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Abstract: In this work, the reliability allocation optimization problems in fuzzy environment have 

been developed and their result have also discussed. The numerical solutions of crisp reliability 

optimization problems and have been compared and the fuzzy solution and its effectiveness have 

also been presented and discussed. The penalty function method is developed and  mixed with 

Nelder and Mend’s algorithm of direct optimization problem's solution have been used together to 

solve this nonlinear programming  problem. 
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1 Introduction  

Fuzzy reliability used in modeling problems in many applications including engineering [1, 2, 3, 4], 

biology [5, 6], real life problems and mathematical models [7, 8, 9] etc. Reliability and design 

engineers must translate overall system performance, including reliability, into component 

performance including reliability. The process of assigning reliability requirements for individual 

component to attain specified system reliability is called reliability allocation. So, we discuss 

reliability allocation optimization model in design system. Reliability Allocation deals with the 

setting of reliability goals for individual subsystems such that a specified reliability goal is met and 

the hardware and software subsystem goals are well balanced among themselves. 

The objective of this allocation is to use the reliability model to assign reliability to the subsystems 

so as to achieve the specified reliability goal for the system. In addition, reliability allocation 

problems may appear in many real life applications, including, a software development approach 

[10], and engineering [11]. In this paper fuzzy allocation optimization problem is classified as 

NLPP as in goal programming model [11, 18]. This NLPP is feasible to solve a typical ill-

structured reliability problem with a vague reliability objective as well as fuzzy flexible constraints 

[21]. This can be done by  formulating the crisp problem into fuzzy environment using the 
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properties of fuzzy set theory perspective by using fuzzy decision making as mentioned in [12, 13] 

for reliability series system in geometric programming approach. However, the fuzzy nonlinear 

programming problem is not just an alternative or even a superior way of analysing a given 

problem, it's useful in solving problems in which difficult or impossible to use due to the inherent 

qualitative imprecise or subjective nature of the problem formulation or to have an accurate 

solution or to increase system reliability as close to one. In section 2 we introduce some important 

definitions that are useful in our problem. In section 3, we state the general nonlinear programming 

problem in fuzzy environment by transforming the crisp problem into the fuzzy problem. Section 4, 

we modify and develop the regular penalty function method in order to solve fuzzy NLPP 

combined with Nelder and Mend’s. Finally, in section 5 we introduce the fuzzy allocation 

optimization problem and solved by our proposed method in numerical example.  

2 Preliminaries 

2.1   Reliability Function: R (t) (Survival Function) [14]: 

The probability that a system (component) does not fail in the interval [0, t] can be expressed as 

follows:  

R (t) = pr (T > t), for  t > 0,                                                               (1) 

where pr is the probability and T is a random variable for failure time of his component 

 

2.2    Unreliability Function; Q (t) [14]: 

The probability that the system fails with the time interval (0, t) can be expressed as follows:  

                Q(t) = pr( τ  ≤ t)= 

t

0

f ( ) dτ τ∫ ,                                                           (2) 

Therefore,    R(t) + Q(t) = 1, R(t) = 1 − Q(t). 

 

2.3    Component (Subsystem) [15]: 

The component (subsystem) is the basic element that controls the functioning or a system. The 

reliability of the component pi (t) is defined as the probability that the component functions well 

until time t, and the unreliability of the component qi (t) can be expressed as: qi(t) =1 − pi(t), for i = 

1, 2, …, n. 

 

2.4    Mean Time between Failures (MTBF) [16]: 

The (MTBF) is a concept, which is frequently used in reliability work. It is defined to be the 

average or expected lifetime of an item. 

Then, from the definition of a mean or expected value,  

MTBF = ∫
∞

0

dt)t(tf .                                                              (3) 

Alternatively: 
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MTBF = ∫
∞

−

0

dt)]t(Q1[ . 

We most commonly express the MTBF in terms of the reliability function, namely: 

MTBF = ∫
∞

0

dt)t(R . 

 2.5    Fuzzy Set [17]: 

If x is a collection of objects denoted generally by X, then a fuzzy set A
~

 in X is a set of order 

pairs: A
~

 = {(x, )x(
A
~µ ) | x ∈X},where )x(

A
~µ  : x →[0, 1] is called the membership 

function or grade of membership (also degree of compatibility or degree of truth) of x in A
~

 which 

maps x to the membership range M (when M contains only the two points 0 and 1), A
~

 is a 

nonfuzzy and )x(
A
~µ  is identical to the characteristic function of crisp set. The range of 

membership function is a subset of the non-negative real numbers whose supremum is finite. 

