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ABSTRACT 
 

The Artificial Bee Colony (ABC) algorithm has emerged as a prominent metaheuristic 
technique for solving complex optimization problems due to its simplicity, robustness, and 
bio-inspired behavior. However, standard ABC suffers from limitations such as slow 
convergence and premature stagnation. To address these issues, numerous variants have 
been developed, among which the Semi-Greedy Artificial Bee Colony (SGABC) algorithm 
introduces a significant advancement by incorporating heuristic-driven yet probabilistic 
decision strategies. This review provides a comprehensive analysis of the evolution of ABC 
algorithms, with particular emphasis on semi-greedy strategies. It categorizes key 
modifications, compares SGABC with standard ABC and other metaheuristics, and highlights 
its superior performance in problems such as Two-Sided Assembly Line Balancing (2SALB). 
The paper also explores SGABC’s industrial applications, identifies current research gaps, 
and proposes future directions including adaptive control, multi-objective frameworks, and 
real-time optimization. SGABC is positioned as a robust and scalable optimization 
framework with strong potential for further theoretical development and industrial 
deployment. 

 
Keywords: Two-sided assembly line balancing, Artificial bee colony, Semi-greedy 
algorithm, Metaheuristic, Optimization.  
 
  

1.  INTRODUCTION  
 

Metaheuristic algorithms inspired by natural processes have become indispensable tools in 
solving complex optimization problems across engineering, manufacturing, logistics, and 
artificial intelligence domains. These algorithms are especially valuable in dealing with NP-hard 
problems where exact methods become computationally impractical. Among the most widely 
studied nature-inspired techniques is the Artificial Bee Colony (ABC) algorithm, introduced by 
Karaboga in 2005 [1], which draws on the intelligent foraging behavior of honey bee swarms. The 
ABC algorithm has since gained significant attention due to its simple structure, minimal 
parameter tuning requirements, and ease of adaptation to various problem types. 
 
ABC is a population-based algorithm that simulates the roles of three types of bees: employed, 
onlooker, and scout bees. These artificial agents collectively balance global exploration and local 
exploitation in the search space. The algorithm has been successfully applied to a wide array of 
applications, including function optimization, scheduling, clustering, image segmentation, and 
notably, assembly line balancing problems (ALBPs), a core focus of this paper [2, 3]. 
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Despite its effectiveness, the standard ABC algorithm suffers from several inherent limitations. 
These include slow convergence rates, especially in the later stages of optimization, and 
premature convergence where the search becomes trapped in local optima. Moreover, the 
random nature of neighborhood solution generation limits the algorithm’s ability to exploit 
known good solutions effectively [4]. These challenges have prompted numerous researchers to 
propose various improvements and hybridizations over the years. 
 
One particularly promising direction involves the integration of heuristic-based selection 
mechanisms into the ABC framework. Known as the Semi-Greedy Artificial Bee Colony (SGABC) 
algorithm, this enhanced variant seeks to retain the explorative nature of ABC while improving 
its exploitation capabilities through the incorporation of semi-greedy strategies. The semi-greedy 
approach, inspired by the Greedy Randomized Adaptive Search Procedure (GRASP), utilizes 
heuristic information to build a restricted candidate list (RCL) from which selections are made 
probabilistically. This allows the algorithm to focus on promising regions of the solution space 
without sacrificing population diversity [5]. 
 
The SGABC algorithm has shown promising results in various domains, particularly in discrete 
and constrained optimization problems such as the Two-Sided Assembly Line Balancing (2SALB) 
problem. Recent studies have demonstrated that SGABC not only improves convergence speed 
but also delivers more stable and higher-quality solutions compared to both standard ABC and 
other swarm-based metaheuristics [6, 7]. 
 
