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ABSTRACT 
 

Injection-molded automotive components, such as exterior car door handles, often suffer 
from defects like volumetric shrinkage, residual stress, and deflection, impacting their 
structural integrity and aesthetic quality. Traditional optimization methods struggle to 
balance the multiple conflicting objectives involved in material selection, mold design, and 
process parameters. This study addresses these challenges by integrating the Taguchi 
method and Grey Relational Analysis (GRA) for multi-objective optimization in Moldflow 
simulations. Key process parameters, including melt temperature, injection pressure, and 
cooling time, were systematically analyzed and optimized to reduce defects. Simulation 
trials using Acrylonitrile Butadiene Styrene (ABS), Polypropylene (PP), and Polycarbonate 
(PC) demonstrated notable improvements, achieving a 56.4% reduction in weld-line width 
and a 68.9% decrease in sink-mark depth. These results highlight the effectiveness of the 
combined Taguchi-GRA approach in enhancing injection molding efficiency, improving 
product quality, and ensuring component longevity. The study establishes a robust 
foundation for further research on optimizing complex injection-molded automotive parts 
and exploring advanced material formulations to meet stringent industry standards. 

 
Keywords: Injection Molding, Moldflow Simulation, Multi-Objective Optimization, 
Taguchi Method, Grey Relational Analysis. 
 
  

1.  INTRODUCTION  
 
Injection molding is a pivotal manufacturing process extensively utilized in the production of 
high-precision plastic components, particularly within the automotive sector. This method is 
favored for its cost efficiency, high production rates, and capability to create complex geometries 
with consistent quality. However, the pursuit of optimal performance in injection-molded 
components is fraught with challenges, primarily due to various defects such as volumetric 
shrinkage, residual stress, deflection, weld lines, and sink marks. These defects not only detract 
from the aesthetic and functional attributes of the final products but also lead to material wastage, 
elevated production costs, and diminished durability of automotive parts [1], [2]. The 
complexities associated with injection molding defects arise from the intricate interplay of 
processing parameters and material characteristics. For instance, residual stresses can 
significantly affect the mechanical properties of molded parts, as highlighted by [1], who noted 
that low mold temperatures in HDPE components resulted in high residual stresses, thereby 
reducing impact strength. Furthermore, the influence of mold temperature on the adhesion 
strength in two-component injection molding has been documented, indicating that temperature 
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variations can drastically affect the interfacial properties of the materials involved [3]. Such 
findings underscore the necessity for meticulous control over processing conditions to mitigate 
defects and enhance the overall quality of injection-molded components. 
 
To address the challenges in producing good quality products by injection molding, Moldflow 
simulation has emerged as a critical tool in the injection molding process. This software enables 
manufacturers to predict potential defects and optimize design parameters before the actual 
production begins. For instance, [4] demonstrated that computer simulation can effectively 
identify issues such as air traps and weld line positions, allowing for necessary design 
modifications without incurring excessive costs. Furthermore, the integration of Moldflow 
simulations facilitates a comprehensive understanding of the thermal and mechanical behavior 
of the materials involved, which is essential for optimizing process parameters such as melt 
temperature and cooling time [5]. The predictive capabilities of Moldflow simulation extend to 
the analysis of mold filling and cooling processes, which are crucial for ensuring the quality of the 
final product. By simulating the flow of the polymer melt within the mold, manufacturers can 
identify potential filling imbalances and adjust the design of the runner system accordingly [6]. 
This capability not only enhances the efficiency of the production process but also significantly 
reduces the likelihood of defects in the molded components. Additionally, studies have shown 
that utilizing Moldflow simulations can lead to substantial reductions in cooling times, thereby 
improving overall production efficiency [5]. By leveraging the predictive capabilities of this 
software, the industry can enhance the quality, efficiency, and durability of injection-molded 
components, thereby addressing the challenges posed by traditional manufacturing methods [7]. 
 
Using a trial-and-error approach alone in conducting simulations for injection molding can be 
time-consuming and inefficient, particularly for complex automotive components like exterior 
car door handles. The intricacies involved in the design and manufacturing of these components 
necessitate a systematic optimization process to ensure that the best process parameters are 
identified without excessive computational costs and delays in production. Without such 
optimization, manufacturers may find themselves engaging in multiple simulation iterations, 
which not only prolongs the time-to-market but also elevates material wastage and operational 
expenses [8]. To address these challenges effectively, this study proposes integrating advanced 
optimization techniques within the simulation phase of the injection molding process. By 
leveraging the Taguchi method for robust experimental design and Grey Relational Analysis 
(GRA) for multi-objective optimization, this approach systematically refines process parameters 
before actual manufacturing begins. This integration enhances the efficiency of simulation trials, 
reducing reliance on time-consuming trial-and-error methods while ensuring optimal material 
selection, mold design, and processing conditions.  
 
