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Abstract: This paper discusses the first order polarization tensor for ellipsoids computed
by our two previous methods. We compare the first order polarization tensor for several
ellipsoids computed by both methods to the analytical solutions. The results show that the
first order polarization tensor for several ellipsoids computed by one of the method are closer
to the analaytical solution and thus, suggest that the method must be seriously considered to
study PT in the future.
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1 Introduction

The study of the Polarization Tensor (PT) becomes very significant lately in the electric and
electromagnetic applications. In Electrical Impedance Tomography (EIT) system, the PT is
studied to improve the image reconstruction algorithm of a conducting inclusion. Besides, it
can also be used to measure the effective properties of composites in the asymptotic models
of dilute composite. These are possible to achieve as the PT contains significant informa-
tion about geometric and physical properties of the subject. Detail discussions focusing on
mathematical aspects of the PT for this purpose can be found in Ammari and Kang [1].

On the other hand, Marsh et al. [2] describe the location, orientation and material
property of a target in a metal detector through the PT. Similarly, we have adapted the first
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order of the Generalized Polarization Tensor (GPT) from [1] in [3] to investigate whether it
plays some role in characterization of objects by electrosensing fish. In these two applica-
tions, an object is described by fitting the PT for the object only without reconstrucing the
image of the object as it offers lower computational efforts. This suggests the importance of
computational aspects of the PT especially since it is difficult to determine the PT for any
object by analytical approach. Therefore, the aim of this study is to discuss the convergence
of the first order PT specifically for ellipsoids approximated by our two previous methods.

Generally, the first order PT for ellipsoids which are numerically computed according to
the two previous methods in [4] and [5] respectively are compared to achieve this purpose.
The first method in [4] are developed in our initial study on the first order PT and are
applied in [3]. In addition, our second method in [5] are recently introduced to easily and
fastly compute the first order PT in a software called BEM++ [6]. As our efforts in [4] is
only to introduce briefly the implementation of BEM++ in computing the first order PT,
our results there are not yet detailly analyzed. Thus, comparing the results from these two
methods is the main agenda of this paper with the purpose to decide which method gives
better approximations to the first order PT for future applications.

This paper now proceeds as follows. The next section reviews mathematical background
and formulation about the first order PT. After that, section three briefly discusses about
our two methods to approximate the first order PT. Numerical results are presented and
discussed in section four. This study is then concluded in the last section of this paper.

2 Mathematical Formulation of the First Order Polarization Tensor

Consider a Lipschitz bounded domain B in R3 such that the origin O ∈ B and let the
conductivity of B be equal to k where 0 < k 6= 1 < +∞. Suppose that H is a harmonic
function in R3 and u is the solution to the following problem{

∇ · (1 + (k − 1)χ(B)∇(u)) = 0 in R3

u(x)−H(x) = O(1/|x|2) as |x| → ∞
(1)

where χ denotes the characteristic function of B. Formulation (1) actually appears in many
industrial applications such as medical imaging, landmine detector and material sciences
[1, 7, 8]. The PT is then defined through the following far-field expansion of u by [1]

(u−H)(x) =

+∞∑
|i|,|j|=1

(−1)|i|

i!j!
∂ixΓ(x)Mij(k,B)∂jH(0) as |x| → +∞ (2)

for i = (i1, i2, i3), j = (j1, j2, j3) multi indices, Γ is the fundamental solution of the Laplacian
and Mij(k,B) is the generalized polarization tensor (GPT) for B. For some applications,
(2) represents the perturbation of the voltage u caused by an object inclusion B while the
first order of the GPT acts as dipole and shows conductivity distribution of B.

Alternatively, the definition of GPT in (2) is extended by Ammari and Kang [1] through
an integral operator over the boundary of B by

Mij =

∫
∂B

yjφi(y)dσ(y) (3)

where φi(y) is given by
φi(y) = (λI −K∗B)−1(νx · ∇xi)(y) (4)

for x, y ∈ ∂B with νx is the outer unit normal vector to the boundary ∂B at x and λ is
defined by λ = (k + 1)/2(k − 1). K∗B is a singular integral operator defined with Cauchy
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principal value P.V. by

K∗Bφ(x) =
1

4π
P.V.

