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Abstract: In this paper, the joint distribution functions for simultaneous velocity, temperature, 
concentration fields in turbulent flow undergoing a first order reaction in presence of Coriolis 
force have been studied. The various properties of the constructed joint distribution functions have 
been discussed. The transport equations for one and two point joint distribution functions of 
velocity, temperature, concentration in convective turbulent flow due to first order reaction in 
presence of Coriolis force have been derived. 
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1 Introduction 

In molecular kinetic theory in physics a particle's distribution function is a function of seven 
variables, ),,,,,( zyx vvvzyxf  which gives the number of particles per unit volume in phase 

space. It is the number of particles per unit volume having approximately the 
velocity ),,( zyx vvv  near the place ),,( zyx and time t . The distributions function as used in 

physics. Particle distribution functions are often used in plasma physics to describe wave-particle 
interactions and velocity-space instabilities. Distribution functions are also used in fluid mechanics, 
statistical mechanics, fluid and nuclear physics. In the past, several researchers discussed the 
distribution functions in the statistical theory of turbulence. G. K. Batchelor [1] studied the theory 
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of homogeneous turbulence. Lundgren [2] derived the transport equation for the distribution of 
velocity in turbulent flow. Bigler [3] gave the hypothesis that in turbulent flames, the thermo 
chemical quantities can be related locally to few scalars and considered the probability density 
function of these scalars.  Kishore [4] studied the distributions functions in the statistical theory of 
MHD turbulence of an incompressible fluid. S. B. Pope [5] studied the statistical theory of 
turbulence flames. Also, Pope [6] derived the transport equation for the joint probability density 
function of velocity and scalars in turbulent flow. Kollman and Janica [7] derived the transport 
equation for the probability density function of a scalar in turbulent shear flow and considered a 
closure model based on gradient flux model. Kishore and Singh [8] derived the transport equation 
for the bivariate joint distribution function of velocity and temperature in turbulent flow. 
Also Kishore and Singh [9] have been derived the transport equation for the joint distribution 
function of velocity, temperature and concentration in convective turbulent flow. The Coriolis force 
helps to clarify the relation between angular momentum and rotational kinetic energy and how an 
inertial force can have a significant affect on the movement of a body and still without doing any 
work. On a rotating earth the Coriolis force acts to change the direction of a moving body to the 
right in the Northern Hemisphere and to the left in the Southern Hemisphere. This deflection is not 
only instrumental in the large-scale atmospheric circulation, the development of storms, and the 
sea-breeze circulation Atkinson [10], it can even affect the outcome of baseball tournaments. Also 
a first-order reaction is defined a reaction that proceeds at a rate that depends linearly only on one 
reactant concentration. Later, some researchers extended their works including Coriolis force. In 
the continuation, Azad and Sarker [11] studied the Statistical theory of certain distribution 
functions in MHD turbulence in a rotating system in presence of dust particles. Sarker and Azad 
[12] studied the decay of MHD turbulence before the final period for the case of multi-point and 
multi-time in a rotating system.  Sarker and Azad [13], Azad and Sarker [14] deliberated the decay 
of temperature fluctuations in homogeneous turbulence before the final period for the case of multi- 
point and multi- time in a rotating system and dust particles. Azad and Sarker [15] discussed the 
decay of temperature fluctuations in MHD turbulence before the final period in a rotating system. 
Also, Azad et al. [16], Sarker et al. [17], Azad et al. [18], Aziz et al. [19],  Azad et al. [20] 
discussed the First Order Reactant in MHD turbulence before the final period of decay for the case 
of multi-point  multi-time and  multi -point single time considering rotating system and dust 
particles. Following the above researchers, Aziz et al. [21, 22], Azad et al. [23] had further studied 
the statistical theory of certain distribution functions in MHD turbulent flow for velocity and 
concentration considering first order reaction with a rotating system and dust particles. Aziz et al. 
[24] extended their study for the first order reactant in MHD turbulence before the final period of 
decay for the case of multi-point and multi-time in a rotating system in presence of dust particle.  
Sarker, Bkar Pk and Azad[25] studied the hhomogeneous  dusty fluid turbulence in a  first order 
reactant for the case of multi -point and multi -time prior to the final period of decay. Azad, Molla 
and Z. Rahman, [26] studied the transport equatoin for the joint distribution function of velocity, 
temperature and concentration in convective tubulent flow in presence of dust particles. Molla, 
Azad and  Z. Rahman [27] discussed the decay of temperature fluctuations in homogeneous 
turbulenc before the finaln period in a rotating system. Bkar et al. [28], Bkar et al. [29, 30] 
premeditated the first-order reactant in homogeneous dusty fluid turbulence prior to the ultimate 
phase of decay for four-point correlation considering rotating system. Bkar P.K., et al. [31, 32] had 
studied the decay of MHD turbulence before the final period for four- point correlation among dust 
particle and rotating system. M. H. U. Molla et al. [33]  studied the transport equation for the joint 
distribution function of velocity, temperature and concentration in convective turbulent flow in 
presence of Coriolis force. 

