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ABSTRACT

Optimizing fertilizer application is essential for enhancing crop yield and minimizing the
environmental impact of precision agriculture. This study presents a comparative analysis
of XGBoost and NGBoost for predicting the amount of NPK fertilizer added, focusing on
model performance and uncertainty estimation. The dataset collected from the Harumanis
mango orchards included key soil parameters, such as nitrogen, phosphorus, potassium, pH,
EC, soil moisture, temperature, and rainfall. The methodology involved data preprocessing,
feature scaling, and model training using XGBoost and NGBoost. XGBoost, a gradient
boosting model, provides highly accurate deterministic predictions, whereas NGBoost, a
probabilistic model, quantifies the uncertainty in the predictions. Model performance was
evaluated using R?, MAE, RMSE, and Negative Log-Likelihood (NLL). The results indicate
that XGBoost outperforms NGBoost in accuracy, achieving R? = 0.9984, MAE = 2.0388, and
RMSE = 2.7618, whereas NGBoost provides uncertainty estimation but with slightly lower
accuracy (R? = 0.9909, MAE = 4.9620, RMSE = 6.5654, and NLL = 2.6001). Further analysis
included residual plots, prediction error plots, learning curves, and validation curves to
assess the reliability and generalization of the models. These findings suggest that, while
XGBoost is ideal for deterministic NPK prediction, NGBoost offers probabilistic insights that
aid in the development of risk-aware fertilization strategies. This study contributes to data-
driven precision agriculture by enhancing fertilizer management efficiency and
sustainability.
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1. INTRODUCTION

Precision agriculture plays a transformative role in enhancing fertilization management by
integrating advanced technologies to optimize both nutrient use efficiency and environmental
sustainability. At its core, precision agriculture employs technologies like proximal and remote
sensor surveys to monitor variations within fields, allowing for the targeted application of
fertilizers based on site-specific conditions. This approach is crucial in matching nutrient
application to the precise needs of crops at specific locations, minimizing the risk of nutrient
leaching and accumulation, which can lead to environmental issues [1].

The practice of precision agriculture involves using advanced technologies such as GPS, GIS, and
variable rate technology (VRT) to ensure accurate fertilizer application. These technologies
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enable precise mapping and management of field variability, resulting in improved nutrient use
efficiency. By applying the correct amount of nutrients where they are needed most, this approach
not only enhances crop production but also mitigates the excessive use of fertilizers that can harm
the environment [2, 3].

The adoption of smart sensors and loT in precision agriculture offers real-time monitoring and
data-driven decision-making capabilities. This integration allows farmers to make informed
decisions about nutrient application, thereby improving nutrient use efficiency (NUE) and
reducing waste. Real-time nitrogen sensing, in particular, enables precise nitrogen management,
which is pivotal in promoting sustainable agriculture and reducing the environmental footprint
of farming practices [4, 5]. The application of precision agriculture is not without challenges. The
effective implementation of these technologies requires investments in equipment and training,
as well as overcoming data management issues. Despite these challenges, the strategic use of
precision agriculture technologies holds significant promise for improving agricultural
productivity while maintaining ecological balance [6].

Gradient boosting techniques, particularly XGBoost, have gained significant attention in various
prediction tasks due to their high accuracy and robustness. However, as deterministic models,
they lack the ability to provide uncertainty estimates, which can be a limitation in contexts like
agronomy where decision-making under uncertainty is crucial. This is where NGBoost, a natural
gradient boosting technique, shows promise by offering probabilistic predictions.

XGBoost has been employed successfully in several studies. For instance, it outperformed other
models in predicting shear strengths of rockfill materials by achieving the highest prediction
performance metrics, indicating its reliability in various engineering applications [7]. Similarly, it
has been used effectively in estimating urban water levels and ice phenomena prediction due to
its robustness and ability to utilize large datasets efficiently [8, 9]. Its integration with other
techniques, like evolutionary algorithms, further enhances its predictive accuracy in complex
tasks [9].

