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ABSTRACT 
 

The Harumanis mango, a prized cultivar grown in Perlis, Malaysia, requires meticulous 
nutrient management to enhance yield and fruit quality. Conventional soil nutrient analysis 
techniques are often expensive and time-consuming, highlighting the need for efficient 
predictive methods. This study explores the application of boosting algorithms to predict the 
added amount of NPK fertilizer macronutrient nitrogen (N), phosphorus (P), and potassium 
(K) critical for mango cultivation. The predictive models were developed based on soil 
nutrient data collected via TDR sensors throughout different Harumanis mango phenology 
stages. These data-driven models provide a cost-effective alternative to traditional soil 
testing, facilitating timely and precise nutrient management. To evaluate model 
performance, multiple boosting algorithms, including XGBoost, LightGBM, Gradient 
Boosting Regressor (GBR), and AdaBoost, were fine-tuned and assessed using performance 
metrics such as MAE, RMSE, R², RMSLE, and MAPE. Among these, the XGBoost model 
exhibited the highest predictive accuracy, achieving an MAE of 38.4046, RMSE of 51.6798, 
R² of 0.8278, RMSLE of 0.4507, and MAPE of 0.5739. The results indicate that the XGBoost 
model effectively forecasts soil nutrient levels, outperforming other evaluated models. 
Accurately predicting macronutrient concentrations enables targeted fertilization 
strategies, reducing costs and environmental impact while optimizing Harumanis mango 
production. However, the model relies on soil nutrient data and is highly dependent on 
accurate sensor readings. Future studies should focus on expanding the dataset and 
incorporating additional environmental parameters to further enhance model precision and 
applicability across diverse agricultural regions. 

 
Keywords: NPK, Machine Learning, Prediction, CSTV, Boosting. 
 
  

1.  INTRODUCTION  
 
The Harumanis mango, a highly esteemed variety originating from Perlis, Malaysia, is renowned 
for its exceptional organoleptic properties and economic significance [1, 2]. The optimal yield and 
fruit quality of this cultivar are contingent on various factors, with soil nutrient management 
playing a pivotal role [1, 3, 4]. Specifically, the availability of essential macronutrients (N, P, K) in 
the soil directly influences mango tree branch growth, vegetative flush, generative flush, 
flowering, fruit set, and ultimately, the overall success of cultivation [1, 3, 5]. 
 
Traditional methods for determining soil nutrient levels involve labor-intensive processes such 
as soil sampling, chemical extraction, and laboratory analyses using spectrophotometry or 
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chromatography. These procedures require specialized equipment, skilled personnel, and 
extended processing times, making them costly and impractical for frequent use. This 
underscores the necessity for efficient and cost-effective methods to forecast soil macronutrient 
levels, which can facilitate prompt and well-informed decisions about fertilizer application and 
soil management strategies. 
 
There is a significant gap in the research on the nutritional requirements of Harumanis trees. 
Previous studies have not comprehensively investigated the specific nutrient needs of Harumanis 
trees throughout their growth stages, compelling farmers to rely on empirical knowledge rather 
than data-driven methods. Furthermore, current research predominantly focuses on predicting 
nutrient addition based on fertilizer type and quantity, while overlooking soil NPK levels. This 
dependence on personal knowledge results in suboptimal nutrient management practices, where 
fertilizers are often applied based on general guidelines without considering the specific 
requirements of the trees during each growth stage [6]. 
 
In recent years, machine learning (ML) techniques have emerged as powerful tools for predicting 
complex phenomena in various domains, including agriculture [7–11]. Boosting algorithms have 
gained significant attention owing to their ability to handle high-dimensional data and achieve 
high levels of predictive accuracy. These algorithms combine multiple weak learners to create a 
strong predictive model, effectively capturing complex relationships within the data [12–14]. 
 
This study investigates the potential of four prominent boosting algorithms, XGBoost, LightGBM, 
Gradient Boosting Regressor (GBR), and AdaBoost, to predict the added amount of soil 
macronutrients in the context of Harumanis mango cultivation [13-16]. By evaluating and 
comparing the performance of these algorithms, this study aims to identify a robust and accurate 
predictive model that can assist farmers and agricultural practitioners in optimizing soil nutrient 
management practices, ultimately contributing to improved Harumanis mango yield and quality 
[4, 15]. 
 
