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ABSTRACT 
 

Optimizing fertilizer application is essential for enhancing crop yield and minimizing the 
environmental impact of precision agriculture. This study presents a comparative analysis 
of XGBoost and NGBoost for predicting the amount of NPK fertilizer added, focusing on 
model performance and uncertainty estimation. The dataset collected from the Harumanis 
mango orchards included key soil parameters, such as nitrogen, phosphorus, potassium, pH, 
EC, soil moisture, temperature, and rainfall. The methodology involved data preprocessing, 
feature scaling, and model training using XGBoost and NGBoost. XGBoost, a gradient 
boosting model, provides highly accurate deterministic predictions, whereas NGBoost, a 
probabilistic model, quanti�ies the uncertainty in the predictions. Model performance was 
evaluated using R², MAE, RMSE, and Negative Log-Likelihood (NLL). The results indicate 
that XGBoost outperforms NGBoost in accuracy, achieving R² = 0.9984, MAE = 2.0388, and 
RMSE = 2.7618, whereas NGBoost provides uncertainty estimation but with slightly lower 
accuracy (R² = 0.9909, MAE = 4.9620, RMSE = 6.5654, and NLL = 2.6001). Further analysis 
included residual plots, prediction error plots, learning curves, and validation curves to 
assess the reliability and generalization of the models. These �indings suggest that, while 
XGBoost is ideal for deterministic NPK prediction, NGBoost offers probabilistic insights that 
aid in the development of risk-aware fertilization strategies. This study contributes to data-
driven precision agriculture by enhancing fertilizer management ef�iciency and 
sustainability. 
 
Keywords: Fertilizer prediction, XGBoost, NGBoost, Precision agriculture, Soil nutrients.  
 

 
1.  INTRODUCTION  
 
Precision agriculture plays a transformative role in enhancing fertilization management by 
integrating advanced technologies to optimize both nutrient use ef�iciency and environmental 
sustainability. At its core, precision agriculture employs technologies like proximal and remote 
sensor surveys to monitor variations within �ields, allowing for the targeted application of 
fertilizers based on site-speci�ic conditions. This approach is crucial in matching nutrient 
application to the precise needs of crops at speci�ic locations, minimizing the risk of nutrient 
leaching and accumulation, which can lead to environmental issues [1]. 
 
The practice of precision agriculture involves using advanced technologies such as GPS, GIS, and 
variable rate technology (VRT) to ensure accurate fertilizer application. These technologies 
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enable precise mapping and management of �ield variability, resulting in improved nutrient use 
ef�iciency. By applying the correct amount of nutrients where they are needed most, this approach 
not only enhances crop production but also mitigates the excessive use of fertilizers that can harm 
the environment [2, 3]. 
 
The adoption of smart sensors and IoT in precision agriculture offers real-time monitoring and 
data-driven decision-making capabilities. This integration allows farmers to make informed 
decisions about nutrient application, thereby improving nutrient use ef�iciency (NUE) and 
reducing waste. Real-time nitrogen sensing, in particular, enables precise nitrogen management, 
which is pivotal in promoting sustainable agriculture and reducing the environmental footprint 
of farming practices [4, 5]. The application of precision agriculture is not without challenges. The 
effective implementation of these technologies requires investments in equipment and training, 
as well as overcoming data management issues. Despite these challenges, the strategic use of 
precision agriculture technologies holds signi�icant promise for improving agricultural 
productivity while maintaining ecological balance [6]. 
 
Gradient boosting techniques, particularly XGBoost, have gained signi�icant attention in various 
prediction tasks due to their high accuracy and robustness. However, as deterministic models, 
they lack the ability to provide uncertainty estimates, which can be a limitation in contexts like 
agronomy where decision-making under uncertainty is crucial. This is where NGBoost, a natural 
gradient boosting technique, shows promise by offering probabilistic predictions. 
 
XGBoost has been employed successfully in several studies. For instance, it outperformed other 
models in predicting shear strengths of rock�ill materials by achieving the highest prediction 
performance metrics, indicating its reliability in various engineering applications [7]. Similarly, it 
has been used effectively in estimating urban water levels and ice phenomena prediction due to 
its robustness and ability to utilize large datasets ef�iciently [8, 9]. Its integration with other 
techniques, like evolutionary algorithms, further enhances its predictive accuracy in complex 
tasks [9]. 
 
NGBoost offers a different approach by directly producing probabilistic predictions, which allow 
for estimating prediction uncertainties. This feature makes NGBoost particularly suitable for 
applications where understanding the uncertainty of predictions is as important as the 
predictions themselves. A study on predicting the California bearing ratio (CBR) values 
demonstrated NGBoost’s ability to provide reliable con�idence intervals, thereby offering a 
comprehensive view of prediction reliability [10]. Furthermore, its application in structural 
engineering showed it could achieve comparable mean prediction accuracy levels to other 
machine learning algorithms while providing robust uncertainty estimates [11]. 
 