∫
∂B

〈x− y, νx〉
|x− y|3

φ(y)dσ(y). (5)

Consequently, the first order PT can be evaluated by using (3), (4) and (5) for |i| = |j| = 1
and by combining all possible values of i and j, the first order PT of an object B is a real
3× 3 matrix in the form

M =

M(1,0,0)(1,0,0) M(1,0,0)(0,1,0) M(1,0,0)(0,0,1)

M(0,1,0)(1,0,0) M(0,1,0)(0,1,0) M(0,1,0)(0,0,1)

M(0,0,1)(1,0,0) M(0,0,1)(0,1,0) M(0,0,1)(0,0,1)

 . (6)

Besides, if B is an ellipsoid represented by x2

a2 + y2

b2 + z2

c2 = 1 in the Cartesian coordinate
system where a, b and c each is the length of semi principal axes of B, the first order PT of
B when the conductivity is k is given by [1] as

M(k,B) = (k − 1)|B|


1

(1−P )+kP 0 0

0 1
(1−Q)+kQ 0

0 0 1
(1−R)+kR

 (7)

where |B| is the volume of B while P , Q and R are constants defined by

P =
bc

a2

∫ +∞

1

1

t2
√
t2 − 1 + ( b

a )2
√
t2 − 1 + ( c

a )2
dt,

Q =
bc

a2

∫ +∞

1

1

(t2 − 1 + ( b
a )2)

3
2

√
t2 − 1 + ( c

a )2
dt, (8)

R =
bc

a2

∫ +∞

1

1√
t2 − 1 + ( b

a )2(t2 − 1 + ( c
a )2)

3
2

dt.

In addition, the first order PT for the sphere B at conductivity k is also given in [1] and
this can be easily obtained by setting a = b = c in (7) which is in the form

M(k,B) = (k − 1)|B|

 3
2+k 0 0

0 3
2+k 0

0 0 3
2+k

 . (9)

3 Methodology

In order to approximate the first order PT in this study, we will use our two previous
methods as mentioned before. The first method in [4] is developed by a simple quadrature
rule of numerical integration. A code is then written in Matlab to perform the calculations
by using (3)− (5).

In contrast, our second method in [5] is developed based on Boundary Element Method
(BEM) [9]. This is possible as every formula considered (3)− (5) to compute the first order
PT is in the form of boundary integral equations. Here, the software devoted to BEM called
as BEM++ is used to run the computations where the code is built from the combination
of functions in Python and C++.

Before the first order PT for an object at specified conductivity can be approximated
in both codes, a triangular mesh of the boundary of the considered object consisting sets
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Figure 1: A triangularization of ellipsoid x2

4 + y2

4 + z2 = 1 with 2608 elements by Netgen

of nodes and triangles (or elements) must be loaded to each code. Since we are considering
objects of three dimensional domain, the boundary of the object is simply the surface of
the object. In this study, the mesh is created by the software Netgen mesh generator [10]
(see Figure 1 for example). Once the first order PT is successfully computed by both codes,
we can then compare the results with the analytical solutions to decide which method gives
better approximation. At the moment, we only consider the first order PT for ellipsoids
since we have the analytical formula of the first order PT for them as given in (7).

4 Results and Discussions

4.1 Several approximations of the first order PT

We start by computing the first order PT for four types of ellipsoid at conductivity 1.5 by
using analytical formula (7), our previous program in Matlab and our recent program in
BEM++ and show the results in Table 1. Each ellipsoid is firstly triangularized with with
a ‘fine’ mesh option in Netgen before numerically computed by Matlab and BEM++ where
the number of triangles, N is also given in the table. For each ellipsoid in the table, the
same triangularized ellipsoids are used in both Matlab and BEM++.

In order to easily compare the first order PT approximated by Matlab and BEM++, we
then plot all elements of the first order PT from Table 1 in the same graph for each ellipsoid.
These are shown in Figure 2, Figure 3, Figure 4 and Figure 5 respectively. In these figures,
elements of the first order PT in the first row are denoted starting from the first column by
1, 2 and 3 followed by 4, 5 and 6 for the second row and 7, 8 and 9 for the third row.

Based on Figure 2, it can be seen that all elements of the approximated first order PT

for x2

9 + y2

4 + z2 = 1 computed either by Matlab or BEM++ are close to the elements
of the analytical solutions except for element 5 which is the second diagonal of the first
order PT. In this case, the element computed by Matlab is still far from the element of the

analytic solution. For x2

4 + y4

4 + z = 1, both element 1 and element 5 of the first order PT
approximated in Matlab are only slightly not equal to element 1 and element 5 of the first
order PT for the analytical solution as shown in Figure 3.