NGBoost offers a different approach by directly producing probabilistic predictions, which allow
for estimating prediction uncertainties. This feature makes NGBoost particularly suitable for
applications where understanding the uncertainty of predictions is as important as the
predictions themselves. A study on predicting the California bearing ratio (CBR) values
demonstrated NGBoost's ability to provide reliable confidence intervals, thereby offering a
comprehensive view of prediction reliability [10]. Furthermore, its application in structural
engineering showed it could achieve comparable mean prediction accuracy levels to other
machine learning algorithms while providing robust uncertainty estimates [11].

XGBoost remains a powerful tool for deterministic predictions with high accuracy, while NGBoost
significantly contributes to areas where capturing the uncertainty of predictions is critical. This
makes NGBoost a valuable asset in fields like agronomy, where decision-making must often
contend with variable environmental conditions and inherent uncertainties.

This study aimed to compare the performance of XGBoost and NGBoost in predicting the amount
of NPK fertilizer added using soil parameters such as pH, EC, moisture, temperature, and rainfall.
The evaluation includes traditional performance metrics (R?, MAE, RMSE) and uncertainty
quantification through Negative Log-Likelihood (NLL). By integrating explainable Al techniques
and visualization tools, this study provides insights into model reliability, uncertainty estimation,
and practical implications for precision agriculture.

Research Objectives:
1. To evaluate the predictive performance of XGBoost and NGBoost for added fertilizer
prediction.
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2. To analyze uncertainty estimation using NGBoost in the context of soil nutrient variability.

A comprehensive model assessment was performed using visualization tools, such as residual
plots, prediction error plots, learning curves, and validation curves. The findings of this study will
help farmers and agronomists make informed fertilization decisions, thereby reducing costs and
minimizing the environmental impact. Furthermore, it contributes to data-driven precision
agriculture by integrating machine learning and uncertainty-aware models for sustainable
fertilizer management.

2. Methodology
2.1 Data Collection

Soil nutrient data were obtained from two primary sources: the Harumanis tree Orchard A data
collected at Orchard A (Muzium Mempelam, Kuala Sala, Department of Agriculture Kedah
(5°58’05.5 “N 100°24°05.1” E)) and data collected from an Orchard B (Individual Orchard at Guar
Nangka in Perlis (6°28’34.4 “N 100°17°05.7” E)). This is followed by a comprehensive
presentation of the laboratory test data, which provides analysis results that complement the
sensor data and ensure the reliability and accuracy of the findings. Data collection at Muzium
Mempelam, Kuala Sala, and Kedah for this study involved monitoring 24 Harumanis trees
distributed across six sampling points within an area of 14,850 square feet. Sampling was
conducted daily from 7:00 AM to 3:00 PM, resulting in 30,816 data samples. Each day, eight data
samples were collected, with one data sample being the average of six subsamples taken at five-
minute intervals. This intensive sampling regimen ensured comprehensive data coverage of the
nutritional status and environmental conditions of the trees.

2.2 Data Preprocessing

Data preprocessing is a critical step in preparing datasets for machine learning models and
involves several key techniques, including handling missing data, detecting and removing outliers,
normalization and scaling, and feature engineering.

Missing data can significantly affect the performance of machine learning models. Various
imputation techniques are employed to address this issue, such as random sample (RS)
imputation and one-hot encoding methods. These techniques fill in the gaps in datasets to
maintain the integrity of the model. For instance, in scenarios with high missing rates, one-hot
encoding has proven to be effective, demonstrating robustness and accuracy [12]. Another
approach is the cyclical hybrid imputation technique, which combines row-based and column-
based imputation techniques to handle missing data effectively. This method has shown promise
in increasing model accuracy when tested on multiple datasets [13].

Outliers can be identified using various methods, such as sliding window techniques, which detect
anomalies by identifying values that fall outside a normal pattern distribution [14]. Another novel
approach for outlier detection involves using Gaussian mixture models for cellwise detection,
which allows for the identification and imputation of contaminated cells rather than discarding
them, thereby preserving valuable information [15].

Normalization and scaling are vital for improving the convergence and stability of machine
learning models. The choice between standardization and normalization can depend on the
dataset size and the machine learning algorithm used. For instance, normalization has been
shown to enhance the performance of linear models on smaller datasets, whereas standardization
is more beneficial for larger datasets with linear models [16]. Moreover, robust scaling techniques,
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such as LSBZM normalization, specifically tailored for time series data, can address issues like
skewness by applying a combination of transformations to ensure uniform scaling [17].