XGBoost remains a powerful tool for deterministic predictions with high accuracy, while NGBoost 
signi�icantly contributes to areas where capturing the uncertainty of predictions is critical. This 
makes NGBoost a valuable asset in �ields like agronomy, where decision-making must often 
contend with variable environmental conditions and inherent uncertainties. 
 
This study aimed to compare the performance of XGBoost and NGBoost in predicting the amount 
of NPK fertilizer added using soil parameters such as pH, EC, moisture, temperature, and rainfall. 
The evaluation includes traditional performance metrics (R², MAE, RMSE) and uncertainty 
quanti�ication through Negative Log-Likelihood (NLL). By integrating explainable AI techniques 
and visualization tools, this study provides insights into model reliability, uncertainty estimation, 
and practical implications for precision agriculture. 
 
Research Objectives:  
1. To evaluate the predictive performance of XGBoost and NGBoost for added fertilizer 

prediction. 
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2. To analyze uncertainty estimation using NGBoost in the context of soil nutrient variability. 
 
A comprehensive model assessment was performed using visualization tools, such as residual 
plots, prediction error plots, learning curves, and validation curves. The �indings of this study will 
help farmers and agronomists make informed fertilization decisions, thereby reducing costs and 
minimizing the environmental impact. Furthermore, it contributes to data-driven precision 
agriculture by integrating machine learning and uncertainty-aware models for sustainable 
fertilizer management. 
 
 
2. Methodology 

 
2.1 Data Collection 

 
Soil nutrient data were obtained from two primary sources: the Harumanis tree Orchard A data 
collected at Orchard A (Muzium Mempelam, Kuala Sala, Department of Agriculture Kedah 
(5°58’05.5 “N 100°24’05.1” E)) and data collected from an Orchard B (Individual Orchard at Guar 
Nangka in Perlis (6°28’34.4 “N 100°17’05.7” E)). This is followed by a comprehensive 
presentation of the laboratory test data, which provides analysis results that complement the 
sensor data and ensure the reliability and accuracy of the �indings. Data collection at Muzium 
Mempelam, Kuala Sala, and Kedah for this study involved monitoring 24 Harumanis trees 
distributed across six sampling points within an area of 14,850 square feet. Sampling was 
conducted daily from 7:00 AM to 3:00 PM, resulting in 30,816 data samples. Each day, eight data 
samples were collected, with one data sample being the average of six subsamples taken at �ive-
minute intervals. This intensive sampling regimen ensured comprehensive data coverage of the 
nutritional status and environmental conditions of the trees. 
 
2.2 Data Preprocessing 

 
Data preprocessing is a critical step in preparing datasets for machine learning models and 
involves several key techniques, including handling missing data, detecting and removing outliers, 
normalization and scaling, and feature engineering. 
 
Missing data can signi�icantly affect the performance of machine learning models. Various 
imputation techniques are employed to address this issue, such as random sample (RS) 
imputation and one-hot encoding methods. These techniques �ill in the gaps in datasets to 
maintain the integrity of the model. For instance, in scenarios with high missing rates, one-hot 
encoding has proven to be effective, demonstrating robustness and accuracy [12]. Another 
approach is the cyclical hybrid imputation technique, which combines row-based and column-
based imputation techniques to handle missing data effectively. This method has shown promise 
in increasing model accuracy when tested on multiple datasets [13]. 
 
Outliers can be identi�ied using various methods, such as sliding window techniques, which detect 
anomalies by identifying values that fall outside a normal pattern distribution [14]. Another novel 
approach for outlier detection involves using Gaussian mixture models for cellwise detection, 
which allows for the identi�ication and imputation of contaminated cells rather than discarding 
them, thereby preserving valuable information [15]. 
 
Normalization and scaling are vital for improving the convergence and stability of machine 
learning models. The choice between standardization and normalization can depend on the 
dataset size and the machine learning algorithm used. For instance, normalization has been 
shown to enhance the performance of linear models on smaller datasets, whereas standardization 
is more bene�icial for larger datasets with linear models [16]. Moreover, robust scaling techniques, 
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such as LSBZM normalization, speci�ically tailored for time series data, can address issues like 
skewness by applying a combination of transformations to ensure uniform scaling [17]. 
 
Feature engineering involves creating new variables that enhance the predictive power of a 
model. This can include deriving additional variables like NPK decay over time or cumulative 
rainfall impact to provide the model with more informative features. The systematic review of 
feature selection methods suggests using advanced techniques like metaheuristics and hyper-
heuristics to improve the model’s performance by ef�iciently reducing the dimensionality of the 
dataset and eliminating redundancy [18]. 
 
Each of these preprocessing steps enhances the model’s ability to learn from the data effectively 
by addressing issues related to data integrity, scale, and feature relevance, ultimately leading to 
more accurate and reliable predictions. 
 