But at this stage, one is met with the difficulty that the N-point distribution function depends upon 
the N+1-point distribution function and thus result is an unclosed system. This so-called closer 
problem is encountered in turbulence, Kinetic theory and other non-linear system. 
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In this paper, we have studied the joint distribution function for simultaneous velocity, temperature, 
concentration fields in turbulent flow in presence of Coriolis force undergoing a first order reaction. 
Finally, the transport equations for evolution of distribution functions have been derived and 
various properties of the distribution function have been discussed.  

2 Methodology 

2.1   Basic equations 

The equation of motion and field equations of temperature and concentration in presence of 
Coriolis force are shown by 
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where u and x are vector quantities in the whole process. uα (x, t) = Fluctuating velocity 
component, θ (x, t) =Temperature fluctuation, c = Concentration of contaminants,ν  = Kinematics 
viscosity, ƒ= Coefficient of thermal conductivity, D= Diffusive coefficient for contaminants, 

αβm∈ = Alternating tensor, mΩ = Angular velocity of a uniform rotation, R=constant reaction 
rate. 

Formulation of the problem 

We consider the turbulence and the concentration fields are homogeneous, also consider a large 
ensemble of mixture of miscible fluids in which each member is an infinite incompressible heat 
conducting fluid in turbulent state. The fluid velocity u, temperature θ and concentration c are 
randomly distributed functions of position and time and satisfy their field equations. Different 
members of ensemble are subjected to different initial conditions and the aim is to find out a way 
by which we can determine the ensemble averages at the initial time. The present aim is to 
construct a joint distribution functions, study its properties and derive an equation for its evolution 
of this joint distribution functions in presence of Coriolis force undergoing a first order reaction. 

Joint distribution function in convective turbulence and their properties 

It may be considered that the fluid velocity u, temperature θ, concentration c at each point of the 
flow field in turbulence. Lundgren (1967) and Sarker and Kishore (1991, 1999)   has studied the 
flow field on the basis of one variable character only (namely the fluid u) but we can study it for 
two or more variable characters as well. The corresponding to each point of the flow field, we have 
three measurable characteristics. We represent the three variables by v,φ  and ψ and denote the 

pairs of these variables at the points ( ) ( ) ( )nxxx ,, 21 −−−−−−−−  as ( ) ( ) ( )( )111 ,, ψφv , ( ) ( ) ( )( )222 ,, ψφv , 
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……, ( ) ( ) ( )( )nnnv ψφ ,,  at a fixed instant of time. It is possible that the same pair may be occurring 
more than once; therefore, we simplify the problem by an assumption that the distribution is 
discrete (in the sense that no pairs occur more than once). Instead of considering discrete points in 
the flow field if we consider the continuous distribution of the variables and ψ over the entire flow 
field, statistically behaviour of the fluid may be described by the distribution function   ( )ψφ,,vF  
which is normalized so that 

( ) 1,, =∫ ψφψφ dddvvF , 

where the integration ranges over all the possible values of v, φ  and ψ. We shall make use of the 
same normalization condition for the discrete distributions also. The joint distribution functions of 
the above quantities can be defined in terms of Dirac Delta-functions. 

