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ABSTRACT 
 

Thermal management is essential in electronic components and devices. Overheating of the 
component leads to malfunction. This study investigates the effects of velocity and heat flux 
on the Plastic Leaded Chip Carrier (PLCC) during the thermal cooling process via 
simulation analysis. Computational fluid dynamics software simulated the cooling process 
of PLCC. The size of the PLCC used is 2.72 cm × 2.72 cm × 0.38 cm. The effect of heat flux 
and velocity on temperature distribution, flow pattern, and pressure distribution was 
studied. The findings indicated that as the approach air velocity increased, the 
temperature of the packages decreased. The result also shows that the static pressure 
decrease along with the package when the air velocity increases. The simulation results are 
expected to understand better the cooling process of PLCC in the thermal management of 
electronic components and devices.  
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1.  INTRODUCTION  
 
The electronic industry is currently focused on making products smarter, lighter, and smaller 
while reducing heat [1]. This trend necessitated the establishment of stringent packaging 
standards. In electronic packaging, thermal management is a critical issue. When temperatures 
exceed 70oC, electronic components comprised of a silicon chip and an organic substrate 
generate heat. This issue can be resolved by limiting the distance between PLCCs. Two PLCCs 
were simulated and evaluated in a small wind tunnel. A gap of 0 cm, 1.5 cm, and 3.0 cm between 
Power line carrier communication (PLCC) was determined to be appropriate [2]. When 
electronic components are operated continuously for an extended period, the chip temperature 
can easily exceed 70oC. This condition may cause electronic components to become damaged or 
overheated. That is why, more than three decades ago, a large number of researchers began 
studying thermal management. 
 

Plotnik and Anderson [3] and Tucker and Paul [4] used computational fluid dynamics to 
optimize heat transfer in electronic devices. Chen and Wang [5] investigated laminar and 
turbulent forced convective flows across two sequentially heated blocks mounted on a single 
principal channel wall. Hong and Yuan [6] demonstrated that variation in the local heat transfer 
coefficient significantly affects the local temperature distribution. Hung and Fu [7] created a 
two-dimensional model to simulate viscous laminar flow, mixed convection, and conjugated 
heat transfer between parallel plates on an integrated circuit board. For electronic packages, the 
conjugate issue is critical. Jayakanthan et al. [8] used FLUENTTM to simulate conjugate heat 
transfer in a wind tunnel between single and dual packages mounted on a PCB. Other 
researchers built on this work by simulating multiple chips with a two-dimensional model.  
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As demonstrated by Tso et al. [9], Young and Vafai [10], and Kim and Kim [11], there has been 
continued interest in determining junction temperature and thermal resistance.  
 
The electronic industry expanded rapidly in 2007 as a result of advancements in electronic 
packaging and nanotechnology. Yusof et al. [12] investigated the packaging of PLCCs using two 
packages. Mazlan et al. [13] enhanced the previously published study on PLCC electronic 
packaging. They investigated the effect of PLCC packages by varying the air inlet velocity and 
chip power. Chip temperature is affected by various factors, including coolant velocity, chip 
power, and PLCC gap. The objective was to dissect the execution of two PLCC bundles mounted 
on a PCB in a couple of different configurations. The numerical simulations were performed in 
three dimensions using FLUENT 6.3 [14]. The experiments were conducted using an air 
chamber equipped with a spout at various airspeeds to replicate the constrained convection 
warm exchange phenomena. By varying the chip control, dividing the bundles, and approaching 
airspeeds, parameters such as intersection temperature, warm resistance, and top surface 
averaged Nusselt number have been considered for each bundle. The simulation model utilized 
an air chamber with a nozzle that exhausted uniform air velocity flow over two Plastic Leaded 
Chip Carriers (PLCC). The PLCC used is 2.72 cm × 2.72 cm × 0.38 cm in size. This dimension is 
comparable to the ones employed by Ramadhyani et al. [15]. The motherboard and two PLCCs 
were symmetrically placed in the air chamber. 
 
In the current study, the cooling of the PLCC package was considered for the thermal analysis. 
The simulation was conducted by the computational fluid dynamics (CFD) method. Two 
independent parameters, which are inlet velocity and heat flux, were investigated. The inlet 
velocity ranged from 1-5 m/s, and 100-500 W/m2 for heat flux were applied to the simulation. 
The results of pressure and temperature were studied in the analysis.  
 
 
2. MATERIAL AND METHODS  
 

The initial phase in CFD recreation of the warm execution is a preprocessor. SOLIDWORKS was 
employed to draw the model, plan the issue in geometric arrangement, and work the geometry. 
Before the liquid stream issues can be fathomed, it needs the space in which the stream happens 
to assess the arrangement. CFD software has made the liquid spaces and the network era in a 
particular area. FLUENT has been utilized to build the geometry of the tube-shaped with sought 
measurements. Three-dimensional geometry has been made and coincided with shaping the 
framework. In the 3D model, the tetrahedral fitting has been finished with components, as 
appears in Figure 1. The velocity-inlet, pressure-outlet, wall, and default interior have been 
defined. The grid was then exported as a mesh file for further simulation. 
 