Feature engineering involves creating new variables that enhance the predictive power of a
model. This can include deriving additional variables like NPK decay over time or cumulative
rainfall impact to provide the model with more informative features. The systematic review of
feature selection methods suggests using advanced techniques like metaheuristics and hyper-
heuristics to improve the model’s performance by efficiently reducing the dimensionality of the
dataset and eliminating redundancy [18].

Each of these preprocessing steps enhances the model’s ability to learn from the data effectively
by addressing issues related to data integrity, scale, and feature relevance, ultimately leading to
more accurate and reliable predictions.

2.3 Target Variable

The target variable, also known as the dependent or response variable, is the variable that the ML
model aims to predict or explain based on input features. In the context of NPK prediction for
Harumanis Mango cultivation, the target variable is typically the amount of fertilizer (NPK)
nutrients added to the soil.

The target variable is essential in training the ML model, as it serves as the benchmark against
which the model’s predictions are evaluated. The model learns from the input features to predict
the target variable. For example, in a regression problem, the target variable may be the actual
measured levels of NPK nutrients in the soil, and the model aims to predict these levels based on
the input features.

It is important to choose the target variable carefully to ensure that it accurately represents the
phenomenon of interest and is measurable and relevant to the research objectives of this study.
In soil NPK prediction, the target variable should ideally reflect the actual levels of NPK nutrients
in the soil, which is crucial for effective crop management and agricultural decision-making,.
Using this methodology, a systematic approach was presented to predict and manage the levels of
NPK in the soil over a 14-day period [12]. This process involved measuring the initial NPK levels
in the soil, denoted as (A ), and then using decay equations to estimate the amount of each
nutrient remaining after 14 days.

The decay of each nutrient was modelled using the following equation:

[Niy = Nipjial X € FN714] (1)
[P1g = Piitiat X € P714] (2)
[K1a = Kinitial X €7F€*14] (3)

where Equations (1), (2), and (3) represent the amounts of NPK remaining after 14 days,
respectively. (ky), (kp), and (kg )are the decay constants for each nutrient.

The total target amount of NPK after 14 days, denoted as ( B ) equation (4), is the sum of the
remaining amounts of each nutrient:

[B = Nig + P1y + Ki4] (4)

To achieve the desired nutrient levels in the soil, an ML model was employed to predict the
necessary amount of NPK to be added, referred to as ( C ). This prediction ensured that, after 14
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days, the soil retained its target nutrient levels. The Critical Soil Test Value (CSTV) was set to 140
ppm (an example) and served as a benchmark for optimal soil fertility.
The target variable for this methodology is defined as:

[Target Variable = CSTV — (A — B)] (5)

Equation (5) accounts for the difference between the CSTV and the actual change in NPK levels,
considering both the initial value ( 4 ) and the target amount ( B ) after 14 days.

By following this method, precise adjustments can be made to soil nutrient levels to ensure that
they remain within the optimal range over time. This approach combines decay equations and ML
predictions to effectively manage soil fertility.

Table 1 presents the methodology for determining the amount of fertilizer required to replenish
N, P, and K in the soil, ensuring optimal nutrient levels for the growth of Harumanis mango trees.
The process followed a systematic approach, considering soil nutrient readings, nutrient decay
over a period of 14 days, and CSTV using the MALCC to calculate the fertilizer requirement.

Table 1: Example calculations to get the total added amount of NPK.

N P K

(A) Amount Available in Soil (mg/kg) Reading from TDR Sensor 80 90 100
(B) Decay (14 days) 19.7 22.2 24.7
Amount after 14 days (A)-(B) 60.3 67.8 75.3
Fertilizer YaraMila 13-13-21 N P205 K20
MALCC CSTV 190 150 200
CSTV - (A-B) 90.3 37.8 75.3
mgkg 90.27 86.61 90.76
Total Amount (mgkg) 267.65

Total added Amount Fertilizer (gram) 569.46

2.4 Machine Learning Model

The machine learning model architecture, utilized in this study, is based on an ensemble learning
technique known as Gradient Boosting Decision Trees. This model is particularly suitable for
regression tasks, such as predicting the added amount of N, P, and K fertilizers based on soil and
environmental parameters.