Elements with a zero degree of membership are normally not listed. 

 

2.6 Fuzzy Numbers with Linear Member Ship Function [18]: 

The function L: X →[0, 1] is a function with two parameters defined as: 

1,

( ; , ) ,

0,

L x

if x

x
if x

if x

α

α β
α β α α β

β

β

 <


+ −
= ≤ ≤ +

 >

 

where L is called the trapezoidal linear membership function. 

α β x

µ(x)

1

0

0.5

 

Figure 1: L-Function. 
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2.7    Fuzzy Decision Making [19]: 

Assume that we are given a fuzzy goal (fuzzy objective function) G
~

 and fuzzy constraints C
~

 in a 

space of alternatives X. The G
~

 and C
~

 combine to form a decision, D
~

, which is a fuzzy set 

resulting from intersection of G
~

and C
~

. In symbols, D
~

 ∩ C
~

 is, correspondingly, the 

membership function of D
~

 can be defined as: 

D
~µ  = Min {

G
~µ ,

C
~µ }.More generally, suppose that we have n goals n21 G

~
,...,G

~
,G

~
 and m 

constraints m21 C
~

,...,C
~

,C
~

. The, the resultant decision is defined as: 

D
~

 = 1G
~

 ∩ 2G
~

 ∩ … ∩ nG
~

 ∩ 1C
~

 ∩ 2C
~

 ∩ … ∩ mC
~

and correspondingly: 

D
~µ  = Min {min {

1G
~µ ,

2G
~µ , …, 

nG
~µ }, min {

1C
~µ , 

2C
~µ , …, 

mC
~µ }} 

 = Min {
1G

~µ ,
2G

~µ , …, 
nG

~µ , 
1C

~µ , 
2C

~µ , …, 
mC

~µ } = Min {
jG

~µ ,
jC

~µ } 

for j = 1, 2,…, n and i = 1, 2, …, m. 

 

2.8    Maximum Decision Maker [17]: 

If the decision-maker wants to have “crisp” decision proposal, it seems appropriate to suggest to 

him the divided which has the highest degree of membership in the fuzzy set “decision”. Let us call 

this the maximizing decision, defined by: 

Xmax = { })x(),x(MinMax)x(MMax
ij C

~
D
~

x
D
~

x
µµ= , 

where jD%  and iC%  are in the definition (2.7) for i = 1, 2, …, m; j =1, 2, …, n. 

3 Fuzzy Nonlinear Programming Problem 

n this section we discuss the optimization problem with nonlinear fuzzy objective function and 

fuzzy flexible constraints. Consider the following NLPP 

Min/Max f(x) 

Subject to: 

gi(x) ≥ (≤) bi, i =1, 2, …, m.                                                                                (4) 

For all x ∈ R
n
 and x ≥ 0. Now, the fuzzy version for problem (4) is as follows: 

Fuzzy Min/Max f(x) 

Subject to: 

gi(x) ≥
~

( ≤
~

) bi, i =1, 2, …, m.                                                                             (5) 
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where x ∈ Rn and x ≥ 0. In problem (4), the tilde sign denotes a fuzzy satisfaction of the 

constraints. The sign ( ≤
~

) ≥
~

 denotes that gi(x) ≤ (≥) bi can be satisfied to degree smaller than 1, 

these constraints are called flexible constraints. The fuzzy max (min) corresponds to achieving the 

highest (lowest) possible aspiration level for the general f(x). This problem can be solved by using 

the properties of fuzzy decision making and maximize decision as follows: 

1. Fuzzify the objective function. This is done by calculating the lower and the upper bounds of 

the optimal values. The bounds of optimal values zλ and zu are obtained by solving the 

standard crisp nonlinear programming problem as follows: 

z1 =Min/Max f(x), 

subject to: 

gi(x) ≤ (≥) bi, i =1, 2, …, m,                                                                             (6) 

for all x ∈ Rn and x ≥ 0. 

z2 = Min/Max f(x), 

subject to: 

gi(x) ≤ (≥) bi + pi, i =1, 2, …, m,                                                                       (7) 

where the objective function take the values between z1 and z2. Let zλ = min (z1, z2) and zu = 

max (z1, z2), zλ and zu is called the lower and upper bounds of the optimal values, receptively. 