Besides, element 1, element 5 and element 9 of the approximated first order PT for x2 +

y2+ z2

4 = 1 computed by Matlab in Figure 4 has only small difference with the same elements
of the analytical and BEM++’s solution. In contrasts, Figure 5 indicates that element 1,
element 5 and element 9 of the first order PT for x2 + y2 + y2 = 1 approximated either in
Matlab or BEM++ has a big difference with the same elements of the analytical solution.
However, these approximations look closer to the analytical solutions when computed by
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Figure 2: A comparison of the first order PT for ellipsoid x2

9 + y2

4 + z2 = 1

Figure 3: A comparison of the first order PT for ellipsoid x2

4 + y4

4 + z = 1
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Figure 4: A comparison of the first order PT for ellipsoid x2 + y2 + z2

4 = 1

Figure 5: A comparison of the first order PT for sphere x2 + y2 + y2 = 1

BEM++.
We also want to highlight that in each figure, all non-diagonal elements (element 2,

element 3, element 4, element 6, element 7 and element 8) of the approximated first order
PT for every ellipsoid computed either by Matlab or BEM++ are almost equal to zero as
required by the analytical solutions.

4.2 Increasing the number of triangles N

One possible way to theoretically improve the approximation of the first order PT for a
triangularized object is to increase the number of triangles used during the triangularization.
In this section, we will compare the convergence of the first order PT for the sphere x2+y2+
y2 = 1 at conductivity 1.5 approximated in Matlab and BEM++ to the analytical solution
(9) for different number of triangles used to triangularized the sphere. For this purpose, five
triangularized spheres x2 + y2 + y2 = 1 with 242, 620, 2480, 4480 and 9920 triangles are
considered.

Graphs in Figure 6 show all diagonal elements of the analytical and the computed first
order PT by both Matlab and BEM++ for the sphere x2 + y2 + y2 = 1 at conductivity
1.5 against the number of triangles used to triangularize the sphere. In order to compare
the values, the first diagonal of the first order PT computed by the analytical formula,
Matlab and BEM++ are firstly plotted in the same graph in Figure 6(a) followed by graph
in Figure 6(b) and Figure 6(c) for the second and the third diagonal. Based on these graphs,
it can be clearly seen that increasing the number of triangles will improve the convergence
of every diagonal computed either by Matlab or BEM++ to the analytical solution but the
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diagonals when approximated in BEM++ obviously are closer to the analytical solution
then approximated in Matlab for any number of triangles used.

On the other hand, graphs in Figure 7 show every non-diagonal elements of the first order
PT for the same sphere where each symmetrical pair of the non-diagonals are plotted in the
same graph. According to Figure 7(a), the symmetrical elements are zero when computed
by BEM++ and hence converge to the analytical solutions while they jump from -0.0001
to 0.0001 before converge to zero as the number of triangles increase when computed by
Matlab. The next symmetrical elements in Figure 7(b) reduce directly from 0.0003 to zero
when approximated in BEM++ but when approximated in Matlab, they once drop to zero
from 0.0004 before increasing to about 0.0001. Similar convergence are achieved by the last
symmetrical elements when computed by BEM++ and Matlab except that they rise from
-0.0001 as the number of triangles increase and they reach to the analytical solution for two
times when computed by Matlab. Technically, it is expected that these approximated non
diagonal elements will stay at zero after sufficient triangles are used to triangularize the
sphere.

4.3 Changing conductivity k

During our previous study in [4], we have found that the conductivity of the object also
influence its first order PT. Thus, we will compare the first order PT for the sphere x2 +
y2 + y2 = 1 triangularized with 9920 triangles computed by Matlab and BEM++ to further
investigate the convergence of the approximated to the analytical solution at different values
of conductivity. The value 9920 are chosen for the triangles to ensure better approximation
both in Matlab and BEM++. Here, we evaluate the first order PT at conductivities 1×10−6,
5×10−5, 0.01, 0.99995, 1.00004, 1.5, 100, 500, 1000 and 10000. Figure 8 and Figure 9 shows
the results of our computations.