Figure 1 illustrates the proposed method for the overall workflow of the gradient boosting model,
which begins with input data collected from sensors, including variables such as soil temperature,
moisture, pH, electrical conductivity, and rainfall. These raw input features are passed through a
preprocessing phase, which includes several critical steps: data cleaning, feature scaling, encoding
categorical values, and splitting the dataset into training and testing sets.

Once the data is preprocessed, it is fed into the boosting model composed of multiple decision
trees. The model is trained sequentially. Tree 1 learns from the original training data, and Tree 2
is trained to correct the errors made by Tree 1 by learning the residuals. Tree K continues this
process iteratively, minimizing prediction errors at each step. Each decision tree in the ensemble
contributes to the final prediction, and their outputs are combined to produce a more accurate
and generalized result. The model learns from the prediction errors at each stage, adjusting and
improving subsequent tree structures. Once training is complete, the model is used to make
predictions on the test data.
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The output from the model provides an estimated value for the added amount of NPK fertilizer
needed, helping to support precision agriculture practices by optimizing nutrient management in
crop cultivation. This workflow not only ensures improved prediction accuracy through iterative
learning but also enables the model to handle complex, nonlinear relationships between soil
parameters and nutrient requirements efficiently.
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Figure 1: Proposed Architecture of a Gradient Boosting Decision Tree Model Workflow. The model uses
an ensemble of decision trees trained sequentially to minimize prediction error, where each subsequent
tree corrects the residuals from previous predictions. Input data undergoes preprocessing before being

passed into the model, followed by output generation and evaluation.

2.4.1

XGBoost Model Algorithm for Soil NPK Prediction

Surum 1wk rediadAH

XGBoost is an ensemble learning algorithm that builds multiple decision trees to optimize
prediction accuracy. The model was selected because of its ability to handle nonlinear
relationships in soil nutrient variations, reduce overfitting through regularization techniques and
optimize computational efficiency using parallel processing.

XGBoost is a gradient boosting algorithm that constructs an ensemble of decision trees by
minimizing the MSE while incorporating regularization to prevent overfitting.

a) Objective Function

XGBoost minimizes the following function:

L(O) =X i 9:) + 2= Q(f)

where:

e y; is the actual NPK value obtained from the soil sensors.
e J; is the predicted NPK value obtained using XGBoost.

e Q(f;) is aregularization term that penalizes complex trees.

b) Gradient Boosting Process
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Each new tree fits the residual errors from the previous trees as follows:

A1) _ (-1

yi( ) = yi( ) + fr(xp) (7)
At each iteration, XGBoost updates its predictions by minimizing the second-order Taylor
approximation as follows:

1
LO x 3y [gift(xi) + Ehiftz(xi)] +Q(fy) (8)
where:
gi = m(ay—;/‘_y") (Gradient).
2 .9
h; = CAte7%)) (Hessian).

a2
This allows for faster convergence compared to traditional gradient boosting.

c) Decision Tree Splitting
Each tree is split based on a gain function that determines the best feature split as follows:

l (Zgi)z + (Zgj)z _(ng)z _ (9)
2|Shi+d | Shi+d  Thp+h

Gain =

where:
e Aisthe L2 regularization term used to control overfitting.
e where v is the threshold for pruning unnecessary splits.
* i, 9j gpand hy, hj, hy, represent the gradients and Hessians of the parent and child nodes.

d) Final Prediction

The final NPK prediction is obtained by summing the contributions from all trees:

Pi = Xi=1 fr(x) (10)
Where T is the total number of trees.

XGBoost is effective for predicting soil NPK levels with high accuracy and robust performance.
The hyperparameters of the XGBoost model were optimized using grid search cross-validation,
focusing on parameters such as the learning rate, maximum depth, and number of estimators to
achieve the best performance.