2.3 Target Variable 
 
The target variable, also known as the dependent or response variable, is the variable that the ML 
model aims to predict or explain based on input features. In the context of NPK prediction for 
Harumanis Mango cultivation, the target variable is typically the amount of fertilizer (NPK) 
nutrients added to the soil. 
 
The target variable is essential in training the ML model, as it serves as the benchmark against 
which the model’s predictions are evaluated. The model learns from the input features to predict 
the target variable. For example, in a regression problem, the target variable may be the actual 
measured levels of NPK nutrients in the soil, and the model aims to predict these levels based on 
the input features. 
 
It is important to choose the target variable carefully to ensure that it accurately represents the 
phenomenon of interest and is measurable and relevant to the research objectives of this study. 
In soil NPK prediction, the target variable should ideally re�lect the actual levels of NPK nutrients 
in the soil, which is crucial for effective crop management and agricultural decision-making. 
Using this methodology, a systematic approach was presented to predict and manage the levels of 
NPK in the soil over a 14-day period [12]. This process involved measuring the initial NPK levels 
in the soil, denoted as ( 𝐴𝐴 ), and then using decay equations to estimate the amount of each 
nutrient remaining after 14 days. 
 
The decay of each nutrient was modelled using the following equation: 
 

[𝑁𝑁14 = 𝑁𝑁initial × 𝑒𝑒−𝑘𝑘𝑁𝑁×14]   (1) 
[𝑃𝑃14 = 𝑃𝑃initial × 𝑒𝑒−𝑘𝑘𝑃𝑃×14]  (2) 
[𝐾𝐾14 = 𝐾𝐾initial × 𝑒𝑒−𝑘𝑘𝐾𝐾×14]  (3) 

 
where Equations (1), (2), and (3) represent the amounts of NPK remaining after 14 days, 
respectively. (𝑘𝑘𝑁𝑁), (𝑘𝑘𝑃𝑃), and (𝑘𝑘𝐾𝐾)are the decay constants for each nutrient. 
 
The total target amount of NPK after 14 days, denoted as ( 𝐵𝐵 ) equation (4), is the sum of the 
remaining amounts of each nutrient: 
 

[𝐵𝐵 = 𝑁𝑁14 + 𝑃𝑃14 + 𝐾𝐾14]       (4) 
 
To achieve the desired nutrient levels in the soil, an ML model was employed to predict the 
necessary amount of NPK to be added, referred to as ( 𝐶𝐶 ). This prediction ensured that, after 14 
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days, the soil retained its target nutrient levels. The Critical Soil Test Value (CSTV) was set to 140 
ppm (an example) and served as a benchmark for optimal soil fertility. 
The target variable for this methodology is de�ined as: 
 

[Target Variable = CSTV − (𝐴𝐴 − 𝐵𝐵)] (5) 
  

Equation (5) accounts for the difference between the CSTV and the actual change in NPK levels, 
considering both the initial value ( 𝐴𝐴 ) and the target amount ( 𝐵𝐵 ) after 14 days. 
 
By following this method, precise adjustments can be made to soil nutrient levels to ensure that 
they remain within the optimal range over time. This approach combines decay equations and ML 
predictions to effectively manage soil fertility. 
 
Table 1 presents the methodology for determining the amount of fertilizer required to replenish 
N, P, and K in the soil, ensuring optimal nutrient levels for the growth of Harumanis mango trees. 
The process followed a systematic approach, considering soil nutrient readings, nutrient decay 
over a period of 14 days, and CSTV using the MALCC to calculate the fertilizer requirement. 
 

Table 1: Example calculations to get the total added amount of NPK. 
 

 N P K 
(A) Amount Available in Soil (mg/kg) Reading from TDR Sensor 80 90 100 
(B) Decay (14 days) 19.7 22.2 24.7 
Amount after 14 days (A)-(B) 60.3 67.8 75.3 
Fertilizer YaraMila 13-13-21 N P2O5 K20 
MALCC CSTV 190 150 200 
CSTV - (A-B) 90.3 37.8 75.3 
mgkg 90.27 86.61 90.76 
Total Amount (mgkg) 267.65 
Total added Amount Fertilizer (gram) 569.46 

 
2.4 Machine Learning Model 

 
The machine learning model architecture, utilized in this study, is based on an ensemble learning 
technique known as Gradient Boosting Decision Trees. This model is particularly suitable for 
regression tasks, such as predicting the added amount of N, P, and K fertilizers based on soil and 
environmental parameters. 
 
Figure 1 illustrates the proposed method for the overall work�low of the gradient boosting model, 
which begins with input data collected from sensors, including variables such as soil temperature, 
moisture, pH, electrical conductivity, and rainfall. These raw input features are passed through a 
preprocessing phase, which includes several critical steps: data cleaning, feature scaling, encoding 
categorical values, and splitting the dataset into training and testing sets. 
 