 
1.1 Multi-Objective Optimization in Injection Molding Simulation 
 
Injection molding is a highly complex process influenced by multiple interdependent variables, 
including material properties, mold design, and process parameters such as melt temperature, 
injection pressure, packing pressure, and cooling time. These factors must be carefully controlled 
to minimize defects such as warpage, shrinkage, residual stress, and weld lines while ensuring 
optimal production efficiency and product durability. Achieving an ideal balance among these 
conflicting objectives is challenging, requiring a multi-objective optimization approach to 
systematically improve overall product quality and manufacturing efficiency [4], [9]. Multi-
objective optimization in injection molding simulation aims to simultaneously enhance multiple 
performance criteria by integrating advanced computational techniques into the design and 
manufacturing process. Unlike conventional optimization approaches focusing on a single 
performance measure, multi-objective optimization enables manufacturers to evaluate trade-offs 
between conflicting parameters, ensuring that critical quality aspects are addressed without 
compromising other essential factors [10], [11]. For instance, the integration of techniques such 
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as the Taguchi method and Grey Relational Analysis (GRA) into Moldflow simulations allows for 
a comprehensive assessment of how various process parameters interact, leading to improved 
outcomes in terms of defect reduction and overall product quality [12], [13]. 
 
The importance of optimization in injection molding is particularly evident in the production of 
complex automotive components, such as exterior car door handles. These components require 
not only aesthetic appeal but also mechanical strength and durability. By employing multi-
objective optimization, manufacturers can systematically determine the optimal combination of 
material selection, mold design, and process parameters before real manufacturing begins. This 
proactive approach minimizes defects such as volumetric shrinkage, residual stress, weld lines, 
and sink marks, ensuring higher-quality car door handles with improved mechanical strength, 
surface finish, and dimensional accuracy [14], [15]. Furthermore, the application of optimization 
techniques can lead to significant cost savings and reduced material wastage. By minimizing the 
number of trial iterations required to achieve optimal production conditions, manufacturers can 
enhance production efficiency and shorten development cycles. This is particularly crucial in the 
competitive automotive industry, where time-to-market is a critical factor [16], [17]. Ultimately, 
integrating optimization into simulation experiments enhances reliability, improves product 
consistency, and reduces production risks before full-scale manufacturing, thereby contributing 
to the overall success of the injection molding process [16]. 
 
In this study, the Taguchi method is employed for experimental design and parameter screening 
to identify the most influential factors affecting injection molding quality. The Taguchi method is 
a robust statistical approach that focuses on improving product quality by minimizing variability 
and defects through systematic experimentation. By utilizing orthogonal arrays, the Taguchi 
method allows for efficient testing of multiple factors simultaneously, significantly reducing the 
number of experiments required compared to traditional methods [18]. This efficiency is 
particularly beneficial in the context of injection molding, where numerous variables can impact 
the final product’s quality. Following the identification of key parameters, Grey Relational 
Analysis (GRA) is applied to perform multi-objective decision-making. GRA facilitates the 
transformation of multiple performance attributes into a single optimization index, enabling 
manufacturers to evaluate trade-offs between conflicting objectives, such as minimizing defects 
while maximizing strength and durability [19]. This integration provides a systematic framework 
for selecting optimal process parameters that minimize defects such as volumetric shrinkage and 
residual stress while improving dimensional accuracy and structural integrity. 
 
By incorporating multi-objective optimization within Moldflow simulations, this approach 
reduces the need for excessive trial-and-error experiments, leading to significant time and cost 
savings in the product development phase. The optimized parameters identified in the simulation 
phase can then be directly implemented in the actual manufacturing process, ensuring that high-
quality automotive components, such as exterior car door handles, are produced efficiently and 
consistently. This methodology not only improves product reliability but also enhances overall 
production sustainability by reducing material wastage and energy consumption [20]. The 
application of the Taguchi method in conjunction with GRA has been shown to yield substantial 
improvements in the injection molding process. For instance, [21] demonstrated that this 
combined approach effectively optimized the injection molding parameters for automotive 
components, resulting in enhanced mechanical properties and reduced defect rates. Similarly, 
studies have indicated that the Taguchi method can significantly improve the quality of molded 
parts by systematically addressing the factors that contribute to defects, thereby ensuring that 
the final products meet stringent industry standards [22]. Recognizing this, the present study 
aims to develop an optimized injection molding process for exterior car door handles by 
integrating the Taguchi method and Grey Relational Analysis (GRA) within Moldflow simulations. 
Additionally, this study seeks to identify the critical process parameters that significantly impact 
the quality of exterior car door handles. By integrating these optimization techniques, the 
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research aims not only to improve product reliability but also to enhance overall production 
sustainability by minimizing material wastage and energy consumption. 
 
 
2. EXPERIMENTAL PROCEDURE 
 
2.1 Modelling of exterior car door handle 
 
An exterior car door handle was designed using SolidWorks (Figure 1) and utilized as the 
reference model for this study. To conduct the simulation, Moldflow Plastic Insight (MPI) was 
employed, applying a fusion mesh type with a maximum aspect ratio of 7.79, a match percentage 
of 94.6%, and a reciprocal percentage of 95.6%. The fusion-meshed model of the exterior car door 
handle is illustrated in Figure 2. 
 