2.4.2 NGBoost Model

NGBoost extends traditional boosting methods by incorporating probabilistic predictions and
allowing uncertainty quantification. This model was chosen to assess the confidence levels in soil
nutrient predictions, which is crucial for decision-making in fertilization management in
orchards. NGBoost, or Natural Gradient Boosting, enhances conventional boosting methods by
focusing on probabilistic predictions and enabling uncertainty quantification. This approach is
particularly advantageous in the context of soil nutrient prediction for fertilization management,
as it allows for the assessment of confidence levels in the predictions made, thereby aiding
decision-making processes in agricultural practices.

In agriculture, precise nutrient management is critical for optimizing crop yields and minimizing
environmental impacts. By employing models like NGBoost, which can provide uncertainty

estimates along with predictions, farmers and agricultural scientists can make more informed
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decisions about fertilization strategies [18, 19]. For instance, in orchard management,
understanding variations and uncertainties in soil nutrient content can guide targeted
fertilization, reducing the risks of over-fertilization and under-fertilization. This approach also
supports sustainable agricultural practices by optimizing nutrient application rates based on
accurate predictions and uncertainty assessments [20, 21].

NGBoost enhances traditional approaches by incorporating a probabilistic framework that is
beneficial for capturing the complex interactions in nutrient dynamics across different soil and
crop conditions. This allows for the development of precise fertilization plans tailored to specific
environmental and soil variability, ultimately improving crop yields and reducing environmental
degradation [22, 23]. Define the parametric distribution, instead of predicting a single value y"_i,
NGBoost models the distribution of y using a parametric distribution family. For example, using a
Gaussian:

y ~ N (ux), a%(x)) (11)

where:
e u(x) (mean) is the predicted central value,
e 02(x) (variance) represents the uncertainty.

The model’s goal is to learn the functions u(x) and a2 (x).
Compute the Natural Gradient of the Log-Likelihood. Instead of using the standard gradient V7,

NGBoost computes the natural gradient, which respects the geometry of the probability
distribution:

Vo= F1VyL (12)
where:

e L isthe negative log-likelihood (NLL) loss function,

e VyListhe standard gradient of the loss,

e Fisthe Fisher Information Matrix, which adjusts for the curvature of the parameter space.

For a Gaussian distribution, the log-likelihood is:

_ -w?
L= oz T log o (13)

The natural gradient updates are then derived using:

e For mean u:

s _ y-u

V== (14)
e For variance ¢?:

= y-w?* 1

V= L (15)

Fit gradient boosting trees to update parameters. NGBoost uses decision trees as base learners to
fit these natural gradients and update the parameters iteratively. For each boosting iteration t:

Compute the natural gradient residuals V, and V,o.
Fit regression trees f;(x) to predict these residuals.
Update the parameters using a step size p:

Repeat until convergence.

B W e
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Hev1 = He T Pfy(x)

0fy1 = 0f + pfg2(x)
Make predictions with uncertainty estimation. After training, NGBoost outputs the final predicted
distribution P(y | x).

(16)

e The predicted value J;, is usually taken as the mean p(x).
e The model also provides prediction intervals using the variance ¢2(x) , allowing for
uncertainty-aware predictions.

NGBoost differs from XGBoost in that it:

¢ Outputs full probability distributions instead of single-point estimates
e Uses natural gradient updates to optimize likelihood functions
¢ Provides uncertainty intervals, improving reliability in real-world applications

Both models were trained on the Orchard_A dataset and tested on the Orchard_B dataset to
compare their effectiveness in predicting soil NPK levels.

2.5 Model Evaluation

To assess and compare the predictive performance of XGBoost and NGBoost, multiple evaluation
metrics were used, R?, MAE, RMSE, and Uncertainty Analysis.

3. RESULTS AND DISCUSSION

This study evaluates and compares XGBoost and NGBoost for predicting the added amount of NPK
fertilizer in precision agriculture. The objective is to assess their predictive accuracy and
uncertainty estimation capabilities, ensuring optimal fertilizer application based on soil nutrient
conditions. The models were trained and tested using three datasets: training data (to fit the
models and analyze their learning performance), testing data (to evaluate generalization ability),
and new unseen data (to validate model performance in practical applications).