Once the data is preprocessed, it is fed into the boosting model composed of multiple decision 
trees. The model is trained sequentially. Tree 1 learns from the original training data, and Tree 2 
is trained to correct the errors made by Tree 1 by learning the residuals. Tree K continues this 
process iteratively, minimizing prediction errors at each step. Each decision tree in the ensemble 
contributes to the �inal prediction, and their outputs are combined to produce a more accurate 
and generalized result. The model learns from the prediction errors at each stage, adjusting and 
improving subsequent tree structures. Once training is complete, the model is used to make 
predictions on the test data. 
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The output from the model provides an estimated value for the added amount of NPK fertilizer 
needed, helping to support precision agriculture practices by optimizing nutrient management in 
crop cultivation. This work�low not only ensures improved prediction accuracy through iterative 
learning but also enables the model to handle complex, nonlinear relationships between soil 
parameters and nutrient requirements ef�iciently. 
 

 
Figure 1: Proposed Architecture of a Gradient Boosting Decision Tree Model Work�low. The model uses 
an ensemble of decision trees trained sequentially to minimize prediction error, where each subsequent 
tree corrects the residuals from previous predictions. Input data undergoes preprocessing before being 

passed into the model, followed by output generation and evaluation. 
 
2.4.1 XGBoost Model Algorithm for Soil NPK Prediction 

 
XGBoost is an ensemble learning algorithm that builds multiple decision trees to optimize 
prediction accuracy. The model was selected because of its ability to handle nonlinear 
relationships in soil nutrient variations, reduce over�itting through regularization techniques and 
optimize computational ef�iciency using parallel processing. 
 
XGBoost is a gradient boosting algorithm that constructs an ensemble of decision trees by 
minimizing the MSE while incorporating regularization to prevent over�itting. 
 

a) Objective Function 
XGBoost minimizes the following function: 
 
ℒ(𝜃𝜃) = ∑  𝑛𝑛

𝑖𝑖=1 𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) + ∑  𝑇𝑇
𝑡𝑡=1 Ω(𝑓𝑓𝑡𝑡)        (6) 

 
where: 

• 𝑦𝑦𝑖𝑖  is the actual NPK value obtained from the soil sensors. 
• 𝑦𝑦�𝑖𝑖  is the predicted NPK value obtained using XGBoost. 
• Ω(𝑓𝑓𝑡𝑡) is a regularization term that penalizes complex trees. 
b) Gradient Boosting Process 
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Each new tree �its the residual errors from the previous trees as follows: 
 
𝑦𝑦�𝑖𝑖

(𝑡𝑡) = 𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)           (7) 

At each iteration, XGBoost updates its predictions by minimizing the second-order Taylor 
approximation as follows: 
 
ℒ(𝑡𝑡) ≈ ∑  𝑛𝑛

𝑖𝑖=1 �𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) + 1
2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)� + Ω(𝑓𝑓𝑡𝑡)       (8) 

 
where: 

•  𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕(𝑦𝑦𝑖𝑖,𝑦𝑦�𝑖𝑖)
𝜕𝜕𝑦𝑦�𝑖𝑖

  (Gradient). 

• ℎ𝑖𝑖 = 𝜕𝜕2𝑙𝑙(𝑦𝑦𝑖𝑖,𝑦𝑦�𝑖𝑖)
𝜕𝜕𝑦𝑦�𝑖𝑖

2   (Hessian). 

 
This allows for faster convergence compared to traditional gradient boosting. 
 

c) Decision Tree Splitting 
Each tree is split based on a gain function that determines the best feature split as follows: 
 

Gain = 1
2
�(∑𝑔𝑔𝑖𝑖)2

∑ℎ𝑖𝑖+𝜆𝜆
+ �∑𝑔𝑔𝑗𝑗�

2

∑ℎ𝑗𝑗+𝜆𝜆
− �∑𝑔𝑔𝑝𝑝�

2

∑ℎ𝑝𝑝+𝜆𝜆
� − 𝛾𝛾              (9) 

 
where: 

• λ is the L2 regularization term used to control over�itting. 
• where γ is the threshold for pruning unnecessary splits. 
• 𝑔𝑔𝑖𝑖 , 𝑔𝑔𝑗𝑗 , 𝑔𝑔𝑝𝑝and ℎ𝑖𝑖 , ℎ𝑗𝑗 ,ℎ𝑝𝑝 represent the gradients and Hessians of the parent and child nodes. 
d) Final Prediction 
 
The �inal NPK prediction is obtained by summing the contributions from all trees: 
 

𝑦𝑦�𝑖𝑖 = ∑  𝑇𝑇
𝑡𝑡=1 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)                      (10) 

 
Where 𝑇𝑇 is the total number of trees. 
 
XGBoost is effective for predicting soil NPK levels with high accuracy and robust performance. 
The hyperparameters of the XGBoost model were optimized using grid search cross-validation, 
focusing on parameters such as the learning rate, maximum depth, and number of estimators to 
achieve the best performance. 
 