 
2. METHODS AND METHODOLOGY 
 
The research began with problem formulation and initial soil sample analysis. Data were 
collected from the first location, Muzium Mempelam Kuala Sala, Alor Star, and underwent data 
cleaning and labelling to ensure dataset quality. This step is crucial for removing noise and 
inconsistencies. The next step involved feature engineering based on target features, utilizing the 
Mitscherlich Method [22,23] and the modified arsine log calibration curve (MALCC) method [21] 
to derive important soil attributes. Subsequently, exploratory data analysis (EDA) was conducted 
to gain insights into the dataset and identify patterns or correlations that may influence model 
performance (Figure 1). 
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Figure 1: Methodology outlines a structured approach for predicting soil nutrient levels using machine 

learning and is divided into four phases. 
 
In the model training phase, the cleaned and labelled data were split into training and validation 
sets. The training set was used for data preprocessing, which involved normalizing or 
standardizing the data, handling missing values, and transforming variables as needed. The 
preprocessed training data were then fed into the model training step, where machine learning 
boosting algorithms were applied. 
 
After training, model performance was assessed using a validation set. Evaluation metrics such 
as MAE, MSE, RMSE, R², RMSLE, and MAPE were calculated to determine accuracy and robustness. 
Cross-validation ensured model generalization [25]. The model underwent hyperparameter 
tuning to further optimize performance. The best-performing model was then tested using data 
from a new location in Guar Nangka, Perlis. 
 
Finally, the model was evaluated using the test set to ensure it performed well on unseen data. If 
the model met the performance criteria, it was deployed. The methodology, model, and findings 
have been documented for publication and future reference. 
 
2.1 Data Collection 

 
To conduct comprehensive data collection on Harumanis mango orchards, it is crucial to carefully 
select a representative orchard with a consistent production history and typical agricultural 
practice. For this data collection, we chose Muzium Mempelam Kuala Sala, Alor Star (Government 
Orchard, Department of Agriculture, Kedah, Loc: 5°58’05.2 “N 100°24’05.3” E) and Kampung Guar 
Nangka, Perlis (farmer orchard, Loc: 6°28’34.9 “N 100°17’06.0” E) as the sites for this study from 
1 May 2020 to 30 May 2022. To ensure a proper study, permission was obtained from the Head 
of the Agriculture Department, Kedah, to collect data and the owner of the harumanis orchard, 
Kampung Guar Nangka, Perlis. The selected orchard was divided into distinct sampling zones, 
considering factors such as tree growth, soil texture, and management practices. This zoning 
approach allowed for a more accurate representation of the overall soil conditions in the orchard. 
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2.1.1 Data Collection 1: Train and Validation dataset  
 
Initial soil samples were collected from Muzium Mempelam Kuala Sala, and analysed to 
determine the baseline levels of essential macronutrients, namely, N, P, and K. The data collection 
process involved standard soil sampling techniques to ensure representativeness across different 
parts of the Harumanis mango orchards in Figure 2. 
 

 
Figure 2: Location of Data Collection 1: Muzium Mempelam Kuala Sala. Kedah. Malaysia. 

 
Table 1 summarizes the soil and environmental data collected from Muzium Mempelam Kuala 
Sala, focusing on key parameters, such as N, P, K, Soil temperature, Soil Moisture, pH, electrical 
conductivity (EC), rainfall, and phenology stage. With 30,318 samples, the table provides 
statistical measures, including the mean, standard deviation, and quartiles, revealing the 
distribution and variability of each parameter. For instance, the N levels ranged from 2 to 143 
units, with an average of 55.27 units and a standard deviation of 31.37 units, indicating moderate 
variability. These data are crucial for understanding soil nutrient dynamics in Harumanis mango 
orchards. 
 

Table 1: Measurements and conversions for the refractive index of water. 
 