Let M
~

 be the fuzzy set representing the objective function f(x) such that M
~

 = {(x, 

M
~µ (x)) : x ∈ R

n
}, where: 

)x(
M
~µ  = 

1, ( )

( )
, ( )

0, ( )

u

u

u

if z f x

f x z
if z f x z

z z

if f x z

 <


−
≤ ≤

−
 <

l

l

l

l

 

This represents the satisfaction of the aspiration level of the objective. Note that, pi is a vector 

of relaxation and can be found by falsifying Bi (denoted by ib
~

) by using the definition of L-

function of the membership function as follows: 

ib
~

 ={(x, )x(
ib

~µ ) | x ∈ R}, 

where  

1,

( ) ,

0,

if x bi

b p xi ix if b x b pi i ibi pi

if x b pi i

µ

 <


+ −
= ≤ ≤ +

 ≥ +

%   
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Figure 2: 
ib
(x)µ %  membership function 

2. Now, fuzzify the constraint gi(x), i = 1, 2… m. Let iC
~

 be the fuzzy set for i-th constraints, 

such that iC
~

 = {(x, )x(
iC

~µ ) | x ∈ R
n
}, where: 

)x(
iC

~µ  = 













+>

+≤≤
−+

<

iii

iiii
i

iii

ii

pb)x(gif,0

pb)x(gbif,
p

)x(gpb

b)x(gif,1

 

Using the definition of fuzzy decision making. Let D
~

 be the fuzzy decision set, where: D
~

 = 

M
~

 ∩ iC
~

, i = 1, 2, …, m.Therefore, D
~

 = M
~

 ∩ 1C
~

 ∩ 2C
~

 ∩ … ∩ mC
~

 and D
~

 = {(x, 

)x(
D
~µ ) : x ∈ R

n
}, where )x(

D
~µ  = 

{ }{ })x(),...,x(),x(min),x(Min
m21 C

~
C
~

C
~

M
~ µµµµ . Let: 

λ = { }{ })x(),...,x(),x(min),x(Min
m21 C

~
C
~

C
~

M
~ µµµµ  

So, we have the optimal decision: x* = Max λ, x* ∈ R
n 

The problem (7) become to the following crisp NLPP: 

 

Max λ, 

subject to:  

0)x(:g

0)x(:g

0)x(:g

0)x(:g

m

1m

1

C
~1m

C
~m

C
~2

M
~1

≤µ−λ

≤µ−λ

≤µ−λ

≤µ−λ

+

−

M
                                                                                    (8) 

where 0 ≤ λ ≤ 1, x ≥ 0 and x ∈ R
n
. This is equivalent to the problem: 
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Min -λ, 

subject to: 

1

1 1 1
2

1

1

( )
: 0

( )
: 0

( )
: 0

u

m m m
m

m

f x z
g

z z

b p g x
g

p

b p g x
g

p

λ

λ

λ+

 −
− ≥ 

− 

 + −
− ≥ 

 

 + −
− ≥ 

 

l

l

M

                                                                   (9) 

where 0 ≤ λ ≤ 1, x ≥ 0 and x ∈ R
n
.  

 

4 Penalty Function Method for NLPP 

There is survival methods used in fuzzy reliability problems, such as a novel approach for solving 

unconstrained model mechanical structure [22], also the numerical integration algorithm in the 

fuzzy general strength model [23]. The penalty method [24] belongs to the first  

i

n

(A)Min / Maxf (x)

Subject to :

g (x) ( )0,

i 1,2,...,m andx 0, x R

≥ ≤

= ≥ ∀ ∈

                                                                             (10) 

i

n

(B)Min / Max f (x)

Subject to :

g (x) 0,

i 1,2,...,m and x 0, x R

=

= ≥ ∀ ∈

                                                                              (11) 

To construct the unconstrained problems, so-called penalty terms are added to the objective 

function which penalizes f(x) whenever the feasibility region is left. A factor σk controls the degree 

of penalizing f(x).  

Proceeding from a sequence {σk} with σk → ∞ for k = 0, 1, …, penalty function can be 

defined by [26]: 

1. Min/Max ϕ(x,σ) = f(x) + 
2

1
σk∑

=

m

1i

2
i )))x(g,0(min(  ,                                           (12) 

for problem (10). 
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2. Min/Max ϕ(x, σ) = f(x) + 
2

1
σk∑

=

m

1i

2
i ))x(g(  ,                                                         (13) 

for problem (11) 

The unconstrained nonlinear programming problems are solved by any standard technique, 

e.g., Nelder and Mead [24, 25] method combined with a line search. However, the line search 

must be performed quite accurately due to this step, narrow valleys created by the penalty 

terms, respectively. The technique of solving a sequence of minimization (maximization) 

problems of by using a penalty function method is as follows: 

 

1. Choose a sequence {σk}→ ∞. 

2. For each kσ finding a local minimizer (maximizer) x(σk) say, 

),x()max(min k
xx

σϕ .By any steeple optimization method. 