 

 
Figure 1: 3D-rendered model of an exterior car door handle created using SolidWorks. 

 
 

 
Figure 2: Exterior car door handle with a fusion mesh structure. 

 
 
2.2 Determination of Quality Characteristics 
 
The analysis of the exterior car door handle in this study focused on three key quality 
characteristics: volumetric shrinkage, residual stress, and deflection. These factors play a crucial 
role in determining the structural integrity, durability, and aesthetic appeal of the final product. 
If not properly controlled, they can lead to defects that compromise the component’s 
performance, reliability, and customer satisfaction. Volumetric shrinkage refers to the percentage 
increase in density as the molded component cools from the packing phase to room temperature. 
Excessive or uneven shrinkage can result in dimensional inaccuracies, leading to surface defects 
such as sink marks and warping. These defects not only affect the visual appearance of the 
exterior car door handle but also compromise its structural stability. If volumetric shrinkage is 
not properly managed, the final product may suffer from poor fitting and reduced mechanical 
strength. Residual stress is another critical factor that impacts the mechanical properties and 
long-term reliability of the exterior car door handle. These stresses arise due to non-uniform 
cooling and plastic deformation during the molding process, impacting the mechanical properties 
of the exterior car door handle, including its strength, fatigue resistance, and dimensional 
stability. Excessive residual stress can lead to premature failure or cracking under load, 
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compromising both safety and longevity, especially when exposed to external forces or 
environmental changes. Meanwhile, deflection refers to the deviation of the plastic component 
from its intended shape due to clamping and cavity pressures during the molding process. This 
distortion can significantly affect both the performance and aesthetic quality of the component. 
Excessive deflection may result in misalignment or improper fitting of the car door handle, 
leading to operational inefficiencies. 
 
2.3    Selection of Influence Factors 
 
Several control factors were selected for this study, including material selection and key injection 
molding process parameters. The process parameters considered in this research include melting 
temperature, filling pressure, filling time, injection time, cooling time, and injection pressure. The 
chosen control factors and their corresponding levels are presented in Table 1. 
 

Table 1: Simulation Control Factor Levels. 
 

Column Factor Level 1 Level 2 Level 3 
A Material Selection ABS PP PC 
B Melting Temperature (°C) 220 240 260 
C Filling Pressure (%) 60 80 100 
D Filling Time (s) 1.0 2.0 3.0 
E Injection time (s) 1 1.5 2 
F Cooling Time (s) 25 30 35 
G Injection Pressure (MPa) 60 70 80 

 
Referring to Table 1, this study examines the influence of seven key control factors on the 
injection molding process for exterior car door handles, with each factor analyzed at three 
different levels to assess its impact on product quality. These factors were carefully selected due 
to their significant effects on volumetric shrinkage, residual stress, and deflection, which are 
critical in ensuring the structural integrity, mechanical performance, and dimensional precision 
of the final product. Among these factors, material selection plays a fundamental role, with 
Acrylonitrile Butadiene Styrene (ABS), Polypropylene (PP), and Polycarbonate (PC) chosen due 
to their distinct mechanical properties, shrinkage behavior, and thermal resistance. These 
material characteristics directly affect the strength, durability, and stability of the molded 
component. Additionally, melting temperature, set at 220°C, 240°C, and 260°C, is a crucial 
parameter as it governs the fluidity of the molten plastic, ensuring optimal mold filling and 
reducing defects. 
 
Equally important, filling pressure, varied at 60%, 80%, and 100%, regulates the flow of material 
into the mold cavity, preventing short shots or excessive flash formation. In conjunction with this, 
filling time, ranging from 1.0s to 3.0s, determines the speed of material injection, ensuring 
uniform flow and minimizing defects like weld lines. Likewise, injection time, tested at 1s, 1.5s, 
and 2s, controls the duration of plastic flow into the cavity, influencing packing efficiency and 
internal stress distribution. Furthermore, cooling time, set at 25s, 30s, and 35s, is critical in 
ensuring dimensional stability by allowing the part to solidify properly. Inadequate cooling may 
result in warping and residual stress accumulation, while excessive cooling prolongs cycle time, 
reducing overall production efficiency. Lastly, injection pressure, examined at 60 MPa, 70 MPa, 
and 80 MPa, significantly affects part density and defect formation, playing a key role in achieving 
high-quality, mechanically robust components. 
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2.4 Selection of Orthogonal Array (OA) 
 
This study considers a total of seven control factors, each evaluated at three levels. Since each 
three-level factor contributes two degrees of freedom (DOF) (DOF = number of levels - 1), the 
total DOF required for the analysis amounts to 14. In the Taguchi method, the chosen orthogonal 
array (OA) must have a total DOF that is at least equal to or greater than the total DOF of the 
studied factors. Consequently, an L18 OA was selected to conduct the simulation, as detailed in 
Table 2. 
 