The results indicate that XGBoost outperforms NGBoost in predictive accuracy, achieving lower
errors and higher R? scores across all datasets. XGBoost consistently demonstrated a lower MAE,
RMSE, and MASE, confirming its reliability in estimating the required NPK fertilizer. In contrast,
NGBoost, while slightly less accurate, provides uncertainty quantification through NLL, which is
valuable for decision-making under uncertain conditions. This highlights NGBoost’s ability to
offer probabilistic insights, making it useful in scenarios where confidence intervals are
necessary. The findings confirm that XGBoost is the optimal choice when high precision is
required, whereas NGBoost offers a balanced approach by incorporating predictive uncertainty.
This comparative analysis provides important insights for integrating machine learning into
precision agriculture, enabling data-driven fertilization strategies that optimize soil nutrition
while managing variability and uncertainty.

3.1 Pre-processing

Kernel Density Estimation (KDE) plots were employed to evaluate the distribution of soil
properties across different datasets. Figure 2 illustrates the probability density functions for key
soil parameters, comparing Orchard A and Orchard B. KDE plots provide a smoothed estimation
of the probability distribution of each variable, facilitating a detailed comparison of feature
distributions between datasets.
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Figure 2: Comparative KDE Analysis of Soil Properties Across Different Orchard Datasets.

In the nitrogen distribution, Orchard_A exhibits a higher density in the lower nitrogen range,
whereas Orchard_B shows a broader distribution, indicating potential variability in soil nutrient
availability. Similar trends are observed for phosphorus and potassium, where differences in
density highlight spatial variations in nutrient content between the two orchards. Additionally,
the pH and EC distributions indicate minor shifts in soil chemical properties, which could impact
model generalization. The rainfall and moisture distributions demonstrate distinct peaks,
suggesting environmental variations that may influence soil nutrient dynamics.

These KDE-based visualizations play a crucial role in understanding the underlying data
distribution before model training. Identifying discrepancies between training and testing
datasets ensures appropriate pre-processing steps, such as normalization and transformation, to
enhance model robustness and predictive performance.

EDA was conducted on two datasets in Figure 4: Orchard A (training set) and Orchard B (testing
set), focusing on soil nutrients (N, P, K), pH, EC, moisture, temperature, rainfall, and phenological
stages. Nitrogen in Orchard_A is left-skewed (30-60 mg/kg), while Orchard_B has a broader
spread (peaking at 80-100 mg/kg), indicating different fertilization practices. P shows a
multimodal distribution, with higher values in Orchard B (>125 mg/kg). K in Orchard A is right-
skewed (<100 mg/kg), whereas Orchard_B has extreme values (>200 mg/kg), suggesting high
variability.

Soil properties differ between orchards. pH follows a normal distribution (6.5-7.5), though
Orchard_B has more extreme values (<5, >8). EC is right-skewed, with higher values in Orchard B,
indicating possible salinity issues. Moisture distribution is bimodal (40% and 80%), likely due to
irrigation differences.
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Figure 4: Exploratory Data Analysis (EDA): Distribution Comparison of Training and Testing Sets,

Rainfall

[

Environmental conditions also vary. Temperature distributions are similar (25-30°C), but
Orchard_B experiences extreme rainfall events (>50 mm), impacting nutrient leaching.
Phenological stages are evenly represented, ensuring model generalizability. These findings
highlight the need for data normalization and feature engineering to address skewness and site-
specific factors, improving predictive model accuracy and robustness.

3.2 Model Performance on Training and Testing Data

The performance of XGBoost and NGBoost was evaluated using MAE, RMSE, and R? scores for
both training and testing datasets, shown in Table 2. XGBoost outperformed NGBoost in predictive
accuracy, achieving an R? of 0.9991 on the training set and 0.9988 on the testing set,
demonstrating strong predictive capability. The model exhibited low error rates, with an MAE of
1.3033 and RMSE of 1.8219 for training, and an MAE of 1.5037 with RMSE of 2.1276 for testing,
indicating high reliability in predicting NPK values. The learning curve of the XGBoost model for
training and testing data is presented in Figure 5, further confirming the model’s robustness and
stability.