3. Stop when the penalty terms 
2

1
σok, or 

2

1
σk∑

=

m

1i

2
i ))x(g(  is zero and the constraints 

satisfies the solution at once when the penalty terms is zero. 

4. The convergence of the solution of (NLPP) is using the penalty function method and its 

properties can be found in [25]. 

5. Use this formula (12-13) in Nelder and Mead’s [24] algorithm for the direct solution of the 

optimization problem.  

 

5 Fuzzy Reliability Allocation Optimization Problems 

Now, consider a system consisting of n-components. Goal reliability is sought of this system. The 

objective is to allocate reliability for all or some of the components of that system. In order to meet 

that goal with minimum cost, the problem is formulated as a NLPP [27] as follows: 

Min. Cs = ∑
=

n

1i

ii )R(k  

subject to: 

(14) 

Ri, min ≤ Ri ≤ Ri, max, 

Rs, min ≤ Rs ≤ Rs, max, 

where:  

Cs: Cost function, 

Ki: Cost of the component (subsystem my), 














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Rs: System reliability, 

Ri: Reliability of component (subsystem i), 

Ri min: Minimum reliability of the component i, 

Ri max: Maximum reliability of the component i, 

Rs max: The upper limit of system reliability, 

Rs min: The lower limit of system reliable or system reliability goal, 

CsAF: Cost function after fuzzy, 

 RsAF: System reliability after fuzzy. 

We will solve the problem in crisp, and then some fuzzy environments will be developed to 

generalize the solution. Consider the life support system a space capsule problem [28] of the 

reliability of this system: 

RS = 1 − x3((1 −x1)(1 − x4)) − (1 − x3)[1 − x2(1 − (1 − x1)(1 −x4)]
2 

 

The cost function Cs is: 

Cs = 2∑
=

α
4

1i

ii
ixk  

with k1 = k2 = k3 = 100, k4 = 150 ad αi = 1, for all i. The problem is to select xi to minimize Cs, 

subject to: 

0.5 = xi,min ≤ xi ≤ xi,max, i = 1, 2, 3, 4, 

0.9 ≤ Rs,min ≤ Rs ≤ Rs,max = 1, 

where xi is the reliability of each component (i = 1, 2, 3, 4). One can write the NLPP problem as 

follows: 

Min Cs = [100(x1 + x2 + x3) + 150x4] 

Subject to: 

g1: x1 ≥  0.5   g2: x2 ≥  0.5  g3: x3 ≥  0.5 g4: x4 ≥  0.5 g5: x1 ≤  1                                   (15) 

g6: x2 ≤  1      g7: x3 ≤  1    g8: x4 ≤  1    g9: Rs ≥  0.9 g10: Rs ≤  1 

The solution of (14) using the method in section 4 has been found as follows:  

At σ = 25×10
7
, the penalty term equal to zero,  

And 
*
1x  = 0.5079, 

*
2x  = 0.8293, 

*
3x  =0.5, 

*
4x  = 0.5,  

*
sC  = 517.7838, 

*
sR  = 0.90011656, with  

*
1g  = 9.699×10

−3
, 

*
2g  = 3.293×10

−1
, 

*
3g  = 0,  

*
4g  = 0, 

*
5g  = 4.903×10

−1
, 

*
6g  = −1.707×10

−1
,  

*
7g  = −0.5, 

*
8g  = −0.5, 

*
9g  = 1.165×10

−5
, 

*
01g  = −9.998×10

−2
. 
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The following table shows the results of problem (14) 

Table 1: Solution of problem (14) by Penalty function method 

 Present solution 

x1 0.509700 

x2 0.829300 

x3 0.500000 

x4 0.500000 

Rs 0.900116 

Cs 517.7838 

 

Now, the fuzzier version of problem (14) is as follows: 

Min% Cs = [100(x1 + x2 + x3) + 150x4] 

Subject to: 

g1: x1 ≥%  0.5 g2: x2 ≥%  0.5 g3: x3 ≥%  0.5 g4: x4 ≥%  0.5 g5: x1 ≤%  1                                      (16) 

g6: x2 ≤%  1   g7: x3 ≤%  1    g8: x4 ≤  1    g9: Rs ≥%  0.9  g10: Rs ≤%  1. 