2.4.2 NGBoost Model 
 
NGBoost extends traditional boosting methods by incorporating probabilistic predictions and 
allowing uncertainty quanti�ication. This model was chosen to assess the con�idence levels in soil 
nutrient predictions, which is crucial for decision-making in fertilization management in 
orchards. NGBoost, or Natural Gradient Boosting, enhances conventional boosting methods by 
focusing on probabilistic predictions and enabling uncertainty quanti�ication. This approach is 
particularly advantageous in the context of soil nutrient prediction for fertilization management, 
as it allows for the assessment of con�idence levels in the predictions made, thereby aiding 
decision-making processes in agricultural practices. 
 
In agriculture, precise nutrient management is critical for optimizing crop yields and minimizing 
environmental impacts. By employing models like NGBoost, which can provide uncertainty 
estimates along with predictions, farmers and agricultural scientists can make more informed 
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decisions about fertilization strategies [18, 19]. For instance, in orchard management, 
understanding variations and uncertainties in soil nutrient content can guide targeted 
fertilization, reducing the risks of over-fertilization and under-fertilization. This approach also 
supports sustainable agricultural practices by optimizing nutrient application rates based on 
accurate predictions and uncertainty assessments [20, 21]. 
 
NGBoost enhances traditional approaches by incorporating a probabilistic framework that is 
bene�icial for capturing the complex interactions in nutrient dynamics across different soil and 
crop conditions. This allows for the development of precise fertilization plans tailored to speci�ic 
environmental and soil variability, ultimately improving crop yields and reducing environmental 
degradation [22, 23]. De�ine the parametric distribution, instead of predicting a single value 𝑦𝑦 ̂_𝑖𝑖, 
NGBoost models the distribution of y using a parametric distribution family. For example, using a 
Gaussian: 
 
𝑦𝑦 ∼ 𝒩𝒩(𝜇𝜇(𝑥𝑥),𝜎𝜎2(𝑥𝑥))                        (11) 
 
where: 

• 𝜇𝜇(𝑥𝑥) (mean) is the predicted central value, 
• 𝜎𝜎2(𝑥𝑥) (variance) represents the uncertainty. 

 
The model’s goal is to learn the functions 𝜇𝜇(𝑥𝑥)  and 𝜎𝜎2(𝑥𝑥). 
 
Compute the Natural Gradient of the Log-Likelihood. Instead of using the standard gradient 𝛻𝛻𝜃𝜃 , 
NGBoost computes the natural gradient, which respects the geometry of the probability 
distribution: 
 
∇�𝜃𝜃= 𝐹𝐹−1∇𝜃𝜃ℒ                        (12) 
 
where: 

• ℒ is the negative log-likelihood (NLL) loss function, 
• ∇𝜃𝜃ℒ is the standard gradient of the loss, 
• 𝐹𝐹 is the Fisher Information Matrix, which adjusts for the curvature of the parameter space. 

 
For a Gaussian distribution, the log-likelihood is: 
 
ℒ = (𝑦𝑦−𝜇𝜇)2

2𝜎𝜎2
+ log 𝜎𝜎                      (13) 

 
The natural gradient updates are then derived using: 
 

• For mean 𝜇𝜇: 
∇�𝜇𝜇= 𝑦𝑦−𝜇𝜇

𝜎𝜎2
           (14) 

• For variance 𝜎𝜎2: 
∇�𝜎𝜎2= (𝑦𝑦−𝜇𝜇)2

𝜎𝜎4
− 1

𝜎𝜎2
         (15) 

 
Fit gradient boosting trees to update parameters. NGBoost uses decision trees as base learners to 
�it these natural gradients and update the parameters iteratively. For each boosting iteration 𝑡𝑡: 
 

1. Compute the natural gradient residuals ∇�𝜇𝜇 and ∇�𝜎𝜎2 . 
2. Fit regression trees 𝑓𝑓𝑡𝑡(𝑥𝑥) to predict these residuals. 
3. Update the parameters using a step size 𝜌𝜌: 
4. Repeat until convergence. 
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𝜇𝜇𝑡𝑡+1 = 𝜇𝜇𝑡𝑡 + 𝜌𝜌𝑓𝑓𝜇𝜇(𝑥𝑥)
𝜎𝜎𝑡𝑡+12 = 𝜎𝜎𝑡𝑡2 + 𝜌𝜌𝑓𝑓𝜎𝜎2(𝑥𝑥)

                        (16) 

Make predictions with uncertainty estimation. After training, NGBoost outputs the �inal predicted 
distribution  𝑃𝑃(𝑦𝑦 | 𝑥𝑥). 
 

• The predicted value 𝑦𝑦�𝑖𝑖 , is usually taken as the mean 𝜇𝜇(𝑥𝑥). 
• The model also provides prediction intervals using the variance 𝜎𝜎2(𝑥𝑥) , allowing for 

uncertainty-aware predictions. 
 