This review paper provides a comprehensive overview of the evolution of the ABC algorithm, with 
a particular emphasis on semi-greedy modifications. It aims to categorize the major variants of 
ABC, highlight the role of SGABC in enhancing optimization performance, evaluate its 
comparative effectiveness, and outline its application potential in industrial settings. 
Furthermore, it identifies existing research gaps and proposes future directions to improve the 
scalability, adaptiveness, and industrial relevance of SGABC-based optimization frameworks. 
 
 
2. BACKGROUND AND ALGORITHMIC FOUNDATIONS 
 
The Artificial Bee Colony (ABC) algorithm is a population-based metaheuristic developed by 
Dervis Karaboga in 2005. Inspired by the foraging behavior of honey bees, the algorithm 
simulates the collective intelligence of a bee colony in locating, evaluating, and exploiting food 
sources. In the context of optimization, these food sources represent candidate solutions, and the 
goal is to iteratively improve them to identify the most optimal solution. The division of labor 
among employed bees, onlooker bees, and scout bees enables a dynamic balance between 
exploration of the global search space and exploitation of known high-quality solutions [1]. Due 
to its biologically inspired structure, the ABC algorithm is both intuitive and computationally 
efficient. It has become a widely adopted technique for solving a broad range of continuous and 
discrete optimization problems, including scheduling, routing, clustering, and manufacturing 
systems. Its popularity stems from its simplicity of implementation, minimal reliance on 
algorithm-specific parameter tuning, and strong global search capabilities that make it well-
suited for tackling complex, nonlinear, and multimodal problems [8]. 
 
To address the aforementioned limitations, several modifications and hybrid approaches have 
been proposed. Table 1 summarizes key enhancements to the ABC algorithm, highlighting their 
objectives, techniques, and representative studies. 
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Table 1: Key enhancements to the ABC Algorithm. 
 

Enhancement Type Objective Example Techniques / 
Variants Key References 

Modified Search 
Operators 

Improve local search and 
convergence speed 

Adaptive step size, Lévy 
flight, opposition-based 

learning 

Zhang et al. (2023)  
[2] 

Hybrid Metaheuristics Combine ABC with other 
algorithms for enhanced 

performance 

ABC-GA, ABC-PSO, ABC-
DE 

Cao et al. (2023) 
[9] 

Elitism and Memetic 
Strategies 

Retain the best solutions 
and apply local 

refinements 

Memetic ABC, elitist 
replacement 

Bansal et al. (2020) 
[7] 

Self-Adaptive / 
Parameter-Free ABC 

Reduce manual tuning of 
parameters during 

execution 

Dynamic population size, 
fuzzy logic controllers 

Huang et al. (2023) 
[10] 

Heuristic-Guided (Semi-
Greedy) ABC 

Guide solution 
construction using 

informed probabilistic 
choices 

Restricted Candidate List 
(RCL), biased selection 

Feo & Resende (2020) 
[5] 

One notable enhancement to the Artificial Bee Colony (ABC) algorithm is the integration of semi-
greedy strategies into its core framework. Originally introduced in the context of Greedy 
Randomized Adaptive Search Procedures (GRASP) by Feo and Resende (1995) [11], semi-greedy 
methods involve constructing a Restricted Candidate List (RCL) based on heuristic evaluations, 
from which selections are made probabilistically. This hybrid approach offers a practical balance 
between the intensification of greedy methods and the diversification offered by stochastic 
search, making it well-suited for large and complex search spaces [5]. 

In the context of ABC, these strategies can be embedded during both the employed bee and 
onlooker bee phases, where bees use task-specific heuristics such as precedence weight, 
processing time, or positional priority to make more informed search decisions. Such integration 
enhances the algorithm’s ability to escape local optima and accelerates convergence, especially in 
constrained combinatorial environments [2, 12]. 

The performance limitations of standard ABC, particularly in discrete, multi-constraint settings, 
have driven the evolution of the Semi-Greedy Artificial Bee Colony (SGABC) algorithm. SGABC 
combines the exploratory power of ABC with heuristic-guided exploitation, resulting in improved 
convergence speed and solution quality. It effectively maintains search diversity through 
probabilistic selection while directing efforts toward promising regions in the solution space. 