The one-point joint distribution function ( ) ( ) ( ) ( )( )1111
1 ,, ψφvF  is defined in such a way that                     

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1111111
1 ,, ψφψφ dddvvF  is the probability that the fluid velocity, temperature and 

concentration field at a time t are in the element ( )1dv  about ( )1v , ( )1φd  about ( )1φ  and ( )1ψd  

about ( )1ψ  respectively and is given as 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )〉−−−〈= 1111111111
1 ,, ψδφθδδψφ cvuvF ,              (4) 

where, δ is the Dirac delta-function defined as: 

( ) {1, int ,
0, .

at the po u v
otherwiseu v dvδ =∫ − =  

Two-point joint distribution function is given by 
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2F u v c u v cδ δ θ ϕ δ ψ δ δ θ ϕ δ ψ= 〈 − − − − − − 〉 ,           (5) 

and three point distribution functions is shown by 
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Similarly, we can define an infinite numbers of multi-point joint distribution functions ( )4,3,2,1
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( )5,4,3,2,1
5F  and so on. The joint distribution functions so constructed have the following 

properties: 
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(A) Reduction properties 

Integration with respect to pair of variables at one-point, lowers the order of distribution function 
by one. For example: 
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 and so on. 

Also the integration with respect to any one of the variables reduces the number of Delta-functions 
from the distribution function by one as: 
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and 

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )〉−−−−〈=∫ 2222111122,1
2 ψδφθδψδφθδ ccdvF , 

and so on. 

(B) Separation properties 

The pairs of variables at the two points are statistically independent of each other if these points are 
far apart from each other in the flow field i.e., 
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(C) Coincidence property 

When two points coincide in the flow field, the components at these points should be obviously the 
same that is F2

(1, 2) must be zero. Thus: 
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( ) ( ) ( ) ( ) ( ) ( )121212 , ψψφφ === andvv . 

But also F2
(1, 2)   must have the property 
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And hence it follows that: 
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Continuity equation in terms of distribution functions 

An infinite number of continuity equations can be derived for the convective turbulent flow and the 
continuity equations can be easily expressed in terms of distribution functions and are obtained 
directly by div u = 0.  
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and similarly 
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which are the first order continuity equations in which only one point distribution function is 
involved. For second-order continuity equations, if we multiply the continuity equation by 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )222222 ψδφθδδ −−− cvu . 

And if we take the ensemble average, we obtain: 
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The Nth-order continuity equations are 
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The continuity equations are symmetric in their arguments i.e. 
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Since, the divergence property is an important property and it is easily verified by the use of the 
property of distribution function as: 
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and all the properties of the distribution function obtained in section (4) can also be easily verified. 

 

Equations for the evolution of joint distribution functions 
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This, in fact is done by making use of the definitions of the constructed distribution functions, the 
transport equation for ( )txvF ,,,, ψφ  is obtained from the definition of F and from the transport 
equations (1), (2), (3). Differentiating equation (4) we get, 
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Various terms in the above equation can be simplified as that they may be expressed in terms of 
one point and two point distribution functions. The 2nd , 3rd  and 4th  terms on the left hand side of 
the above equation are simplified in a similar fashion and take the forms as follows 

( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )( )
( )

( )

1
1 1 1 1 1 1 1

1 1

1
1 1 1 1 1 1 1

1 1, 1 ,

uc u u v
x v

uc u u v
x v

α
α

β α

α
α

β α

δ θ ϕ δ ψ δ

δ θ ϕ δ ψ δ

∂ ∂
− − − −

∂ ∂

 ∂ ∂
= − − − = − 

∂ ∂  


                  (17)