Table 2: OA L18 of simulation runs. 
 

Trial 
Number 

1 
A 

2 
B 

3 
C 

4 
D 

5 
E 

6 
F 

7 
G 

1 1 1 1 1 1 1 1 
2 1 2 2 2 2 2 2 
3 1 3 3 3 3 3 3 
4 2 1 1 2 2 3 3 
5 2 2 2 3 3 1 1 
6 2 3 3 1 1 2 2 
7 3 1 2 1 3 2 3 
8 3 2 3 2 1 3 1 
9 3 3 1 3 2 1 2 

10 1 1 3 3 2 2 1 
11 1 2 1 1 3 3 2 
12 1 3 2 2 1 1 3 
13 2 1 2 3 1 3 2 
14 2 2 3 1 2 1 3 
15 2 3 1 2 3 2 1 
16 3 1 3 2 3 1 2 
17 3 2 1 3 1 2 3 
18 3 3 2 1 2 3 1 

 
 

3 RESULTS AND DISCUSSION 
 
3.1 Analysis of the experimental results via Grey relational analysis (GRA) 
 
Grey Relational Analysis (GRA) is a fundamental component of Grey System Theory (GST), which 
was first introduced by Professor Julong Deng in 1982 at Huazhong University of Science and 
Technology, China. The theory was developed to address decision-making challenges in 
situations where information is insufficient, uncertain, or incomplete [23]. Unlike traditional 
statistical methods, which require large datasets and strict probability distributions, GST allows 
analysis in scenarios with limited data. Among its various techniques, GRA is particularly useful 
for multi-objective optimization, enabling researchers and engineers to analyze systems with 
multiple interdependent variables and select the best-performing parameter combinations [24]. 
GRA works by quantifying the relationships between different factors through a normalization 
and ranking process. It is particularly beneficial in cases where multiple performance indicators 
need to be optimized simultaneously. The process begins with data normalization, which ensures 
consistency across different units of measurement. Then, the grey relational coefficient (GRC) is 
calculated to determine how closely each experimental condition aligns with the ideal target. 
Finally, the grey relational grade (GRG) is derived by averaging the GRC values, providing a 
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comprehensive ranking of the various parameter settings [25]. This systematic approach allows 
engineers to identify optimal conditions efficiently, even when dealing with complex industrial 
processes. One of the greatest advantages of GRA is its effectiveness in multi-objective 
optimization, particularly in manufacturing and engineering applications. It enables the 
simultaneous optimization of multiple conflicting objectives, ensuring that different quality 
parameters are balanced appropriately [26]. Additionally, GRA is highly efficient even with 
limited data, making it suitable for small-sample experimental studies where gathering extensive 
datasets may not be feasible. Its computational simplicity allows for faster decision-making 
compared to more complex models like machine learning or artificial intelligence [27].  
 
3.1.1  Grey Generation of Raw Data 
 
GRA technique begins with a pre-processing stage, where the initial data sequences are organized 
and prepared for further analysis. This stage involves standardizing, rescaling, and structuring 
the data into a comparable format. To ensure consistency in evaluating quality characteristics 
such as volumetric shrinkage, warpage, and residual stress, the data must be normalized within 
a range of 0 to 1. The normalization process depends on the nature of the data, which can be 
classified into three categories: “the higher - the better," “the lower- the better,” and “the nominal 
value is the best.” By applying appropriate normalization methods, variations in different 
performance measures are effectively adjusted, ensuring a fair and balanced comparison for 
optimization. In this study, the “the lower - the better” criterion, as defined by Equation 1, is 
applied to evaluate volumetric shrinkage, warpage, and residual stress in the exterior car door 
handle. This approach ensures that minimizing these factors leads to improved dimensional 
accuracy, structural integrity, and overall product quality. Table 3 presents the normalized values 
for volumetric shrinkage, warpage, and residual stress. 
 
 

𝑥𝑥𝑖𝑖∗ (𝑘𝑘) =  𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖
0 (𝑘𝑘)−𝑚𝑚𝑖𝑖

0(𝑘𝑘)
𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖

0 (𝑘𝑘)−𝑚𝑚𝑖𝑖𝑚𝑚 𝑚𝑚𝑖𝑖
0 (𝑘𝑘) 

                     (1) 

 
 

Table 3: The normalized values for volumetric shrinkage, warpage, and residual stress. 
 

