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ABSTRACT

The research article presented the derivation and implementation of some Block Hybrid
integrators at step sizes k = 3 and k = 4 respectively for the solution of first order ordinary
differential equation via power and exponential series as basic functions. The derived methods
were found to be zero-stable, consistent and convergent. Also, for the values of a # 0 present in
the exponential series were tested with various value of numbers within the number system, the
schemes obtained remain the same throughout. The newly derived methods displayed their
superiority when tested on some real-life problems and non-linear differential equations used in
the literatures.

Keywords: Hybrid, Block integrators, combination of basis function, power and exponential
series

1 INTRODUCTION

The techniques for the derivation of Linear Multistep Methods for the solution of initial value
problems in Ordinary Differential Equations (ODEs) has been discussed extensively in various
literatures over the years and these includes,( [1], [2],[3], [4], [5],[6],[7],[8],[9] and [10]) to mention
a few. All of them used a single Basis function in their work such as, Power series, Chebyshev,
Hermite, Laguerre, Lagendre polynomials, Trigonometric and Exponential Functions. A remarkable
progress in numerical methods for approximating solutions of initial value problems (IVPs) in
(ODEs) has received considerable attention in recent decades and many researchers have shown
interest in constructing more efficient methods. In this research paper two bases were combined to
obtain some highly efficient methods to handle problems on ODEs effectively.

1.1 Background of the Study

In many areas of applications of pure and applied sciences where ODEs emerge, some of such
equations were stiff or non- linear in nature, the solution of these classes of problems often pose
some level of difficulties that resulted in fewer successes of some analytical methods to handle them
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hence there is need to develop efficient and adequate numerical tools to handle such mathematical
models. During the past half-century, the growth in power and availability of digital computer has
led to an increasing use of realistic mathematical models in Science and Economics, Engineering, and
Numerical analysis of increasing sophistication were needed to solve these more detailed
mathematical models of the world, see [11].

The Hybridization of Linear Multistep Method has circumvented the Dahlquist Barrier theorem
because of the high orders obtained with these methods. Our newly approach has provided some
effective and efficient methods with maximum order p > k + 2 without necessarily increasing the
step length of the method, since the higher the order of Linear Multistep Method the better the rate
of convergence of the results.

Definition 1.
This is an infinite series of the form of:
[ee]
Z anx™ = ag + a;xt + apx?® + azxd + agxt 4+ + (1)
n=0

and

[oe]

2 ap(x—c)"=ay+a;(x — ) +a,(x —c)?* +az(x — ¢)® ... )

n=0

Then equation (2) is a Maclaurin series. If the center c is zero then, it becomes power series.
Definition 2 (Exponential series).

This is a function in which an independent variable appears as an exponent.

a’x? a3x®  a*xt

ax — N anxn_
e —z . =1+ax+ T + + + - 3)
n=0

3! 41
Theorem 1 (Dahlquist Order Barrier for LMM). A zero-stable Linear Multi-step Method of step

number k can have order exceeding k + 1 when k is odd or exceeding k + 2 when k is even (see [8]).

2 METHODOLOGY

Consider the first order ordinary differential equation of the form

y'=fxy), y(x0) =yo for a<x<b 4)

Assumed our approximate solution as:
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t+c-2

t+c—1
y(x) = Z A X"+ Apyeon 2

n=0

(5)

The first derivatives of (5) is given as:

t+c-2 t+c—-1

ax™
y'(x) = z na, x" '+ Apyeq 1 =11 (6)
n=

n=1
where i and c are interpolation and collocation points, while the degree of the polynomial is (¢t + ¢ —
1). For the consideration of the block integrator methods of First order ordinary differential
equations at k = 3 and k = 4, respectively.

The derivation is as follows:

2.1 Derivation of LMM atk =3

Equation (5) is interpolated at y(x;) = yn4i, I = (0, %), and equation (6) is collocated at f(x;) =
. 1

f 1= (0.2).2)

Our polynomial equation is of the form

AX=B (7)
T
where A = [ag, ay,a;,a3,a4,a5a6,07]", B = |y, Vsl fn,fn+l: fn+1fn+_ fn+2rfn+i: fn+3]
2 2

1 1 1 1 1
X = [l,x,xz,x3,x4,x5,x6,<1+a'x+za2x2 +ga +24 atx* + — 50 ¢ +ma6x6)]

Specifically Equations (5) and (6) give non-linear system of equations which of the form

2 3 4 5 6 1, 2,1 353
ag + a1 x, + ay x5 + azx, + azx, + asx, + agx,y + az (1 + ax, +§a x5 +ga X5 +

1 1 1 1
—a*xt+—a®x) +—a®xf+—a’x]) =y,

24 120 720 5040
Ao+ a;x 14 ax? 14 asx® 1 +axt L Fasx® | +agx® 1 +a,(1+ ax 1+1a2x2 +
0 1 n+s 2 n+% 3 n+% 4 n+% 5 n+% 6 n+% 7 nts 2 n+%
1 1 1 1
3.3 at 4 a’ 5 6,.6 —
QX 1 to—aX 1t a’x 1o a x +
6% nrt T 22 il T 120" Tl T 72 5040 " 1)