                           

 

( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )( ) ,11
1

11111

11
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1
11111

φθδψδδ

φθδ
φ

θψδδ

β
α

β
α

−
∂
∂

−−=

−
∂
∂

∂
∂

−−−

x
ucvu

x
ucvu

            (18) 

and 

( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )( )11
1

11111

11
11

1
11111

ψδφθδδ

ψδ
ψ

φθδδ

β
α

β
α

−
∂
∂

−−=

−
∂
∂

∂
∂

−−−

c
x

uvu

c
x
cuvu

            (19) 

Adding equation (17), (18) and (19) we get, 
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( ) ( )( ) ( ) ( )( ) ( )
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( ) ( )( ) ( ) ( )( ) ( )
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( ) ( )( )11
1
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11
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β
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∂
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−
∂
∂
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∂
∂
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c
x

uvu

x
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x
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( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )

( )
( ) ( ) [ ]

( )
( )

( )

1 1 1 1 1 1 1
1

1 1
11

1
1 1

1

,

,

.

u u v c
x

v F Applying the properties of distribution function
x

Fv
x

α
β

α
β

α
β

δ δ θ ϕ δ ψ∂
= − − −
∂

∂
=
∂

∂
=

∂

          (20)

     

We reduce the 5th and 6th terms on left hand side of equation (16), 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )
( )
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( ) ( ) ( ) ( ) ( ),

4
1

4
1

22222,1
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2

2
2
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2
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π
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β
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β
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x

v
xxxv
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dx
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xxx
c















∂
∂































−

∂
∂
∂

−
∂
∂

=
















−

∂
∂













−∂
∂

∂
∂

∂
∂
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∫

∫
     (21) 

and 

( ) ( )( ) ( ) ( )( ) ( ) ( )
( )

( )
( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1 1
1 1 1 ,

c u u v
x x v

u c u v
v x x

α
β β α

α
α β β

δ θ ϕ δ ψ ν δ

ν δ θ ϕ δ ψ δ

 ∂ ∂ ∂
− − −  ∂ ∂ ∂ 

∂ ∂ ∂
= − − −

∂ ∂ ∂

( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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2 1

1 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1 1
1 1 1

2 2 2 2 2 2 2
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2 1,2 2 2
21 2 2

,

,

,
x x

x x

u c u v
v x x

u c u v
v x x

u c u v
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v x x c u v dv d d

Lim v F dv d
v x x

α
α β β

α
α β β

α

α β β

α β β

ν δ θ ϕ δ ψ δ

ν δ θ ϕ δ ψ δ

δ θ ϕ δ ψ δ
ν

δ θ ϕ δ ψ δ ϕ ψ

ν ϕ

→

→

∂ ∂ ∂  = − − − ∂ ∂ ∂

∂ ∂ ∂  = − − − ∂ ∂ ∂

− − −∂ ∂ ∂
=

∂ ∂ ∂ − − −

∂ ∂ ∂
=
∂ ∂ ∂

∫

∫ ( )2 .dψ

                        (22) 

We reduce the 7th term on left hand side of equation (16), 
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( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )( )

( )
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( ) ( )( ) ( ) ( )( ) ( ) ( )( )
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( )
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

1 1 1 1 1 1 1
1

1 1 1 1 1 1 1
1

1 1 1 1 1 1 1
1

1
1 1 1 1 1 1 1

11

2

2 ,
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v

u u v c
v
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v

αβ α
α

αβ α
α

αβ α
α

α
αβ αβ

α
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δ δ θ ϕ δ ψ
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∂
− − − ∈ Ω −

∂

∂  = ∈ Ω − − − ∂

∂
= ∈ Ω − − −

∂

∂
= ∈ Ω − − − = ∈ Ω

∂

                     (23) 