Variable count mean std min 25% 50% 75% max 
N 30318 55.27 31.37 2 29 49 82 143 
P 30318 57.11 33.20 0 34 54 73 178 
K 30318 65.18 63.63 5 28 45 72 372 
Temperature 30318 27.03 4.31 16 23.83 28.1 30.2 34.8 
Moisture 30318 70.48 16.61 14.26 60.6 78.07 82.81 99.98 
pH 30318 6.51 0.68 3.5 6.09 6.49 6.94 8.99 
EC 30318 1.62 0.48 0.23 1.3 1.6 1.93 3.31 
Stage 30318 2.35 1.89 0 0 3 4 5 
Rainfall 30318 6.94 9.64 0 0.4 3.1 9.9 84.9 

 
2.1.2     Data Collection 2: Test Dataset 
 
Soil samples were collected from Kampung Guar Nangka, Perlis, to validate the developed 
predictive models in Figure 3. This secondary dataset was used to test models in a different but 
relevant geographical context to ensure generalization. 
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Figure 3: Location Data Collection 2: Harumanis orchard, Guar Nangka, and Perlis, Malaysia. 

 
Table 2 provides descriptive statistics for soil and environmental parameters from 4,628 
samples, highlighting essential factors such as nutrient levels, soil temperature, and soil moisture. 
The N levels showed an average of 73.0 units with moderate variability (std = 32.3), ranging from 
20–134 units. P and K had averages of 72.9 and 106.7 units, respectively, with K exhibiting higher 
variability (std = 85.5). The average temperature and humidity were 28.3°C and 64.4%, 
respectively, indicating consistent environmental conditions. The average pH was 6.9, reflecting 
slightly acidic to neutral soil conditions. The EC and rainfall averages were 1.5 and 8.3, 
respectively. 
 

Table 2: Data collected from the Harumanis orchards in Guar Nangka and Perlis. Malaysia. 
 

Variable count mean std min 25% 50% 75% max 
N 4628 73.02 32.28 20 47 65 102 134 
P 4628 72.85 37.61 14 46 70 91 153 
K 4628 106.68 85.52 29 58 79 109 332 
Temperature 4628 28.01 4.05 17.9 25.5 29.1 30.9 35.9 
Moisture 4628 72.17 10.97 44.3 62.9 76.4 81 87.4 
pH 4628 6.84 0.63 3.88 6.42 6.82 7.27 8.22 
EC 4628 1.25 0.65 0.1 0.7 1.3 1.7 2.9 
Stage 4628 2.31 1.92 0 0 3 4 5 
Rainfall 4628 13.29 18.67 0 1.1 1.6 19.8 85 

 
2.2. Data Preprocesing 

 
Data preprocessing involves cleaning and transforming raw data by handling missing values, 
normalizing or standardizing the data, and encoding categorical variables for model training. 
Feature engineering was performed to enhance the predictive capabilities of these models. This 
step involved creating new variables or modifying existing ones to better capture the underlying 
relationships between soil properties and macronutrient levels. The target features included the 
levels of N, P, and K in the soil. To predict the amount of each nutrient (N, P, K) remaining in the 
soil after 14 days, we used a decay model that accounts for these losses: 

 
Step Process: 

1. Determination of the initial nutrient content 
o For an NPK fertilizer with a ratio of 15-15-15, each component (N, P, and K) 

comprises 15% of the fertilizer by weight. 
o When 200 g of fertilizer was applied, the initial amount of each nutrient was 30 g 

(200 g × 15%). 
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2. Convert to Elemental Form: 
o Nutrient forms in fertilizers (such as P₂O5 and K₂O) are converted to their 

elemental forms: 
 Elemental N = 30 grams (N is already elemental) 
 Elemental P = 30 grams * 0.4364 = 13.092 grams 
 Elemental K = 30 grams * 0.8301 = 24.903 grams 

3. Apply Decay Model: 
o The amount of each nutrient remaining after 14days was calculated using a decay 

model: 
𝑁𝑁𝑁𝑁 = 𝑁𝑁0 × 𝑒𝑒−𝑘𝑘𝑘𝑘                                         (1) 

o Here, 𝑁𝑁𝑁𝑁 is the remaining amount after t days, 𝑁𝑁0 is the initial amount, k is the 
decay constant (which varies by nutrient and environment), and e is the base of 
the natural logarithm. 
Equations for Each Nutrient: 
For N 𝑁𝑁14 = 𝑁𝑁initial × 𝑒𝑒−𝑘𝑘𝑁𝑁×14                                  (2) 
For P 𝑃𝑃14 = 𝑃𝑃initial × 𝑒𝑒−𝑘𝑘𝑃𝑃×14                                   (3) 
For K 𝐾𝐾14 = 𝐾𝐾initial × 𝑒𝑒−𝑘𝑘𝐾𝐾×14                               (4) 
 