NGBoost differs from XGBoost in that it: 
 

• Outputs full probability distributions instead of single-point estimates 
• Uses natural gradient updates to optimize likelihood functions 
• Provides uncertainty intervals, improving reliability in real-world applications 

 
Both models were trained on the Orchard_A dataset and tested on the Orchard_B dataset to 
compare their effectiveness in predicting soil NPK levels. 
 
2.5     Model Evaluation 
 
To assess and compare the predictive performance of XGBoost and NGBoost, multiple evaluation 
metrics were used, R², MAE, RMSE, and Uncertainty Analysis. 
 
 
3. RESULTS AND DISCUSSION 
 
This study evaluates and compares XGBoost and NGBoost for predicting the added amount of NPK 
fertilizer in precision agriculture. The objective is to assess their predictive accuracy and 
uncertainty estimation capabilities, ensuring optimal fertilizer application based on soil nutrient 
conditions. The models were trained and tested using three datasets: training data (to �it the 
models and analyze their learning performance), testing data (to evaluate generalization ability), 
and new unseen data (to validate model performance in practical applications). 
 
The results indicate that XGBoost outperforms NGBoost in predictive accuracy, achieving lower 
errors and higher R² scores across all datasets. XGBoost consistently demonstrated a lower MAE, 
RMSE, and MASE, con�irming its reliability in estimating the required NPK fertilizer. In contrast, 
NGBoost, while slightly less accurate, provides uncertainty quanti�ication through NLL, which is 
valuable for decision-making under uncertain conditions. This highlights NGBoost’s ability to 
offer probabilistic insights, making it useful in scenarios where con�idence intervals are 
necessary. The �indings con�irm that XGBoost is the optimal choice when high precision is 
required, whereas NGBoost offers a balanced approach by incorporating predictive uncertainty. 
This comparative analysis provides important insights for integrating machine learning into 
precision agriculture, enabling data-driven fertilization strategies that optimize soil nutrition 
while managing variability and uncertainty. 
 
3.1     Pre-processing 
 
Kernel Density Estimation (KDE) plots were employed to evaluate the distribution of soil 
properties across different datasets. Figure 2 illustrates the probability density functions for key 
soil parameters, comparing Orchard A and Orchard B. KDE plots provide a smoothed estimation 
of the probability distribution of each variable, facilitating a detailed comparison of feature 
distributions between datasets. 
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Figure 2: Comparative KDE Analysis of Soil Properties Across Different Orchard Datasets. 

 
In the nitrogen distribution, Orchard_A exhibits a higher density in the lower nitrogen range, 
whereas Orchard_B shows a broader distribution, indicating potential variability in soil nutrient 
availability. Similar trends are observed for phosphorus and potassium, where differences in 
density highlight spatial variations in nutrient content between the two orchards. Additionally, 
the pH and EC distributions indicate minor shifts in soil chemical properties, which could impact 
model generalization. The rainfall and moisture distributions demonstrate distinct peaks, 
suggesting environmental variations that may in�luence soil nutrient dynamics. 
 
These KDE-based visualizations play a crucial role in understanding the underlying data 
distribution before model training. Identifying discrepancies between training and testing 
datasets ensures appropriate pre-processing steps, such as normalization and transformation, to 
enhance model robustness and predictive performance. 
 
EDA was conducted on two datasets in Figure 4: Orchard A (training set) and Orchard B (testing 
set), focusing on soil nutrients (N, P, K), pH, EC, moisture, temperature, rainfall, and phenological 
stages. Nitrogen in Orchard_A is left-skewed (30–60 mg/kg), while Orchard_B has a broader 
spread (peaking at 80–100 mg/kg), indicating different fertilization practices. P shows a 
multimodal distribution, with higher values in Orchard B (>125 mg/kg). K in Orchard A is right-
skewed (<100 mg/kg), whereas Orchard_B has extreme values (>200 mg/kg), suggesting high 
variability. 
 
Soil properties differ between orchards. pH follows a normal distribution (6.5–7.5), though 
Orchard_B has more extreme values (<5, >8). EC is right-skewed, with higher values in Orchard B, 
indicating possible salinity issues. Moisture distribution is bimodal (40% and 80%), likely due to 
irrigation differences. 
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Figure 4: Exploratory Data Analysis (EDA): Distribution Comparison of Training and Testing Sets, 

 
Environmental conditions also vary. Temperature distributions are similar (25–30°C), but 
Orchard_B experiences extreme rainfall events (>50 mm), impacting nutrient leaching. 
Phenological stages are evenly represented, ensuring model generalizability. These �indings 
highlight the need for data normalization and feature engineering to address skewness and site-
speci�ic factors, improving predictive model accuracy and robustness. 
 