Similarly, 8th, 9th and 10th terms of left hand side of (16) can be simplified as follows: 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )
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( ) ( )( )

( ) ( ) ( ) ( ) ( )
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ƒ
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∂
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→

            (24) 

( ) ( )( ) ( ) ( )( ) ( ) ( )
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( ) ( )( )
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( ) ( ) ( ) ( ) ( )

2 1
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D
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x x
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x x
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x x

β β

β β
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ψ ϕ ψ
ψ →

 ∂ ∂ ∂
− − −  ∂ ∂ ∂ 

∂ ∂ ∂
=
∂ ∂ ∂ ∫

                          (25) 

and ( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )( ) )1(
11

)1(11
1

11111 FRcRcvu
ψ

ψψδ
ψ

φθδδ
∂
∂

−=−
∂
∂

−−− .           (26) 

Substituting the results (20)-(26) in equation (16), we get the transport equation for one point 
distribution function ( ) ( )ψφ ,,1

1 vF  in turbulent flow in a rotating system undergoing a first order 
reaction   
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( )

( )
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( ) ( ) ( ) ( ) ( )
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t x v x xx x
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→

→
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    ∂ ∂ ∂ ∂ ∂ ∂  + + −     ∂ ∂ ∂ ∂ ∂−    
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Similarly, a transport equation for two-point distribution function ( )2,1
2F in turbulent flow in 

rotating system undergoing a first order reaction can be derived by differentiating equation (5) and 
using equation (1),(2),(3) and simplifying in the same manner which is  
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



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
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                    (28) 

Continuing this way, we can derive the equations for evolution of ( ) ( )4,3,2,1
4

3,2,1
3 , FF  and so 

on. Logically, it is possible to have an equation for every ( )egeranisnFn int  but the 
system of equations so obtained is not closed. It seems that certain approximations will be 
required thus obtained.  

3   Results and Discussion 

 If the reaction rate R=0, the transport equation for one point joint distribution function 
( ) ( )ψφ,,1

1 vF in turbulent flow undergoing a first order reaction, equation (27) becomes 
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∂ ∂ ∂
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∫

∫
                                                   (29) 

which was obtained earlier by M.H.U. Molla [33]. 

In the absence of the Coriolis force, 0=Ωm , then the transport equation for one point joint 

distribution function ( ) ( )ψφ,,1
1 vF  in turbulent flow equation (26) becomes 
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             (30) 

which was obtained earlier by N. Kishore and S.R. Singh [9].  

 To close the system of equations for the joint distribution functions some approximations are 
required. If we consider the collection of ionized particles i.e., in plasma turbulence case, it can be 
provided closure form easily by decomposing F2

(1, 2) as F1
(1) F1

(2). But such type of approximations 
can be possible if there is no interaction or correlation between two particles.  

If we decompose F2
(1, 2) as:   

( ) ( ) ( ) ( )1,2 1 2
2 1 11 ,F F Fε= +                  (31) 

( ) ( ) ( ) ( ) ( )21,2,3 1 2 3
3 1 1 11 ,F F F Fε= +                 (32) 

where ε is the correlation coefficient between the particles. If there is no correlation between the 
particles, ε will be zero and joint distribution function can be decomposed in usual way. Here, we 
are considering such type of approximation only to provide closed form of the equation i.e., to 
approximate two-point equation as one point equation. The transport equation for the joint 
distribution function of velocity, temperature, and concentration has been shown here to provide an 
advantageous basis for modeling the turbulent flows in presence of Coriolis force undergoing a first 
order reaction. 

In this study, we have made an attempt for the modeling of various terms such as fluctuating 
pressure, viscosity and diffusivity in order to close the equation for joint distribution function of 
velocity, temperature and concentration. Since ( )ψφ ,,vF  contains all the statistical information 
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about the velocity at each point, a turbulence model to determine the Reynolds stresses is not 
needed. However, since ( )ψφ ,,vF  is one point statistics, the length scale information is also not 
needed.  
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