 

1. Let m~  be the fuzzy set of the objective function Cs, such that m~  = {(x, )x(m~µ ) | x ∈ 

R}, with: 

)x(m~µ  = 













>

≤≤
−

−

<

s

us
u

s

su

Czif,0

zCzif,
zz

zC

Czif,1

l

l

l

l  

where zu = max (z1, z2) and zu = min (z1, z2) and z1 = Cs have the solution of crisp problem 

(3.19). To find z2, we have b1 = b2 = b3 = b4 = 0.5 and  

b9 = 0.9. Therefore 

~

5.0  = {(x, )x(~

5.0

µ ) | x ∈ R}, with: 

)x(~

5.0

µ  = 











>

≤≤
−

<

7.0zif,0

7.0C5.0if,
2.0

x7.0

5.0zif,1

s

u

l

 

And 

~

9.0  = {(x, )x(~

9.0

µ ) | x ∈ R}, with: 
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)x(~

9.0

µ  = 











>

≤≤
−

<

95.0zif,0

95.0C9.0if,
05.0

x9.0

9.0zif,1

s

u

l

 

Hence p1 = p2 = p3 = p4 = 0.3 and p9 = 0.05. Therefore: 

z2 = Min 2[100(x1 + x2 + x3) + 150x4], 

subject to: 

g1: x1 ≥ 0.7, g2: x2 ≥ 0.7, g3: x3 ≥ 0.7, g4: x4 ≥ 0.7, g5: x1 ≤ 1,                          (17) 

g6: x2 ≤ 1,    g7: x3 ≤ 1,    g8: x4 ≤ 1,     g9: Rs ≥ 0.95, g10: Rs ≤ 1. 

The solution of (14) using the method in section 4 has been found as follows:  

At σ = 5×10
7
, the penalty term equal to zero, and 

*
1x  = 0.7009, 

*
2x  = 0.7000, 

*
3x  = 0.7000, 

*
4x  = 0.7000,  

*
sC  = 63.1780, 

*
sR  = 0.95487442,  

With 
*
1g  = 9×10−4, 

*
2g  = 0, 

*
3g  = 0, 

*
4g  = 0, 

*
5g  = −2.991×10−2, 

*
6g  = −3×10

−1
, 

*
7g  = −3×10

−1
, 

*
8g  = −3×10

−1
, 

*
9g  = 4.874×10

−3
, 

*
01g  = −4.512×10−2. Hence: 

)x(m~µ  = 













>

≤≤
−

−

<

s

s
s

s

C7838.517if,0

1780.630C7838.517if,
7838.5171780.630

7838.517C

C1780.630if,1

 

Where sC  = 2[100(x1 + x2 + x3) + 150x4]. 

2. Let 1C
~

, be the fuzzy sets for the constraint g1, such that: 

1C% ={(x, 
1C
(x)µ % ) | x ∈ R}, with: 

1C
(x)µ %  = 

1

1
1

1

1, if x 0.5

0.7 x
, if 0.5 x 0.7

0.2

0, if x 0.7

<
 −

≤ ≤


>
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Let 2C% , be the fuzzy sets for the constraint g2, such that 

2C% ={(x, 
2C
(x)µ % ) | x ∈ R}, with: 

C2
(x)µ %  = 

2

2
2

2

1, if x 0.5

0.7 x
, if 0.5 x 0.7

0.2

0, if x 0.7

<


−
≤ ≤


>

 

Let 3C% , be the fuzzy sets for the constraint g3, such that 

3C% ={(x, 
3C
(x)µ % ) | x ∈ R}, with: 

C3
(x)µ %  = 

3

3
3

3

1, if x 0.5

0.7 x
, if 0.5 x 0.7

0.2

0, if x 0.7

<


−
≤ ≤


>

 

Let 4C% , be the fuzzy sets for the constraint g4, such that 

4C
~

= {(x, 
4C
(x)µ % ) | x ∈ R}, with: 

C4
(x)µ %  = 

4

4
1

4

1, if x 0.5

0.7 x
, if 0.5 x 0.7

0.2

0, if x 0.7

<


−
≤ ≤


>

 

Finally, let 9C%  be the fuzzy set for the constraint g9, such that 

9C
~

 = {(x, )x(
9C

~µ ) | x ∈ R}, with: 