3.2     Model Performance on Training and Testing Data 
 
The performance of XGBoost and NGBoost was evaluated using MAE, RMSE, and R² scores for 
both training and testing datasets, shown in Table 2. XGBoost outperformed NGBoost in predictive 
accuracy, achieving an R² of 0.9991 on the training set and 0.9988 on the testing set, 
demonstrating strong predictive capability. The model exhibited low error rates, with an MAE of 
1.3033 and RMSE of 1.8219 for training, and an MAE of 1.5037 with RMSE of 2.1276 for testing, 
indicating high reliability in predicting NPK values. The learning curve of the XGBoost model for 
training and testing data is presented in Figure 5, further con�irming the model’s robustness and 
stability. 
 
NGBoost, designed for probabilistic prediction, performed slightly lower, with an R² of 0.9956 on 
training and 0.9949 on testing. It recorded a higher MAE (2.8867 for training, 3.0651 for testing) 
and RMSE (4.0689 for training, 4.3638 for testing), indicating greater prediction errors compared 
to XGBoost. However, NGBoost’s probabilistic nature allows for uncertainty estimation, providing 
additional insights into prediction con�idence. 
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These results highlight XGBoost’s superior accuracy in predicting the added amount of fertilizer, 
while NGBoost offers valuable uncertainty quanti�ication. The trade-off between precision and 
uncertainty estimation is crucial for optimizing fertilizer application in precision agriculture. 
 

 
Figure 5: Learning curve for Training and Testing Data using XGBoost Model. 

 
Table 2: Model Performance for XGBoost and NGBoost models. 

 
Model Dataset MAE RMSE R² 

XGBoost Training 1.3033 1.8219 0.9991 
XGBoost Testing 1.5037 2.1276 0.9988 
NGBoost Training 2.8867 4.0689 0.9956 
NGBoost Testing 3.0651 4.3638 0.9949 

 
 

Evaluation and compare the predictive performance of the XGBoost and NGBoost models, both 
residual analysis and prediction error plots were utilized. These visual diagnostics provide insight 
into the models’ accuracy, bias, and generalization capabilities. As shown in Figure 6, the residual 
plots reveal the distribution of prediction errors for both models across the range of actual 
YaraMila values.  

 
The residual analysis for both models shows that errors are mostly concentrated around zero, 
indicating minimal prediction bias. For XGBoost, residuals remain tightly clustered with only a 
slight increase in variance at higher YaraMila values, re�lecting strong generalization capacity and 
minimal outliers. NGBoost also centers residuals around zero but exhibits slightly greater 
dispersion, particularly in the mid-to-high YaraMila range, a behavior expected from its 
probabilistic design, which models predictive uncertainty. The prediction error plots (Figure 6) 
further illustrate these differences: XGBoost displays a very tight clustering of points along the 
diagonal reference line, achieving an R² of 0.9984, while NGBoost also aligns closely with the 
reference line but with a slightly lower R² of 0.9909. This comparison highlights the trade-off 
between the two approaches: XGBoost excels in deterministic accuracy with lower residual 
spread, whereas NGBoost, though less precise, provides valuable uncertainty quanti�ication that 
supports risk-aware fertilizer management. Together, these insights suggest that model choice 
may depend on context: XGBoost for high-accuracy predictions in stable conditions, and NGBoost 
for decision-making under uncertainty where con�idence intervals are critical to avoid economic 
loss or environmental harm. 
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Figure 6: Prediction error Plot for XGBoost and NGBoost models. 

 
3.3     Model Prediction on a Test Dataset (Orchard B) 
 
The performance of XGBoost and NGBoost is shown in Table 4, and further evaluated on a new 
dataset to assess their generalization ability. XGBoost maintained high predictive accuracy with 
an R² score of 0.9984, indicating a strong �it to the data. It achieved a low MAE of 2.0388 and RMSE 
of 2.7618, demonstrating minimal prediction errors. The MASE of 0.1791 suggests stable 
performance, with minimal deviation from actual values. 
 
In contrast, NGBoost exhibited a lower R² score of 0.9909, re�lecting slightly reduced predictive 
accuracy. The model produced a higher MAE of 4.962 and RMSE of 6.5654, indicating larger errors 
in predictions. The MASE value of 0.4361 further con�irms increased deviation from actual values 
compared to XGBoost. NGBoost provides uncertainty quanti�ication through Negative Log-
Likelihood (NLL), which was recorded at 2.6001. This suggests that NGBoost, while less precise, 
offers valuable probabilistic insights into prediction con�idence. 
 
XGBoost remains the more accurate model for predicting fertilizer requirements, while NGBoost 
presents an alternative for scenarios where uncertainty estimation is crucial. These results 
reinforce XGBoost’s suitability for precision agriculture applications, ensuring reliable fertilizer 
recommendations with minimal prediction errors. 
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Table 4: Performance of XGBoost and NGBoost Model using test Orchard B. 
 