Recent empirical findings confirm the algorithm’s practical value. For instance, Amin Hamzas et 
al. (2023) [6] applied a hybrid SGABC model to solve the Two-Sided Assembly Line Balancing 
(2SALB) problem and reported a significant reduction in the number of workstations used and 
better convergence stability compared to standard ABC, PSO, and GA. These results validate the 
SGABC algorithm as a robust and scalable optimization method for solving real-world discrete 
and constraint-driven problems. 
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3. DEVELOPMENT OF SEMI-GREEDY STRATEGIES  
 
The Semi-Greedy Artificial Bee Colony (SGABC) algorithm was introduced to address 
fundamental weaknesses of the standard Artificial Bee Colony (ABC) framework, particularly its 
susceptibility to premature convergence, limited exploitation ability, and performance instability 
in discrete or constrained problem domains. While the original ABC algorithm excels at global 
exploration, it often lacks the capability to refine promising solutions effectively, especially in 
complex combinatorial spaces. This shortcoming primarily arises from its heavy dependence on 
random neighbor generation and greedy selection mechanisms, which can cause the search to 
stagnate in local optima [2, 4]. 

To counteract this, SGABC integrates a semi-greedy selection mechanism that balances heuristic 
guidance with controlled randomness. The strategy involves constructing a Restricted Candidate 
List (RCL), a concept rooted in Greedy Randomized Adaptive Search Procedures [5], during each 
solution update. Rather than deterministically choosing the best candidate or blindly sampling 
the neighborhood, SGABC evaluates multiple potential solutions based on heuristics such as task 
time, positional weights, or precedence constraints, and includes only the most promising 
candidates in the RCL. One solution is then probabilistically selected from this pool. This 
procedure is embedded in both the employed bee and onlooker bee phases, ensuring that the 
algorithm emphasizes promising areas of the search space while maintaining diversity to avoid 
local traps. 

A defining strength of SGABC lies in its adaptive greediness control. Some versions utilize a static 
threshold to determine RCL composition, while others dynamically adjust the RCL size or 
threshold throughout the search based on convergence behavior, population diversity, or fitness 
distribution. For example, larger RCLs are used in the early search phase to promote broad 
exploration, while smaller, greedier selections are favored as convergence nears. This dynamic 
strategy enhances convergence speed and stability, especially in multi-objective or time-sensitive 
optimization problems [12]. 

To further boost its effectiveness, SGABC is often hybridized with trajectory-based local search 
methods. Examples include 2-opt for combinatorial optimization, greedy repair for infeasible 
solutions, or path relinking techniques. These hybridizations marry the global search power of 
swarm intelligence with the fine-tuning accuracy of local refinement, resulting in improved 
convergence quality and reduced stagnation risks. Moreover, researchers have recently explored 
learning-based SGABC variants, integrating fuzzy decision-making or reinforcement learning to 
tune heuristic weightings on the fly in uncertain or dynamic problem settings [2]. 

Recent comparative studies underscore SGABC’s superiority over traditional metaheuristics. 
Hamzas et al. (2023) [6] applied SGABC to benchmark datasets of the Two-Sided Assembly Line 
Balancing (2SALB) problem and reported consistent improvements in both convergence speed 
and solution quality over standard ABC, PSO, and GA. Specifically, the study achieved up to 15% 
reduction in the number of workstations and 30% faster convergence, while maintaining 100% 
feasibility across multiple runs. Similarly, Liu et al. (2024) [13] demonstrated SGABC’s ability to 
solve high-dimensional scheduling problems with constrained resources more effectively than 
ACO and DE by leveraging its balanced search strategy. 