NGBoost, designed for probabilistic prediction, performed slightly lower, with an R? of 0.9956 on
training and 0.9949 on testing. It recorded a higher MAE (2.8867 for training, 3.0651 for testing)
and RMSE (4.0689 for training, 4.3638 for testing), indicating greater prediction errors compared
to XGBoost. However, NGBoost’s probabilistic nature allows for uncertainty estimation, providing
additional insights into prediction confidence.
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These results highlight XGBoost’s superior accuracy in predicting the added amount of fertilizer,
while NGBoost offers valuable uncertainty quantification. The trade-off between precision and
uncertainty estimation is crucial for optimizing fertilizer application in precision agriculture.

Validation Curve - XGBoost Learning Curve - XGBoost
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Figure 5: Learning curve for Training and Testing Data using XGBoost Model.

Table 2: Model Performance for XGBoost and NGBoost models.

Model Dataset MAE RMSE R?
XGBoost Training 1.3033 1.8219 0.9991
XGBoost  Testing 1.5037 2.1276 0.9988
NGBoost Training 2.8867 4.0689 0.9956
NGBoost Testing 3.0651 4.3638 0.9949

Evaluation and compare the predictive performance of the XGBoost and NGBoost models, both
residual analysis and prediction error plots were utilized. These visual diagnostics provide insight
into the models’ accuracy, bias, and generalization capabilities. As shown in Figure 6, the residual
plots reveal the distribution of prediction errors for both models across the range of actual
YaraMila values.

The residual analysis for both models shows that errors are mostly concentrated around zero,
indicating minimal prediction bias. For XGBoost, residuals remain tightly clustered with only a
slight increase in variance at higher YaraMila values, reflecting strong generalization capacity and
minimal outliers. NGBoost also centers residuals around zero but exhibits slightly greater
dispersion, particularly in the mid-to-high YaraMila range, a behavior expected from its
probabilistic design, which models predictive uncertainty. The prediction error plots (Figure 6)
further illustrate these differences: XGBoost displays a very tight clustering of points along the
diagonal reference line, achieving an R? of 0.9984, while NGBoost also aligns closely with the
reference line but with a slightly lower R? of 0.9909. This comparison highlights the trade-off
between the two approaches: XGBoost excels in deterministic accuracy with lower residual
spread, whereas NGBoost, though less precise, provides valuable uncertainty quantification that
supports risk-aware fertilizer management. Together, these insights suggest that model choice
may depend on context: XGBoost for high-accuracy predictions in stable conditions, and NGBoost
for decision-making under uncertainty where confidence intervals are critical to avoid economic
loss or environmental harm.
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Figure 6: Prediction error Plot for XGBoost and NGBoost models.
3.3 Model Prediction on a Test Dataset (Orchard B)

The performance of XGBoost and NGBoost is shown in Table 4, and further evaluated on a new
dataset to assess their generalization ability. XGBoost maintained high predictive accuracy with
an R% score of 0.9984, indicating a strong fit to the data. It achieved a low MAE of 2.0388 and RMSE
of 2.7618, demonstrating minimal prediction errors. The MASE of 0.1791 suggests stable
performance, with minimal deviation from actual values.

In contrast, NGBoost exhibited a lower R? score of 0.9909, reflecting slightly reduced predictive
accuracy. The model produced a higher MAE of 4.962 and RMSE of 6.5654, indicating larger errors
in predictions. The MASE value of 0.4361 further confirms increased deviation from actual values
compared to XGBoost. NGBoost provides uncertainty quantification through Negative Log-
Likelihood (NLL), which was recorded at 2.6001. This suggests that NGBoost, while less precise,
offers valuable probabilistic insights into prediction confidence.

XGBoost remains the more accurate model for predicting fertilizer requirements, while NGBoost
presents an alternative for scenarios where uncertainty estimation is crucial. These results
reinforce XGBoost’s suitability for precision agriculture applications, ensuring reliable fertilizer
recommendations with minimal prediction errors.
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Table 4: Performance of XGBoost and NGBoost Model using test Orchard B.