2.3. Model Development 
 

Model development involves selecting appropriate machine learning algorithms, splitting the 
dataset into training and testing sets, training the model on the training data, tuning the 
hyperparameters, and evaluating its performance using the metric accuracy of R². This process 
ensures that the model is well-suited for accurately predicting outcomes based on the input data. 
 
2.4. Model Training 

 
Four different boosting algorithms, XGBoost, LightGBM, GBR, and AdaBoost, were used to predict 
soil macronutrient levels. Each algorithm was trained using the training set, and the 
hyperparameters were tuned based on the performance of the validation set. 
 

1. Data Splitting: The dataset was divided into training and testing sets using an 
appropriate ratio (e.g., 80:20 or 70:30) to ensure model generalization [16,17] 
2. Hyperparameter Tuning: Grid search or other optimization techniques were 
employed to determine the optimal hyperparameters for each boosting algorithm, 
maximizing the predictive performance of the training data [24] 
3. Model Training: Each boosting algorithm was trained on the training data using 
optimized hyperparameters. 

 
 
3. RESULTS AND DISCUSSION  
 
Table 3 shows that the dataset underwent preprocessing to improve model performance. Yeo-
Johnson transformation normalized skewed data, while Robust Scaling handled outliers. Features 
with high multicollinearity (>0.9) were removed. One categorical variable was encoded, and 10-
fold K-Fold cross-validation ensured reliability. The final dataset had 15 features after iterative 
imputation and feature engineering. 
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Table 3: Data Preprocessing and Transformation Summary. 
 

Description Value Explanation 
Target Variable Target_Feature The dependent variable (what the model predicts). In this 

case, it refers to the amount of Target_Feature fertilizer 
needed. 

Target Type Regression The problem type is regression, meaning the model 
predicts a continuous value rather than a category. 

Original Data Shape (30,318, 10) The raw dataset has 30,318 samples (rows) and 10 features 
(columns) before preprocessing. 

Transformed Data 
Shape 

(29,256, 15) After preprocessing, the dataset was reduced to 29,256 
samples and expanded to 15 features (possibly due to 
feature engineering or encoding categorical variables). 

Transformed Train 
Set Shape 

(20,160, 15) The training dataset consists of 20,160 samples with 15 
features. 

Transformed Test Set 
Shape 

(9,096, 15) The test dataset consists of 9,096 samples with 15 features. 

Multicollinearity 
Threshold 

0.9 Features with a correlation above 0.9 were removed to 
avoid redundancy and overfitting. 

Outliers Threshold 0.05 The most extreme 5% of outliers were removed to improve 
model performance. 

Transformation 
Method 

yeo-johnson The Yeo-Johnson transformation was applied to normalize 
skewed numerical features. Unlike log transformation, it 
works for both positive and negative values. 

Normalize Method robust The Robust Scaler was used to normalize data based on the 
interquartile range (IQR), making it more resistant to 
outliers. 

Transform Target 
Method 

yeo-johnson The Target_Feature was also transformed using Yeo-
Johnson to improve normality and model performance. 

Fold Generator KFold K-fold cross-validation was used to validate model 
performance by splitting the data into multiple folds. 

Fold Number 10 10-fold cross-validation was performed, meaning the data 
was split into 10 subsets, with each subset used as a test set 
once while the others were used for training. 

 
 
3.1    Performance Evaluation  
 
The performance of the models was evaluated using a training set. Key metrics, such as MAE, 
RMSE, and R², were calculated to assess the accuracy and robustness of each model. 
 

Table 4: Performance Metrics. 
 

