate the actual 
values on average. Although the coefficient of variation (CV) indicates that the standard deviation 
is about 99.96% of the mean, which suggests a relatively high degree of variability in the data, it 
only consists of one point of the data set (at 10 mm). A mean signed deviation (MSD) of 0.25 
represents the average signed difference between the estimated and actual readings. Positive 
values indicate that the estimates are, on average, higher than the actual readings, while negative 
values indicate that the estimates are lower. The median absolute deviation (MAD) indicates the 
dispersion or spread of the errors. A smaller MAD shows lower variability, while a larger MAD 
suggests greater variability. In this study, a MAD of 0.85 indicates that the average absolute 
difference between the estimated and actual readings is around 0.85 units. Overall, the results 
showed that the ultrasonic sensor excellently performs and gives accurate readings in laboratory 
conditions. The position of the ultrasonic sensor should be kept in mind so that it is not placed 
too close or approximately 10 mm or 20 mm [17] from the water level surface. 
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Figure 5: Estimated and actual reading from the ultrasonic sensor with a 1:1 line. MAE is mean absolute 
error, AEP is absolute error percentage, RMSE is the root mean squared error, R2 is coefficient of 

determination, MAPE is mean absolute percentage error, MEP is mean percentage error, CV is coefficient 
of variation, MSD is mean signed deviation, and MAD is a median absolute deviation. 

 
3.3 Real-time Data Monitoring by Using IoT 
 

Figure 6 displays the real-time data on water level and environmental parameters on the selected 
date.   The IoT approach can monitor the water level data, including environmental parameters, 
in real-time. The greenhouse's indoor temperature (maximum 49.4 oC, minimum 20.2 oC) is 
higher than the outdoor temperature (maximum 46.8 oC, minimum 18.9 oC). The greenhouse's 
mean relative humidity (69.9%) is lower than the mean outside relative humidity (77.5%). The 
greenhouse structure causes the inside temperature to be higher and relative humidity to be 
lower than the outside temperature and relative humidity. The changes in inside and outside 
environmental parameters influence the evaporation rate of water inside Class A pan. The water 
temperature shows the pattern of temperature changes at daylight and night. Water temperature 
increases steadily at around 8:00 a.m. and peaks at about 5:00 p.m. Then, the water temperature 
decreases steadily until approximately 7:00 a.m. the next day. The LDR values represent the 
daylight and night changes during the growing season. The LDR sensor can also be attached to 
the plant to sense the leaf growth performance in the different growing stages [18]. 
 
The water level data inside the Class A pan indicates the changes over time. Water level data is 
converted to the drawdown values to reflect the amount of evaporated water. By considering the 
actual daily values recorded from J-hook, it was found that the percentage error of the system 
varied between 6.7% and 51.2% based on the dates of 31 March 2023, 02 April 2023, and 14 April 
2023. The accuracy of the ultrasonic sensor can be increased if the view angles can be considered 
during data collection[19]. Although the use of ultrasonic sensors in the laboratory is accurate, 
the performance of ultrasonic sensors in an open environment could be considered moderate. 
The result is acceptable since the use of ultrasonic sensors in the open field is influenced by 
obstacles such as wind speed, temperature, and relative humidity, which could affect the 
response of ultrasonic waves. Correcting water level data with ambient temperature gives more 
accurate results [13], [20]. This study provided valuable information on the fundamental 
understanding of low-cost sensors to monitor water levels inside a Class A pan for evaporation 
measurement. The proposed monitoring system can observe water levels and environmental 
parameters in real time. However, the result of this study is confined to greenhouse conditions 
and low-cost ultrasonic sensors (HC-SR04) during the dry season.  
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4. CONCLUSION 
 