Figure 8 shows the diagonal elements of the approximated first order PT in Matlab and
BEM++ together with the analytical values of the first order PT against the conductivities.
Similar to Figure 6, the analytical values of the first order PT in each graph of the figure
are the same but only change according to the conductivity as mentioned in formula (9).
We can then see that every diagonal of the approximated first order PT computed either
by Matlab or BEM++ converge to the analytical solution except for some high values of
conductivity when computed by Matlab.

Besides, the non diagonal elements of the first order PT for the same sphere approx-
imated in both Matlab and BEM++ only converge to zero as required by the analytical
solution at conductivities near to 1 and this is shown in Figure 9. When computed by
Matlab, the non-diagonal elements have a small difference with the analytical solution at
conductivities less than one and have a greater difference when conductivities is greater than
1. In contrast, while the non-diagonal elements approximated in BEM++ have a slight dif-
ference with the analytical solutions at conductivities greater than 1, they converge to the
analytical solution for conductivities less than 1 except for elements (1)(3) and (3)(1). Obvi-
ously, the non-diagonal elements computed by BEM++ are closer to the analytical solutions
than the one computed by Matlab. For all cases, we conclude that BEM++ provides better
approximation of the first order PT for this sphere at the chosen conductivities although
some non-diagonal elements is slightly greater than zero of the analytical solution.

Based on the previous discussion, it is possible to increase the number of triangles used
to triangularize the sphere to improve the results. However, our previous experience tells
us that larger number of triangles will cause slower computation in both softwares and the
machine needs more memory to compute the first order PT in Matlab. Faster computation
can be achieved in BEM++ as it is equipped with iterative solver while Matlab uses matrix
operation which will consume more memory. For completeness, we include in Table 2 the
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(a)

(b)

(c)

Figure 6: Diagonal elements of the approximated first order PT for a sphere through Matlab
and BEM++ with diagonal elements of the analytical formula against number of triangles
N
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(a)

(b)

(c)

Figure 7: Non-diagonal elements of the approximated first order PT for a sphere through
Matlab and BEM++ with non-diagonal elements of the analytical formula against number
of triangles N



App. Math. and Comp. Intel., Vol. 4(1), 2015 351

(a)

(b)

(c)

Figure 8: Diagonal elements of the approximated first order PT for the sphere x2+y2+y2 = 1
triangularized with 9920 triangles through Matlab and BEM++ with diagonal elements of
the analytical formula against conductivities k
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(a)

(b)

(c)

Figure 9: Non-diagonal elements of the approximated first order PT for the sphere x2 +y2 +
y2 = 1 triangularized with 9920 triangles through Matlab and BEM++ with non-diagonal
elements of the analytical formula against conductivities k
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number of triangles, N tested to approximate the first order PT for the sphere in BEM++
accurate with the analytical solution at three decimal places for the cases of low and high
conductivity as well as when the conductivity is equal to 1.5. Here, running the code in
Matlab with the same N to approximate the first order PT at the given conductivity will
cause the machine to run out of memory.

Conductivity, k N

1× 10−6 124928
1.5 61952

10000 247808

Table 2: N needed for each k

5 Conclusions

During this study, we have compared our two previous methods to approximate the first
order PT in more details than our previous study. We provide extensive results to show that
our method through BEM++ provides better convergence to the approximated first order
PT specifically for ellipsoids at specified conductivity. We then believe that our method in
BEM++ should become a priority in our future investigation about the PT in electric and
electromagnetic applications of inverse problems.
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Śmigaj and Jonathan Boyle for their helps in running BEM++.

References

[1] H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to In-
verse Problems and Effective Medium Theory, Springer, New York, 2007.

[2] L. A. Marsh, C. Ktistis, A. Järvi, D. W. Armitage and A. J. Peyton. Three-dimensional
object location and inversion of the magnetic polarizability tensor at a single fre-
quency using a walk-through metal detector. Measurement Science and Technology,
24(4):045102, 2013.

[3] Taufiq K. A. K. and W. R. B. Lionheart. Do electro-sensing fish use the first order
polarization tensor for object characterization? In 100 years of Electrical Imaging,
Presses des Mines, Paris, 2012.

[4] Taufiq K. A. K. and W. R. B. Lionheart. Some properties of the first order polarization
tensor for 3-D domains. MATEMATIKA UTM, 29(1):1–18, 2013.

[5] Taufiq K. A. K. and W. R. B. Lionheart. Computing the first order polarization tensor
: Welcome BEM++! Menemui Matematik, 35(2):15–20, 2013.
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