Trial Number Volumetric Shrinkage Residual Stress Deflection 
1 1.000 0.695 0.847 
2 0.918 0.854 0.898 
3 0.846 0.924 0.930 
4 0.208 0.723 0.262 
5 0.108 0.774 0.300 
6 0.000 0.834 0.000 
7 0.989 0.206 0.732 
8 0.861 0.425 0.918 
9 0.750 0.426 0.891 

10 0.962 1.000 1.000 
11 0.926 0.701 0.832 
12 0.836 0.760 0.818 
13 0.197 0.706 0.319 
14 0.099 0.776 0.140 
15 0.022 0.829 0.190 
16 0.999 0.424 0.771 
17 0.856 0.308 0.906 
18 0.753 0.000 0.740 
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3.1.2  Determination of deviation sequence 
 
The deviation sequence ∆0𝑖𝑖 (𝑘𝑘) is the absolute difference between the reference sequence 𝑥𝑥0* (𝑘𝑘) 
and the comparability sequence 𝑥𝑥𝑖𝑖* (𝑘𝑘) after normalization. The deviation sequence is listed in 
Table 4. 
 

Table 4: Deviation Sequence. 
 

 Trial Number Volumetric Shrinkage Residual Stress Deflection 
1 0.000 0.306 0.153 
2 0.082 0.146 0.102 
3 0.155 0.076 0.070 
4 0.792 0.277 0.738 
5 0.892 0.226 0.700 
6 1.000 0.166 1.000 
7 0.012 0.794 0.268 
8 0.139 0.575 0.082 
9 0.250 0.574 0.109 

10 0.038 0.000 0.000 
11 0.074 0.299 0.168 
12 0.164 0.240 0.183 
13 0.803 0.294 0.681 
14 0.900 0.224 0.860 
15 0.979 0.171 0.810 
16 0.001 0.576 0.229 
17 0.144 0.692 0.094 
18 0.250 1.000 0.026 

 
 
3.1.3 Determination of Grey Relational Coefficient (GRC) and Grey Relational Grade (GRG) 
 
The relationship between the ideal (optimal) and actual normalized volumetric shrinkage, 
warpage, and residual stress is expressed by GRC for all sequences. If the two sequences agree at 
all points, then their GRC is 1. The GRC 𝛾𝛾�𝑥𝑥0(𝑘𝑘), 𝑥𝑥𝑖𝑖(𝑘𝑘)� as expressed by Equation 2. 
 
𝛾𝛾�𝑥𝑥0(𝑘𝑘), 𝑥𝑥𝑖𝑖(𝑘𝑘)� =  ∆𝑚𝑚𝑖𝑖𝑚𝑚+ 𝜁𝜁∆𝑚𝑚𝑚𝑚𝑚𝑚

∆0𝑖𝑖 (𝑘𝑘)+ 𝜁𝜁∆𝑚𝑚𝑚𝑚𝑚𝑚
                        (2) 

 
where, ∆𝑚𝑚𝑖𝑖𝑚𝑚 is the smallest value of ∆0𝑖𝑖  (𝑘𝑘) =  𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 |𝑥𝑥0∗ (𝑘𝑘) − 𝑥𝑥1∗ (𝑘𝑘)| and ∆𝑚𝑚𝑚𝑚𝑚𝑚 is the 
largest value of ∆0𝑖𝑖  (𝑘𝑘) =  𝑚𝑚𝑚𝑚𝑥𝑥 𝑖𝑖  𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘 |𝑥𝑥0∗ (𝑘𝑘) − 𝑥𝑥1∗ (𝑘𝑘)|, 𝑥𝑥0∗ (𝑘𝑘) is the ideal normalized 
volumetric shrinkage, warpage, and residual stress,  𝑥𝑥1∗ (𝑘𝑘) is the normalized comparability 
sequence, and 𝜁𝜁 is the distinguishing coefficient. The value of 𝜁𝜁 can be adjusted with the 
systematic actual need and defined in the range between 0 and 1; here it is chosen as 0.5.  
 
The GRG provides the foundation for the overall assessment of the many performance aspects. 
The GRG, which is defined as the average of the GRC, is shown in Equation 3. Table 5 shows the 
results of GRC and GRG. 
 
𝛾𝛾 �𝑥𝑥0,𝑥𝑥𝑖𝑖� =  1

𝑚𝑚
 ∑ 𝛾𝛾�𝑥𝑥0(𝑘𝑘), 𝑥𝑥𝑖𝑖(𝑘𝑘)�𝑚𝑚

𝑖𝑖=1                          (3) 
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Table 5: Grey Relational Coefficient (GRC) and Grey Relational Grade (GRG). 
 

Trial 
Number 

Volumetric 
Shrinkage 

Residual 
Stress 

Deflection GRG 

1 1.000 0.621 0.765 0.795 
2 0.860 0.774 0.830 0.821 
3 0.764 0.868 0.877 0.837 
4 0.387 0.643 0.404 0.478 
5 0.359 0.689 0.417 0.488 
6 0.333 0.751 0.333 0.472 
7 0.979 0.386 0.651 0.672 
8 0.782 0.465 0.859 0.702 
9 0.667 0.466 0.821 0.651 

10 0.929 1.000 1.000 0.976 
11 0.871 0.626 0.749 0.749 
12 0.753 0.676 0.733 0.721 
13 0.384 0.630 0.423 0.479 
14 0.357 0.691 0.368 0.472 
15 0.338 0.745 0.382 0.488 
16 0.999 0.465 0.686 0.717 
17 0.777 0.420 0.824 0.680 
18 0.667 0.333 0.658 0.553 