In this study, an effort was made to monitor the water level inside Class A pan evaporation 
through IoT. The developed system could detect the water level and capture the environmental 
data for further analysis. The direct contact distance sensor type immersed in liquid should 
consider the liquid properties that may influence the sensor reading. Although the performance 
of the ultrasonic sensor in the controlled environmental setting is excellent (coefficient of 
determination (R²) is 0.94, Mean Absolute Error (MAE) is 1.03, and Root Mean Squared Error 
(RMSE) is 1.42), the application of ultrasonic sensors in the open field or greenhouse needs to 
consider the factors that disturb ultrasonic waves, such as wind speed, ambient temperature, 
humidity changes, water temperature, water surface conditions, and interference. An ignorance 
of the mentioned factors reported in this study caused the accuracy of using the tested sensor to 
vary from 6.7% to 51.2%. The user must also note the ultrasonic sensor's working distance range 
since the specific sensor has a limited effective range. This study suggests that the ultrasonic 
sensor deployment at the field crop required environmental calibration specifically for the tested 
environment. Appropriate calibration and signal processing techniques ensure accurate and 
reliable water level measurements, influencing the strength of transmitted and returning signals. 
Water contamination, maintenance issues, and electrical safety significantly affect contact water 
level sensors. However, selecting the suitable sensor for smart farming projects depends on 
specific sensor limitations and considerations. 
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Table 2: Effect of analogue sensor reading on the different depths of submerged sensor tip on the same solution. 
 

Solution Depth (mm)  Chi-Square (df) p* 
10 20 30 40 

Tap water 535.00(2.00)a 573.50(7.00)ae 594.50(2.00)be 603.00(1)cbd 29.36(3) < 0.001 
Distilled water 440.50 (47.50)a 514.50 (18.00)abd 568.00 (34.5)bc 633.00(5.25)ce 29.12(3) < 0.001 
Rainwater 657.00(16.00)a 672.50(5.50)b 663.50(7.00)abc 637.50(13.50)ac 17.87(3) < 0.001 
Lake water 584.50(22.25)ab 593.00(22.25)bd 593.00(1.75)ad 612.00(5.25)bc 20.00(3) < 0.001 
Solution with 2.0 EC 625.50(10.00)a 643.00(13.00)bd 628.00(8.50)acd 625.50(4.50)ac 17.74(3) < 0.001 
Solution with 4.0 EC 599.50(5.25)a 617.00(7.25)ab 635.5(7.25)b 635.5(5.25)cb 26.31(3) < 0.001 
Solution with 8.0 EC 600.50(8.00)a 633.00(6.50)ab 649.00(4.25)b 649.00(4.25)cb 26.34(3) < 0.001 
Calibration solution of pH 4.01 493.50(9.00)a 546.5(12.00)ad 559.00(7.00)cbd 587.00(2.00)c 28.08(3) < 0.001 
Calibration solution of pH 6.86 392.00(11.25)a 447.50(27.75)abc 476.00(30.75)bc 481.50(18.50)c 22.57(3) < 0.001 
Calibration solution of pH 9.18 429.00(2.75)ac 452.50(10.00)cb 452.50(10.00)cb 556.00(45.50)b 26.62(3) < 0.001 

The sensor values are represented by median and interquartile range values in brackets. The sensor values with the same alphabet in the row are 
insignificant. p* was obtained from the Kruskal-Wallis test. df is the degree of freedom. 
 

Table 3: Correlation matrix for different solutions 
 

 Solution Types TW DW RW LW 2EC 4EC 8EC 4pH 6pH 9pH 

Tap Water (TW) 1                   
Distilled Water (DW) .920** 1                 
Rainwater (RW) -0.117 -0.241 1               
Lake Water (LW) .731** .757** -0.126 1             
Solution 2EC (2EC) -0.167 -0.158 .509** -0.225 1           
Solution 4EC (4EC) .811** .889** -0.134 .502** 0.093 1         
Solution 8EC (8EC) .854** .802** -0.191 .489** -0.15 .763** 1       
Solution 4pH (4pH) .890** .947** -0.243 .726** -0.049 .885** .789** 1     
Solution 6pH (6pH) .726** .862** -0.137 .551** 0.185 .952** .697** .888** 1   
Solution 9pH (9pH) .805** .903** -0.168 .758** 0.105 .820** .669** .912** .873** 1 

** Correlation is significant at the 0.01 level (2-tailed)
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Figure 6: Trends of water level and environmental parameters on selected dates. 
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