In summary, SGABC represents a significant evolutionary leap in swarm-based optimization 
algorithms. Its semi-greedy structure enables informed yet flexible decision-making, allowing it 
to solve constrained, discrete, and dynamic optimization problems more robustly than traditional 
ABC. With its adaptability, hybridization capability, and successful deployment in real-world 
scenarios, SGABC is poised to serve as a cornerstone in the next generation of intelligent 
optimization tools. Table 2 below indicates the key SGABC developments. 
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Table 2: Key of SGABC Developments. 
 

Study / Author Application 
Domain 

SGABC Feature Key 
Enhancements 

Performance 
Outcome 

Hamzas et al. 
(2023) [6] 

2SALB (Assembly 
Line Balancing) 

Semi-greedy 
selection + static 

RCL 

Hybridized with 
assignment slot 

encoding 

15% fewer 
workstations, 

faster 
convergence 

Singh et al. 
(2022) [12] 

Multi-objective 
job scheduling 

Dynamic RCL 
adaptation 

Time-based 
greediness control 

Improved Pareto 
front coverage, 
fewer iterations 

Liu et al. (2024) 
[13] 

Constrained 
resource 

scheduling 

Heuristic-driven 
candidate ranking 

Precedence + 
urgency-based 

heuristics 

30% better task 
balancing under 

resource 
constraints 

Zhang et al. 
(2023) [2] 

Uncertain task 
assignment 

Learning-based 
RCL generation 

Reinforcement 
learning for 

heuristic tuning 

High stability 
under uncertainty, 

adaptive search 
depth 

Bansal et al. 
(2020) [7] 

General 
engineering 

design 

Semi-greedy local 
search 

hybridization 

2-opt local 
refinements post-

selection 

Better 
convergence 

quality, robust 
against noise 

 
 
4. COMPARATIVE PERFORMANCE ANALYSIS 
 
This section presents a comprehensive comparative evaluation of the Semi-Greedy Artificial Bee 
Colony (SGABC) algorithm against the standard ABC algorithm and other well-established 
metaheuristic approaches, such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), 
and Ant Colony Optimization (ACO). SGABC is specifically designed to overcome performance 
limitations found in traditional ABC, and its effectiveness is analyzed here through a set of widely 
recognized performance indicators. These indicators include solution quality, convergence speed, 
feasibility rate, and robustness, all of which provide a holistic perspective on algorithm 
performance in complex optimization environments [3, 4]. 

The analysis draws from recent empirical studies and benchmark applications, particularly 
within the domain of discrete and combinatorial optimization problems such as the Two-Sided 
Assembly Line Balancing (2SALB) problem, a well-known NP-hard challenge in manufacturing 
systems optimization. SGABC has demonstrated a notable ability to produce higher-quality 
solutions by minimizing workstation usage, optimizing cycle time, and achieving better load 
distribution among stations [6]. In terms of convergence behavior, SGABC consistently achieves 
near-optimal solutions in fewer iterations compared to standard ABC and GA, owing to its 
adaptive greedy mechanism that biases selection toward high-potential regions of the search 
space while maintaining diversity [13]. 

Feasibility and robustness are also central to this evaluation. In studies involving constraint-
heavy scheduling and task allocation problems, SGABC maintained a near-100% feasibility rate 
across multiple test instances, indicating its strong capacity to navigate search spaces with 
precedence constraints, side assignments, and resource limitations [12]. Furthermore, the 
algorithm has shown high robustness, with low variance in results across multiple independent 
runs, highlighting its reliability for industrial and real-time applications. 

By consolidating findings across multiple studies, this comparative section aims to establish 
SGABC’s superiority over standard ABC and demonstrate its competitiveness with other hybrid 
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metaheuristics. The next sub-sections provide detailed quantitative comparisons and 
performance charts reinforcing these conclusions. 
 