 

 
Figure 1: Geometry and mesh of PLCC packages. 
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The CFD solver does the stream estimations and techniques for the coveted outcomes. Familiar 
uses the limited volume strategy to comprehend the representing conditions for a liquid. It can 
utilize diverse physical models, for example, incompressible or compressible, inviscid or thick, 
laminar or turbulent [16]. Because administering conditions are non-straight and coupled, the 
solver performs several emphases on the arrangement circle before acquiring a unified 
arrangement, and the fundamental elements of the solver are based on the approximation of 
unknown flow variables using simple functions. Discretization is accomplished by substituting 
the approximation into the governing flow equations and subsequently manipulating the 
governing flow equations mathematically. The airflow was assumed to be laminar flow, 
incompressible and steady. The computation in the fluid domain for this study involves 
numerically solving Navier-Stokes equations. The mass conservation equation, also known as 
the continuity equation [17], is given by 
 
Continuity equation:  
 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                                                                                   (1) 

 
where u, v and w are the velocity vector in x, y and z directions, respectively. The momentum 
equations for Newtonian fluid in three dimensions are given by 
 
Momentum equation: 
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where 𝜌 is the fluid density, P is the static pressure, and 𝜇 is the fluid viscosity. The energy 
equation that computes the heat generation and transfers in a non-isothermal environment is 
given by 
 
Energy equation 
 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢 ∙ ∇𝑇) = ∇(𝑘∇𝑇)                                                                                                (𝟓) 

 
where k is the thermal conductivity,  𝐶𝑝is the specific heat, and T is the temperature. 

 
 
The boundary condition of the structural model has been defined at the bottom surfaces of the 
PLCC packages. All side surfaces were defined as the wall boundary other than the side inlet for 
velocity inlet entering from the x-axis and side outlet for pressure outlet. Inside the domain is 
fluid as the cell zone condition. Figure 2 shows the boundary conditions of the domain and the 
packages. 
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Figure 2: Boundary conditions. 

 
 
3. RESULTS AND DISCUSSION 
 

Figure 3 shows the relationship between the four packages' static temperature and heat flux. 
Generally, the results show that the temperature increases with heat flux. This situation 
indicates that high heat flux produces a high temperature. Amongst the PLCC package, PLCC 4 
has the highest temperature. The static temperature of the PLCC 1-4 increases linearly when the 
heat flux rises by 100 W/m2. The static temperature of PLCC 1 is lower because the air velocity 
hits it first after the air flows into the inlet. The air velocity entered and carried the heat away 
from the packages of PLCC 1 to PLCC 4. PLCC 2-4 increases due to less heat being carried away 
by the airflow in the cooling process. This phenomenon is clearly observed in the static 
temperature simulation contour (Figure 4). 
 
 

 
 

Figure 3: Variation of the static temperature of four packages with different heat fluxes. 
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Figure 4: Contour of static temperature. 

 
 
The air velocity is higher when entering the domain and spreads before it flows through the 
PLCC package. Figure 5 shows that PLCC 1 has the highest air velocity. The space between the 
PLCC has the lowest air velocity. The air velocity flowing through PLCC 1 is reversed back due to 
the frontal pressure at the packages. Therefore, less air velocity passes through PLCC 2 and 
increases again when it passes through the outlet. PLCC 4 has high velocity because the airflow 
through the surrounding is collected before throughout the packages. Figure 5 illustrates the 
velocity vector coloured by the air velocity.  
 
 

 
Figure 5: Velocity vectors coloured by the air velocity. 

 

 
The rise of heat flux value crucially affects the temperature on the PLCC package. The significant 
effect of the heat flux can be observed in Figure 6 on the temperature contour. The results from 
two heat fluxes with similar inlet velocity were compared in Figure 6. The results show that 
both results have a similar temperature contour. However, the temperature value is higher for 
500 W/m2 of heat flux. Pressure and temperature contours were presented for 100 and 500 
W/m2 of heat flux. The static pressure with the different air velocities in the range of 1 to 5 m/s 
is presented in Figure 7. The results show that the static pressure decreased along with the 
PLCC package. The front region of the PLCC package experiences higher pressure due to the 
direct hitting from the airflow. However, the heat flux does not affect the pressure contour on 
the PLCC package. In Figure 7, the pressure value varied due to the changes in inlet velocity.  
 
The pressure acting on the PLCC package decreased when the airflow through along the 
package (Figure 8). Figure 9 shows the relationship between the static temperature and the air 
velocity. The highest static temperature is PLCC 4, while the lowest is PLCC 1. Generally, the 
temperature decrease with the increase of velocity. The results show that all packages have 
decreased in temperature value in increasing the velocity.  
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Figure 6: Contour of the PLCC packages on the air velocity of 1 m/s and heat flux of 100 and 500 w/m². 
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Figure 7: Contour of the PLCC packages at a heat flux of 100 w/m² and air velocity of 1 and 5 m/s. 
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Figure 8: Variation of the static pressure of PLCC packages with different air velocities. 

  
 

 
Figure 9: Variations of the static temperature of  PLCC packages with different air velocities. 

 

 
4. CONCLUSION 
 

The effect of heat flux and inlet velocity on the PLCC packages has been studied. The static 
temperature and pressure were investigated by increasing the heat flux. The thermal 
characteristics of PLCC packages are influenced by the heat source on the plate surface as well 
as the air velocity passing through the PLCC. The effect of air velocity on the temperature of the 
PLCC packages during the cooling process is related to the temperature of the packages. The 
increase in air velocity may carry more heat away from the PLCC packages, lowering the 
component's temperature. The results revealed the linear behaviour of the temperature and the 
heat flux of PLCC. The investigation of the thermal performance of the PLCC packages may be 
extended to different designs, arrangements, and sizes. This CFD simulation analysis is expected 
to explain the cooling of the PLCC package.  
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