Model R? Score MAE MSE RMSE MASE NLL
XGBoost 0.9984 2.0388 7.6273 2.7618 0.1791 -
NGBoost 0.9909 4,962 43.1048  6.5654 0.4361 2.6001

Figure 7 highlights NGBoost's ability to provide probabilistic estimates, with uncertainty
increasing for lower actual values. The first subplot (top) compares XGBoost predictions against
actual values, with a red dashed line representing a perfect fit. The second subplot (middle) shows
NGBoost predictions with associated uncertainty bars. The third subplot (bottom) directly
compares XGBoost and NGBoost predictions.
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Figure 7: Comparison of XGBoost and NGBoost Model Prediction using test dataset (Orchard_B).
3.3.1 NGBoost Predictions with Uncertainty Intervals

Figure 8 illustrates the prediction results of the NGBoost model on a test dataset comprising 50
samples, highlighting the model’s ability to provide both point predictions and uncertainty
estimates. The red dots represent the actual target values (ground truth), while the blue dots
denote the NGBoost predicted means along with their associated uncertainty intervals (typically
+1 standard deviation of the predictive distribution). The NGBoost model demonstrates a good
agreement between the predicted and actual values across most test samples. The majority of
actual values fall within the predicted uncertainty bounds, indicating the model’s effectiveness in
quantifying predictive uncertainty. This capability is particularly important in precision
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agriculture applications where incorrect fertilizer recommendations can have economic or
environmental consequences.

The size of the uncertainty intervals varies across the test samples, reflecting the model’s
confidence in its predictions. Samples with higher uncertainty likely correspond to input
conditions that are less represented in the training data or exhibit more variability. Conversely,
narrow intervals indicate higher confidence and more consistent model behavior.

This result highlights the advantage of NGBoost over traditional deterministic models like
XGBoost, as it not only makes accurate predictions but also provides a probabilistic framework
for risk-aware decision-making in NPK fertilizer application. Such insights can support smarter
resource allocation and reduce over- or under-fertilization in Harumanis mango cultivation.
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Figure 8: NGBoost Prediction with Uncertainty Intervals.

Figure 9 shows the NGBoost model’s predictions against actual values. The blue points represent
predictions, and the shaded region illustrates the 95% confidence interval. The black dashed line
represents a perfect fit where predictions equal actual values. The spread of the uncertainty bands
indicates how confident the model is in its predictions narrow bands suggest high certainty, while
wider bands indicate more uncertainty.
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Figure 9: Uncertainty Plot for the NGBoost model’s predictions with 95% Confidence Interval.

399



Advanced and Sustainable Technologies (ASET)

3.3.2 Distribution of Negative Log-Likelihood (NLL) for NGBoost.

Figure 10 represents the distribution of NLL values for NGBoost, with the red dashed line
indicating the mean NLL (2.6001). Lower NLL values indicate better probabilistic calibration of
predictions. The distribution’s concentration around the mean suggests consistency, but a long
tail may indicate occasional high-uncertainty predictions.
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Figure 10: Distribution of negative Log-Likelihood (NLL) for NGBoost.

4. CONCLUSION

This study aimed to achieve three key research objectives, determine the optimal fertilizer rates
based on CSTV at different phenological stages, develop machine learning models (XGBoost and
NGBoost) to predict the added amount of NPK fertilizer, and validate model accuracy and
performance, ensuring its reliability for real-world precision agriculture applications.

The results successfully demonstrated that XGBoost achieved superior predictive performance,
with lower MAE, RMSE, and higher R? values, indicating its high accuracy in estimating added
NPK. Meanwhile, NGBoost provided robust uncertainty quantification, as reflected in the NLL
values, allowing for more probabilistic decision-making in fertilizer application. These findings
confirm that the research objectives were met, as the study developed and validated an effective
machine learning-based approach for soil nutrient prediction.

Furthermore, visualization techniques such as residual plots, prediction error plots, learning
curves, and validation curves provided additional evidence of model robustness and
generalization ability. The successful implementation of these models suggests that machine
learning can significantly enhance precision agriculture by enabling data-driven fertilization
strategies, reducing nutrient wastage, and minimizing environmental impact.

Future research should explore hybrid modeling approaches that combine deterministic and
probabilistic frameworks for improved fertilizer recommendation accuracy. Additionally,
incorporating spatiotemporal data, real-time sensor integration, and weather variability factors
could enhance model performance and adaptability.

In conclusion, this study contributes to the advancement of Al-driven precision agriculture,

demonstrating that machine learning models, particularly those with uncertainty estimation, can
optimize soil nutrient management and promote sustainable farming practices.
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