 
 
3.2 Determination of optimal factors via main effect analysis 
 
The main effect analysis is a crucial step in identifying the most influential factors in an injection 
molding process. This method evaluates the impact of each control factor on key quality 
characteristics, such as volumetric shrinkage, warpage, and residual stress, to determine the 
optimal process parameters. By analyzing the variation in performance across different factor 
levels, the most effective combination of parameters can be selected to minimize defects and 
enhance product quality. In this study, the main effect analysis was used to examine how factors 
such as material selection, melting temperature, filling pressure, injection time, cooling time, and 
injection pressure influence the molding outcomes. The results provided insights into which 
levels of these parameters contribute to the lowest defect rates, ensuring better dimensional 
accuracy, mechanical performance, and overall durability of the exterior car door handle. By 
selecting the optimal factor levels, manufacturers can enhance production efficiency while 
reducing material waste and defect rates. Table 6 displays the results of the main effect analysis. 
 

Table 6: Main Effect Analysis. 
 

Factors Symbol Level 1 Level 2 Level 3 Max - Min Rank 

Material Selection A 0.816 0.480 0.662 0.336 1 
Melting Temperature (°C) B 0.686 0.652 0.620 0.066 4 

Filling Pressure (%) C 0.640 0.622 0.696 0.074 2 

Filling Time (s) D 0.618 0.655 0.685 0.067 3 

Injection Time (s) E 0.642 0.659 0.658 0.017 7 

Cooling Time (s) F 0.641 0.685 0.633 0.052 5 

Injection Pressure (MPa) G 0.667 0.648 0.643 0.024 6 
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Referring to Table 6, the analysis of key factors influencing the injection molding process revealed 
that material selection (Factor A) had the most significant impact on the quality of the exterior 
car door handle, with the highest Max - Min difference of 0.336, ranking it as the most critical 
factor. Filling pressure (Factor C) and filling time (Factor D) followed, with differences of 0.074 
and 0.067, respectively, indicating their substantial effect on the molding outcomes. Melting 
temperature (Factor B), cooling time (Factor F), and injection pressure (Factor G) showed 
moderate influence, with variations of 0.066, 0.052, and 0.024, respectively. These parameters 
still contribute to product quality but to a lesser extent compared to material selection and filling-
related factors. The least impactful factor was injection time (Factor E), with a Max - Min 
difference of only 0.017, suggesting minimal influence on defect reduction and overall product 
performance. This ranking highlight that optimizing material selection, filling pressure, and filling 
time is crucial for improving dimensional accuracy, reducing defects, and enhancing the 
mechanical properties of injection-molded exterior car door handles. To enhance the 
comprehension of the main effect analysis, Figure 3 is generated based on the results presented 
in Table 6. 
 
 

 
 

Figure 3: Main effects graph. 
 
The main effect graph in Figure 3 illustrates the influence of different material selection and 
variation in injection molding processing parameters on the Grey Relational Grade (GRG), which 
represents the overall quality performance of the injection-molded exterior car door handle. Each 
factor is analyzed at three different levels to determine its contribution to optimizing the molding 
process. 
 
From the graph, material selection (Factor A) shows the most significant variation, with a sharp 
drop at Level 2 (A2) compared to Levels 1 (A1) and 3 (A3). This indicates that the choice of 
material has the highest impact on the molding process, affecting volumetric shrinkage, residual 
stress, and deflection. A suitable material selection is crucial in ensuring dimensional stability and 
mechanical integrity. Different materials exhibit varying degrees of shrinkage during cooling, 
which directly impacts the dimensional accuracy of the final component. Materials with high 
shrinkage rates, such as polypropylene (PP), may cause warping or dimensional inconsistencies, 
leading to misalignment issues when assembling components. In contrast, materials like 
polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) have lower shrinkage rates, making 
them more suitable for applications requiring precise dimensional control [28], [29]. Research 
has shown that the selection of materials significantly influences the mechanical properties and 
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performance of injection-molded parts. For instance, Khosravani and Nasiri highlighted the 
importance of material properties in the injection molding manufacturing process, emphasizing 
that different materials can lead to varying outcomes in terms of quality and performance [30]. 
Additionally, the study by [28] demonstrated how the type of polypropylene used and the length 
of the flow path can affect the structure and properties of injection-molded parts, particularly 
concerning weld lines and overall integrity. Moreover, the work by [30] focused on controlling 
residual stress in PC molding, underscoring the material’s significance in achieving optimal 
performance and minimizing defects during the injection process. This aligns with findings from 
[31], who explored the creation of material data for thermoset injection molding simulations, 
further illustrating the critical role of material selection in ensuring successful molding outcomes. 
 