Model Hyperparameter MAE MSE RMSE R2 RMSLE MAPE 
XGBoost 11.5327 286.7185 16.8774 0.9793 0.1044 0.0583 
LightGBM 12.2258 409.9217 20.1082 0.9704 0.1364 0.073 
GBR 11.9667 313.139 17.6516 0.9773 0.1189 0.0631 
AdaBoost 32.1306 1632.444 40.3736 0.8818 0.2204 0.1648 
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3.2    Prediction Performance Evaluation 
 
The predictive accuracy of each model was evaluated using the coefficient of determination, 
which quantifies the proportion of variance in the dependent variable (soil macronutrient levels) 
explained by the independent variables (soil properties). Higher R2 from Table 4 values indicates 
a better model fit and predictive power. 

 
3.2.2  Analysis of the Models  
 
The performance of the models showed some changes after hyperparameter tuning. The Extreme 
Gradient Boosting model improved further, with an R² increasing to 0.8278, meaning the model 
now explains 82.78% of the variance in the soil macronutrient levels, making it an even more 
reliable predictor. The error metrics for XGBoost also improved slightly, reinforcing its position 
as the best-performing model. 

 
Table 5: Prediction Tuned Model using Guar Nangka, Perlis Orchard. 

  
Model MAE MSE RMSE R2 RMSLE MAPE 
XGBoost 38.4046 2670.7991 51.6798 0.8278 0.4507 0.5739 
LightGBM 41.6924 3453.6349 58.7676 0.7773 0.5003 0.7189 
GBR 52.2665 3935.0174 62.7297 0.7463 0.6692 1.0237 
AdaBoost 61.9511 5826.416 76.331 0.6244 0.7271 1.5183 

 
3.3    Evaluation and Model Selection 
 
Based on the performance metrics, the best-performing model was XGBoost, with a score R2 of 
82.78% for the final evaluation. This model was then tested on a secondary dataset (Data 
Collection 2) to verify its generalizability and reliability in different environments. Table 6 
compares the actual Target_feature values with their predicted labels, highlighting the 
percentage error for each prediction. Target_feature values ranged from approximately 100 to 
450, with predictions closely matching the actual values, demonstrating the model’s accuracy. 
The percentage error varied from as low as 1% to as high as 16%, indicating instances in which 
the predictions were either highly accurate or slightly off. For example, an actual Target_feature 
value of 98.9 has predictions of 96.6 and 99.7, resulting in percentage errors of 2% and 1%, 
respectively. Overall, the table illustrates the effectiveness of the model in predicting 
Target_feature values with reasonable accuracy. 
 

Table 6: Comparison of the actual Target_feature values with their predicted labels. 
 

Target_feature Prediction_label Percentage Error 
103.7 90.5 13% 
103.7 89.7 13% 
100.5 91.1 9% 
98.9 96.6 2% 
98.9 99.7 1% 

438.6 408.7 7% 
438.5 380.4 13% 
444.9 372.2 16% 
446.5 389.9 13% 
452.9 423.4 7% 
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3.3.1   Model Analysis 
 
The residual plot for the XGBoost model in Figure 4 shows the residuals (differences between the 
predicted and actual values) against the predicted values for both the training and test sets. The 
training set had an R² of 0.989, indicating that the model explained 98.9% of the variance, while 
the test set had an R² of 0.982, showing strong generalization with 98.2% variance explained. The 
residuals were mostly centered around zero, suggesting minimal bias and good model 
performance. The distribution plot on the right shows a roughly normal distribution of residuals, 
reinforcing that the errors are randomly distributed without obvious patterns. 
 

 
Figure 4: The residual plot for the XGBoost model. 

 

 
Figure 5: The learning curve for XGBoost. 

 
The learning curve for XGBoost in Figure 5 shows the relationship between the model 
performance and the number of training instances. The Training Score (blue line) started high, 
close to 0.9925, but gradually decreased as the number of training instances increased, stabilizing 
at approximately 0.990. This slight decline suggests that the model becomes less overfitted as 
more data are included. 
 
The Cross Validation score (green line) started lower, at approximately 0.9775, and increased 
steadily, reaching approximately 0.980 as more data were added, indicating improved 
generalization. The gap between the training and cross-validation scores narrowed slightly, 
suggesting that the model was learning and generalizing well with the additional data. The shaded 
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area around the cross-validation score represents the variability in performance, which remained 
relatively consistent, indicating stable model behavior across different subsets of the data. 
 