Model R² Score MAE MSE RMSE MASE NLL 
XGBoost 0.9984 2.0388 7.6273 2.7618 0.1791 - 
NGBoost 0.9909 4.962 43.1048 6.5654 0.4361 2.6001 

 
Figure 7 highlights NGBoost’s ability to provide probabilistic estimates, with uncertainty 
increasing for lower actual values. The �irst subplot (top) compares XGBoost predictions against 
actual values, with a red dashed line representing a perfect �it. The second subplot (middle) shows 
NGBoost predictions with associated uncertainty bars. The third subplot (bottom) directly 
compares XGBoost and NGBoost predictions.  
 

 
Figure 7: Comparison of XGBoost and NGBoost Model Prediction using test dataset (Orchard_B). 

 
3.3.1 NGBoost Predictions with Uncertainty Intervals 
 
Figure 8 illustrates the prediction results of the NGBoost model on a test dataset comprising 50 
samples, highlighting the model’s ability to provide both point predictions and uncertainty 
estimates. The red dots represent the actual target values (ground truth), while the blue dots 
denote the NGBoost predicted means along with their associated uncertainty intervals (typically 
±1 standard deviation of the predictive distribution). The NGBoost model demonstrates a good 
agreement between the predicted and actual values across most test samples. The majority of 
actual values fall within the predicted uncertainty bounds, indicating the model’s effectiveness in 
quantifying predictive uncertainty. This capability is particularly important in precision 
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agriculture applications where incorrect fertilizer recommendations can have economic or 
environmental consequences. 
 
The size of the uncertainty intervals varies across the test samples, re�lecting the model’s 
con�idence in its predictions. Samples with higher uncertainty likely correspond to input 
conditions that are less represented in the training data or exhibit more variability. Conversely, 
narrow intervals indicate higher con�idence and more consistent model behavior. 
 
This result highlights the advantage of NGBoost over traditional deterministic models like 
XGBoost, as it not only makes accurate predictions but also provides a probabilistic framework 
for risk-aware decision-making in NPK fertilizer application. Such insights can support smarter 
resource allocation and reduce over- or under-fertilization in Harumanis mango cultivation. 

 

 
Figure 8: NGBoost Prediction with Uncertainty Intervals. 

 
Figure 9 shows the NGBoost model’s predictions against actual values. The blue points represent 
predictions, and the shaded region illustrates the 95% con�idence interval. The black dashed line 
represents a perfect �it where predictions equal actual values. The spread of the uncertainty bands 
indicates how con�ident the model is in its predictions narrow bands suggest high certainty, while 
wider bands indicate more uncertainty. 
 

 
Figure 9: Uncertainty Plot for the NGBoost model’s predictions with 95% Con�idence Interval. 
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3.3.2 Distribution of Negative Log-Likelihood (NLL) for NGBoost. 
 
Figure 10 represents the distribution of NLL values for NGBoost, with the red dashed line 
indicating the mean NLL (2.6001). Lower NLL values indicate better probabilistic calibration of 
predictions. The distribution’s concentration around the mean suggests consistency, but a long 
tail may indicate occasional high-uncertainty predictions. 

 

 
Figure 10: Distribution of negative Log-Likelihood (NLL) for NGBoost. 

 
 

4. CONCLUSION 
 
This study aimed to achieve three key research objectives, determine the optimal fertilizer rates 
based on CSTV at different phenological stages, develop machine learning models (XGBoost and 
NGBoost) to predict the added amount of NPK fertilizer, and validate model accuracy and 
performance, ensuring its reliability for real-world precision agriculture applications. 
 
The results successfully demonstrated that XGBoost achieved superior predictive performance, 
with lower MAE, RMSE, and higher R² values, indicating its high accuracy in estimating added 
NPK. Meanwhile, NGBoost provided robust uncertainty quanti�ication, as re�lected in the NLL 
values, allowing for more probabilistic decision-making in fertilizer application. These �indings 
con�irm that the research objectives were met, as the study developed and validated an effective 
machine learning-based approach for soil nutrient prediction. 
 
Furthermore, visualization techniques such as residual plots, prediction error plots, learning 
curves, and validation curves provided additional evidence of model robustness and 
generalization ability. The successful implementation of these models suggests that machine 
learning can signi�icantly enhance precision agriculture by enabling data-driven fertilization 
strategies, reducing nutrient wastage, and minimizing environmental impact. 
 
Future research should explore hybrid modeling approaches that combine deterministic and 
probabilistic frameworks for improved fertilizer recommendation accuracy. Additionally, 
incorporating spatiotemporal data, real-time sensor integration, and weather variability factors 
could enhance model performance and adaptability. 
 
In conclusion, this study contributes to the advancement of AI-driven precision agriculture, 
demonstrating that machine learning models, particularly those with uncertainty estimation, can 
optimize soil nutrient management and promote sustainable farming practices. 
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