On the other hand, melting temperature (Factor B) exhibits a relatively stable trend with minor 
variations across the three levels, suggesting that its impact is less pronounced compared to 
material selection. This can be attributed to several key factors. First, the influence of material 
properties plays a crucial role. Each material, whether ABS, PP, or PC, has its own optimal melting 
temperature range. As long as the temperature remains within this range, the polymer can flow 
properly into the mold without causing significant defects. Unlike material selection, which 
directly determines fundamental mechanical properties and shrinkage behavior, small changes 
in melting temperature do not drastically alter the final product’s quality [32]. Another factor to 
consider is the thermal stability of the selected materials. ABS, PP, and PC are thermoplastics 
known for their ability to tolerate minor fluctuations in melting temperature without exhibiting 
drastic changes in mechanical performance or dimensional stability [32]. Therefore, while 
melting temperature plays a role in ensuring proper mold filling and material flow, its overall 
impact remains relatively stable. In contrast, material selection exerts a more significant 
influence, as it directly determines the structural properties and shrinkage behavior of the 
component [33]. Similarly, the study by Muthukumar highlighted how the melting temperature 
of polymers can influence their processing behavior and final properties, reinforcing the notion 
that while melting temperature is important, material selection is paramount [34]. 
 
Meanwhile, filling pressure (Factor C) and filling time (Factor D) display a moderate increasing 
trend, indicating that adjustments to these parameters can contribute to improving product 
quality. Higher filling pressure ensures better material distribution, reducing the risk of short 
shots and voids, while an optimized filling time allows for complete mold filling without 
introducing excessive stress [35]. Research has shown that the optimization of filling pressure is 
crucial for achieving uniform filling and minimizing defects in injection-molded parts [36]. In 
contrast, injection time (Factor E) shows minimal variation, implying that changes in injection 
duration have a relatively low impact on the final product. Injection time primarily determines 
the duration of material injection but does not significantly influence other quality attributes once 
an optimal threshold is met [37]. This is supported by findings from [38], who noted that while 
filling time is important for ensuring proper mold filling, its effect diminishes once the optimal 
conditions are established. 
 
Cooling time (Factor F), however, plays a crucial role in controlling shrinkage and residual 
stresses, leading to noticeable fluctuations in its effect. A well-optimized cooling time ensures 
uniform solidification, preventing warpage and internal stress accumulation. If cooling is too 
rapid, it can result in uneven shrinkage, whereas excessive cooling time can reduce production 
efficiency without providing additional quality benefits. On the other hand, injection pressure 
(Factor G) remains relatively stable, suggesting that while it is essential for proper mold filling, 
slight variations in pressure do not drastically impact the final component’s quality. As long as 
the pressure is sufficient to push the molten material into the mold, other factors, such as material 
selection, filling pressure, and cooling conditions, play a more significant role in determining the 
structural integrity and dimensional accuracy of the exterior car door handle.  
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Overall, the analysis confirms that material selection is the most influential factor, followed by 
filling pressure, filling time, and cooling time. These findings emphasize the need for precise 
control of these parameters to enhance product reliability and minimize defects in injection-
molded automotive components. In this case, the best combination of influential factors and 
levels can easily be obtained from the main effect analysis by selecting the level of each factor 
with the highest GRG. Table 7 listed the optimal factors for the exterior car door handle in this 
study. 

 
Table 7: Optimal factors. 

 
 Factor Level Description 

A Material Selection 1 Acrylonitrile Butadiene Styrene (ABS) 

B Melting Temperature (°C) 1 220 

C Filling Pressure (%) 3 100 

D Filling Time (s) 3 3 

E Injection Time (s) 2 1.5 

F Cooling Time (s) 2 30 

G Injection Pressure (MPa) 1 60 

 
 

3.3 Analysis of Variance (ANOVA) 
 
Conducting Analysis of Variance (ANOVA) in this study is essential to statistically determine the 
significance of each control factor in influencing the quality of the exterior car door handle. While 
the main effect analysis provides a general understanding of how different factors affect 
volumetric shrinkage, residual stress, and deflection, ANOVA quantifies the contribution of each 
parameter and identifies which factors have the most substantial impact on the overall 
optimization process. ANOVA helps to differentiate between real effects and variations caused by 
random experimental noise. By calculating the percentage contribution of each factor, it allows 
researchers to prioritize key parameters that significantly affect product quality, ensuring that 
optimization efforts focus on the most influential variables. Furthermore, ANOVA provides a 
statistical validation of the experimental results, reducing the risk of making conclusions based 
on trends that may not be statistically significant. This ensures that any recommendations made 
for process improvements are backed by strong data, leading to a more robust and reliable 
injection molding process for manufacturing high-quality car door handles. The computed 
quantity of degrees of freedom (DOF), sum of square, variance, F-ratio and percentage 
contribution (%) are presented in Table 8. 
 

Table 8: Analysis of Variance (ANOVA). 
 