)x(
9C

~µ  = 













>

≤≤
−

<

95.0.0Rif,0

95.0.0R9.0if,
05.0

R95.0

9.0Rif,1

s

s
s

s

 

It should be noted that the following constraints 5g , 6g , 7g , 8g , and 10g  are satisfied 

completely and there is no fuzziness can be added. So, we suggest to take their characteristic 

functions on behalf its fuzziness to get better results  and make the study of the problem in the 

fuzzy environments well order, and as follows: 
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ig (x)µ %  = 
i 41, if x 1

0, otherwise

− ≤



 , i=5, 6, 7, 8 

and 

10g (x)µ % =
s1, if R 1

0, otherwise

≤



 

3- The following NLPP (18) has been developed into NLPP (19) as follows: 

 

Min −λ, 

subject to: 

1g : 
7838.5171780.630

7838.517Cs

−

−
 − λ ≥ 0, 

2g : 
2.0

x7.0 1−
 − λ ≥ 0, 

3g : 
2.0

x7.0 2−
 − λ ≥ 0, 

4g : 
2.0

x7.0 3−
 − λ ≥ 0, 

5g : 
2.0

x7.0 4−
 − λ ≥ 0, 

6g : x1 ≤  1,                                                                                                                                   (18) 

7g : x2 ≤  1, 

8g : x3 ≤  1, 

9g : x4 ≤  1, 

10g : 
05.0

R95.0 s−
 − λ ≥ 0, 

11g : Rs ≤  1, 

where 0 ≤ λ ≤ 1. The solution of (18) has the solution of unconstrained NLPP: 

Min ϕ(x1, x2, x3, x4, σ) = −λ + ( )∑
=

σ
10

1i

2
i )g,0(Min

2

1

                                                (19)
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where ig  is defined in problem (18). The result of problem (18) using the method in section 4. 

Table 2: Results of problem (18) by penalty function method 

σ x1 x2 x3 x4 λ 

10 0.8 0.75 0.7 0.65 0.5 

100 0.6210 0.6210 0.6208 0.6223 0.4082 

1000 0.6224 0.6240 0.6216 0.6236 0.3847 

1×104 0.6237 0.6239 0.6196 0.6238 0.3810 

1×105 0.6234 0.6238 0.6198 0.6239 0.3808 

25×10
4
 0.6233 0.6239 0.6198 0.6239 0.3806 

5×10
5
 0.6234 0.6238 0.6199 0.6239 0.3806 

75×10
4
 0.6228 0.6238 0.6203 0.6239 0.3805 

1×10
6
 0.6228 0.6238 0.6203 0.6239 0.3805 

25×10
5
 0.6229 0.6238 0.6202 0.6239 0.3805 

5×106 06331 0.6239 0.6200 0.6239 0.3806 

75×105 0.6291 0.6242 0.6198 0.6242 0.3790 

1×107 0.6213 0.6236 0.6235 0.6235 0.3821 

25×10
6
 0.6201 0.6230 0.6238 0.6239 0.3804 

5×10
7
 0.6203 0.6230 0.6239 0.6239 0.3805 

75×10
6
 0.6203 0.6237 0.6237 0.6238 0.3809 

 

At σ = 75×10
6
, the penalty term equal to zero, and 

 
*
1x  = 0.6203, 

*
2x  = 0.6237, 

*
3x  = 0.6237, 

*
4x  = 0.6238, λ*

 = 0.3809, 

 CsAF = 561.380, RsAF = 0.90629238 with 

 1g  = 6.986×10−3, 2g  = 9.999×10−4, 3g  = 5.999×10−4, 4g  = 5.999×10−4, 5g  = 

5.999×10
−4

, 6g  = 3.767×10
−1

, 7g  = 3.763×10
−1

, 8g  = 3.763×10
−1

, 

 9g  = 3.762×10−1, 10g  = 4.932×10−1 and 11g  = 6.6×10−3.  

Therefore, zλ ≤ CsAF ≤ zu. Note that problem (18) which is good for generalizations of crisp 

problem. 

 

6 Conclusions 

In this work, the fuzzy solution of reliability allocation optimization problems is presented. 

Furthermore, it is proposed that the results solution of fuzzy optimization is a generalization of the 

solution of the crisp optimization problem. In our work, the penalty function, has been competed to 

be zero, the numerical solution is very close to the exact solution, as the theory of the penalty 

function methods states. 
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