 
Figure 6: The prediction error plot for the XGBoost. 

 
The prediction error plot for the XGBoost in Figure 5 Regressor shows the relationship between 
the actual values (y) and the predicted values �𝑦𝑦𝑦𝑦��. The R² value of 0.982 indicates that the model 
explains 98.2% of the variance in the data, suggesting a strong predictive accuracy. 
 
The plot features two key lines: the identity line (dashed, grey), where 𝑦𝑦𝑦𝑦 = 𝑦𝑦�, representing 
perfect predictions, and the best fit line (solid, black), which represents the actual relationship 
between predicted and true values. The points are closely clustered around the identity line, 
indicating that the predictions are close to the actual values. The proximity of the best-fit line to 
the identity line further confirms the accuracy of the model. The outliers were minimal, 
demonstrating that the model performed consistently well across a range of data points. 

 

 
Figure 7: The recursive feature elimination with cross-validation (RFECV) plot for XGBoost. 

 
The recursive feature elimination with cross-validation (RFECV) plot for XGBoost in Figure 7 
shows how the model performance changes as different numbers of features are selected. The x-
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axis represents the number of features selected, and the y-axis represents the cross-validation 
score, which indicates the model’s performance. 
 
As the number of selected features increased from 1 to 4, the score improved significantly, 
indicating that these initial features were highly important for the model performance. After 
reaching 12 features, the score stabilized at a high value of 0.982, suggesting that adding more 
features beyond this point did not significantly improve the model performance. The vertical 
dashed line marks the point at which 12 features are selected, indicating that this is the optimal 
number of features for maximizing the model accuracy. The shaded area around the line 
represents the variability in the cross-validation score, which narrows as more features are 
added, indicating an increased model stability. 
 

 
Figure 8:  Validation curve for the XGBoost. 

 
The validation curve for the XGBoost in Figure 8 illustrates how the model performance varies 
with changes in the max_depth parameter, which controls the maximum depth of each tree in the 
ensemble. X-axis: Represents the max_depth values ranging from 1 to 10. Y-axis: Represents the 
model performance score, with separate lines for the training (blue) and cross-validation (green) 
scores. 
 
As max_depth increased from 1 to 4, both the training and cross-validation scores increased 
sharply, indicating that deeper trees improved the model’s ability to capture patterns in the data. 
Beyond a max_depth of 4, the training score continues to increase, approaching nearly 1.0, 
suggesting that the model fits the training data very well. However, the cross-validation score 
levels off at approximately 0.98 and shows a slight decline beyond a max_depth of 6. This 
divergence indicates potential overfitting, where the model performs well on the training data 
but does not generalize as effectively to unseen data. 
 
The plot suggests that a max_depth of approximately 4 to 6 provides a good balance between 
model complexity and generalization, where the model achieves high accuracy without 
significant overfitting. 
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4. CONCLUSION  
 
In this study, the application of various boosting algorithms, particularly XGBoost, for predicting 
soil macronutrient levels in the context of Harumanis mango cultivation was investigated. The 
results of the different analyses, including residual plots, learning curves, and feature importance, 
offer insights into the model performance and the critical factors influencing soil nutrient 
prediction. 
 
XGBoost demonstrated exceptional predictive capability, with an R² value of 0.982 on the test set, 
indicating that the model accurately explained 98.2% of the variance in soil nutrient levels. The 
minimal residuals and alignment of the predicted values with the actual values confirmed the 
model’s reliability and robustness. The learning curve analysis further supported this, showing a 
good balance between the training and cross-validation scores, which suggests that the model 
generalizes well to unseen data without significant overfitting. 
 
Feature importance analysis revealed that the phonological stages of Harumanis mango, 
particularly the flowering stage, are the most influential predictors of soil macronutrient levels. 
This emphasizes the critical role of plant growth stages in nutrient uptake and availability. The 
high importance of nitrogen and potassium also aligns with the agronomic understanding that 
these nutrients are vital for plant growth and for fruit development. 
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