 Factor DOF Sum Of 
Square 

Variance F-Ratio Percentage 

A Material Selection 2 0.341 0.171 519.80
 

85.561 
B Melting Temperature (°C) 2 0.013 0.007 19.883 3.273 
C Filling Pressure (%) 2 0.018 0.009 26.961 4.438 
D Filling Time (s) 2 0.013 0.007 20.146 3.316 
E Injection Time (s) 2 0.001 0.001 1.762 0.290 
F Cooling Time (s) 2 0.010 0.005 14.514 2.389 
G Injection Pressure (MPa) 2 0.002 0.001 2.952 0.486 

Error 3 0.001 0.000 - 0.247 
Total 17 0.399 - - 100.00 
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The results of the ANOVA presented in the Table 8 shows a detailed breakdown of the significance 
of each control factor in influencing the quality characteristics of the exterior car door handle. 
The analysis identifies material selection (Factor A) as the most dominant parameter, 
contributing 85.561% to the total percentage. With the highest F-ratio of 519.805, it is evident 
that material selection plays a crucial role in determining the final product’s quality, affecting its 
mechanical performance, shrinkage behavior, and dimensional stability. This underscores the 
importance of selecting an appropriate material to optimize the injection molding process.   
 
Among the remaining factors, filling pressure (Factor C) and melting temperature (Factor B) 
exhibit moderate contributions of 4.438% and 3.273%, respectively. Their relatively lower F-
ratios (26.961 for filling pressure and 19.883 for melting temperature) suggest that while these 
parameters do have an impact on the molding process, their influence is not as significant as 
material selection. Similarly, filling time (Factor D) contributes 3.316%, with an F-ratio of 20.146, 
indicating that optimizing this parameter can help improve product consistency and reduce 
defects. Cooling time (Factor F) accounts for 2.389% of the percentage of contribution, with an F-
ratio of 14.514, emphasizing its role in controlling shrinkage and residual stress. Although cooling 
time is an important parameter, its effect is less pronounced than the previously mentioned 
factors. Injection time (Factor E) and injection pressure (Factor G) exhibit minimal impact, 
contributing only 0.290% and 0.486%**, respectively. Their low F-ratios (1.762 for injection time 
and 2.952 for injection pressure) indicate that variations in these parameters do not significantly 
affect the final product.   
 
The error contribution is 0.247%, which is relatively low, confirming the reliability of the 
experimental results and the effectiveness of the selected control factors. Since material selection 
dominates the variance, it should be given top priority in process optimization. Other parameters 
such as filling pressure, melting temperature, and filling time should also be carefully adjusted to 
further enhance the quality of the exterior car door handle. 
 
 
4 CONCLUSION 
 
In conclusion, the integration of the Taguchi method and GRA in this study provides a robust 
optimization framework for improving the injection molding process of exterior car door handles. 
The Taguchi method identifies key control factors and their most effective levels, while GRA 
refines these findings by addressing multiple quality criteria simultaneously. From the main 
effect analysis, the results indicate that the most suitable material selection is ABS (Level 1), as it 
provides superior dimensional stability and mechanical strength. The optimal melting 
temperature is 220°C (Level 1), which ensures proper material flow while minimizing thermal 
degradation. A filling pressure of 100% (Level 3) and a filling time of 3.0 seconds (Level 3) are 
ideal for achieving uniform mold filling and reducing voids or defects. Additionally, an injection 
time of 1.5 seconds (Level 2) helps balance material flow and injection stability, while a cooling 
time of 30 seconds (Level 2) is essential for reducing residual stress and ensuring dimensional 
accuracy. Lastly, an injection pressure of 60 MPa (Level 1) is optimal for maintaining part 
consistency without inducing excessive internal stresses. This optimized parameter combination 
is expected to improve the overall quality, durability, and performance of the exterior car door 
handle while minimizing defects such as shrinkage, warpage, and residual stress. 
 
From ANOVA, the results indicate that material selection emerged as the most significant factor, 
contributing 85.561% to the overall percentage of contribution. This underscores the necessity 
of choosing the appropriate material, as it directly impacts the mechanical properties, shrinkage 
behavior, and dimensional stability of the final product. Factors such as filling pressure, melting 
temperature, and filling time also play notable roles in optimizing the molding process, albeit to 
a lesser extent. Additionally, the results also indicate that parameters like cooling time, injection 
time, and injection pressure have a comparatively lower influence on the final component’s 
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quality. However, their effects should not be overlooked, as they contribute to reducing defects 
such as warpage and residual stress. The low error percentage (0.247%) further validates the 
reliability of the findings, reinforcing the effectiveness of the selected factors in achieving optimal 
product quality. 
 
The integration of the Taguchi method and Grey Relational Analysis (GRA) provides a structured 
and effective approach to process optimization. This combined methodology enhances the 
injection molding process by systematically identifying optimal parameter settings, resulting in 
superior product quality, minimized defects, and increased manufacturing efficiency. By adopting 
this approach, manufacturers can achieve greater consistency in production, improve cost-
effectiveness, and promote sustainability, particularly in multi-objective optimization scenarios 
where multiple performance criteria must be simultaneously optimized. 
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