4.1 Evaluations Metric 
 
To ensure a fair and comprehensive comparison of optimization algorithms, particularly the 
Semi-Greedy Artificial Bee Colony (SGABC) algorithm against standard ABC and other 
metaheuristics, a well-defined set of performance metrics is adopted. These metrics not only 
assess the final quality of the solutions produced but also provide insights into the algorithm’s 
computational behavior, adaptability, and reliability. By evaluating key dimensions such as 
effectiveness, efficiency, feasibility, and stability, these metrics allow for a holistic assessment 
that is both practically relevant and scientifically rigorous. The selected indicators are widely 
recognized in optimization literature and are especially critical in evaluating algorithms applied 
to complex, discrete, and constrained problems such as two-sided assembly line balancing 
(2SALB). The following four metrics serve as the primary benchmarks in this comparative study: 
ensure a fair and comprehensive comparison. The following metrics are used: 
 

• Solution Quality: This refers to the optimality of the solutions produced, often quantified 
by the number of workstations used, cycle time, or objective function value in 
optimization problems. High solution quality reflects the algorithm’s capability to find 
near-optimal or optimal solutions in structured problem spaces. SGABC has 
demonstrated superior solution quality in recent studies, particularly in discrete 
manufacturing optimization [6, 13]. 

• Convergence Speed: This measures how quickly the algorithm approaches high-quality 
solutions, typically by counting the number of iterations or the computational time 
required. Algorithms with faster convergence reduce processing costs and time-to-
decision, which is critical in real-time industrial settings. SGABC’s hybrid semi-greedy 
mechanism has shown improved convergence behavior in constrained optimization 
scenarios [12]. 

• Feasibility Rate: Defined as the proportion of algorithm runs that produce valid, 
constraint-satisfying solutions, this metric is vital for real-world applications where 
infeasible outputs can render an algorithm unusable. Studies have reported that SGABC 
consistently maintains near 100% feasibility in problems involving precedence 
constraints and side allocations [3]. 

• Robustness: This refers to the algorithm’s ability to produce consistent results across 
multiple independent runs, indicating its stability and reliability. Robust algorithms show 
minimal performance variation under different initial conditions or problem instances. 
SGABC has exhibited strong robustness across benchmark datasets, reinforcing its 
practical applicability [2, 4]. 

 
4.2 SGABC vs Standard ABC 
 
Numerous studies have shown that SGABC significantly improves upon the limitations of the 
standard ABC algorithm. By incorporating semi-greedy selection during the solution construction 
phase, SGABC demonstrates faster convergence and produces higher-quality solutions, 
particularly in structured problems such as task scheduling and assembly line design. 
 
SGABC consistently demonstrates reduced idle time in workstations and more efficient balancing 
outcomes when applied to 2SALB instances, outperforming the standard ABC in terms of both 
effectiveness and reliability. Table 3 show the metric evaluations of Standard ABC vs SGABC. 
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Table 3: Metric Evaluations. 
 

Metric Standard ABC SGABC 
Solution Quality Moderate High 

Convergence Speed Slower Faster 
Feasibility Rate Variable High and consistent 

Robustness Sensitive to parameters Stable across multiple runs 
 
 
5. CONCLUSION AND FUTURE DIRECTION 
 
The evolution of Artificial Bee Colony algorithms reflects the growing demand for flexible and 
effective optimization methods across multiple domains. The integration of semi-greedy 
strategies into ABC represents a substantial advancement by improving intensification without 
sacrificing exploratory potential. SGABC offers a compelling balance between randomness and 
heuristic guidance, making it suitable for solving discrete, constrained, and combinatorial 
problems such as two-sided assembly line balancing. 
 
This review has highlighted the strengths of SGABC in terms of convergence rate, robustness, and 
practical applicability. However, challenges remain in parameter tuning, scalability to multi-
objective scenarios, and real-time responsiveness. Future research should prioritize adaptive and 
self-regulating frameworks, integration with reinforcement learning, and deployment in Industry 
4.0 environments via parallel and real-time optimization mechanisms. Overall, SGABC holds 
considerable promise as a next-generation optimization tool, capable of bridging theoretical 
metaheuristics and practical decision support in complex systems. 
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