2 3 4 5 2 12,1 43
a, + 2a,x, + 3azx; + 4ayux;, + 5asx, + 6agx, +a,(a+ a‘x, +Ea X5 +ga X, +
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1 1
5,4 6,5 7.6
acxg + alx; + a’xy) =
24 " 120 " 720 n) =
a; +2a,x 1+ 3a3x% 1+ 4a,x3 |+ 5asx* 1+ 6agx® 1+ a,(a + ax 1+la3x2
1 2 n+s & n+% 4 n+% 5 n+% 6 n+% 4 ntsy 2 ""‘%

1 1 1
= 4.3 — aSx — abx 5 _ —
e ik T T Nl T 120 +720“x W=

a; + 2a,Xp41 +3a3x2 4, +4aux3,, +5asx) ., +6agxn,, +ar(a+ axy,, +-adx2, +

2
1 1 1

4.3 6..5 7.6 _
ga Xn+1 T 57 @ xn+1 + x5 oo A X)) = fua

24 120 720

1
2 3 4 5 2 = 3.2
a; + 2a2xn+§ + 3asx 3 + 4a,x ,3 + 5asx ,3 + 6a6xn+§ +a,(a+a’x 3+ > a xn+%

3
2 n+y n+s n+s > n+s

5

1 3 1 1 6
+-a*x® s+—a 3+ abx® 3 +—a’x® ) =f .3
6 TL+5 24 20 +z 720 ‘l’l+5 n+;

3,2
5 A Xnt2 +

Ay + 2a,Xp4 + 3032, +4a,x3 ., + 5asxk o + 6agx0., + ar(a + a’x,,, + >

1 4 3 1 5 4 1 6.5 1 7.6 —
S Xpgp T Xy F @Ky T @ X40) = fran

adx? o+

a, + 2a2x 5 + 3a3x \5 +4a,x° 5+ 5a5x .5 + 6agx’ 5+ a,(a+ a’*x s+=
E n+§ 7 TH'E n+§ 2 n+§

1 1 1 1
= ty3 a5yt 4645 = 746 ) =
cax +24 b g+120a xn+§+720a xn+§) fn+%

1
Ay + 2a3Xp43 + 3a3x2 5 + 4ayx3 5 + 5asxit, 3 + 6agxs .3 + a;(a + alx,,; + Ea3xﬁ+3 +

1
6

6x5 1
13+ o5 a7%513) = fass

1
a xn+3 +—-a 720

1
4.3
@ Xnis T o 120

(8)

Re-arrange Equation (8) in matrix form:
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Using Maple17 Mathematical software to determine the values of a’s in equation (9) and substituted
in equation (5) to form our continuous formula which of the form

y(x) = an(X)y, + an+%(x)yn+% +h [.Bn(x)fn+ﬁn+%(x)fn+%+ﬁn+l(x)fn+1 + '8n+%(x)fn+3

4 Bs2CO sz + B, 5COf 5 + Buvs (s (10)

where ay, ;(x) and B, (x),j = 0, (%) , 3 are continuous functions to be determined.

. . . 1.3 ,5 . . .
Evaluating equation (10) at x = x,,,; ,I = (E’ 1,5, 2,5, 3) to obtain our newly discrete hybrid block
method. However, it worth to note that after testing with number system for values of a's in the
exponential series equation (9) but the schemes obtained remain the same throughout.

19087 2713 15487 6737
1=y, = h h ——h + 23y ——h 428
yn+— Yn = 120060 fot 5040 fn+— 40320 frta 945 fn+— 40320 frtz 5040 fn+—

863 hf
120960 /N+3

1139 269 11 37
Ynar = Yn = 7555 M +o 63 hfn+ 2520 sz st 50 945 hfn+§ ~ 2550 ez t Ehfm; ~ 7560 s

137 81 1161 27 29
—Yp=——hfy +—h —h Zh 2 p —h ———h
Yn+d T In = Bog fnt i fn+— waso U1 t3 35 fn+— 2aso Un+z T 5g fn+§ aaso s

143 232 64 752 29 8 4
Yntz = n = gus Mn ¥ 35 M it F s hines F 55 i s + 5 e + Ehfm; ~ 525 Wnas

3715 725 2125 25 3875 235 275
5 — = + h 1+—h + —h s+——h + — 5 — —
Yn+d ™I = 24102 Jn ¥ To0s fn+5 506 n+1 ¥ 155 fn+5 s06a n+2 F 150 fn+5 24102 3

41 27 27 34 27 27 41
Ynts = ¥n = geohn ¥ 35 it ogs fnes £ 55 hf s o Mnee £ 55 S s T 550 tnss

(11)

The above equation (11) is the Hybrid Block method at k = 3, can be represented in a matrix equation
form as follows:

1 0 0 0 0 0 2l 0 0 0 0 0 —17""
0100 0 of[+1|f0 0 0 0 0 —1[Vn-2
0010 0 0ffYns2[ 0 0 0 0 0 —1{|Yn-2
000100yn+200000—1yn_1
0 0001 Offy,,s{10 00 0 0 —1|jy,2
0 0 o0 0 0o 14, 2o oo o0 o0 —1d
Yn+3 4 L YV
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2713 15487 293 6737 263 863 - 0 00 0 0 19087 -
5040 40320 945 40320 5040 120960 (¢ 120960 | f 5
47 11 166 269 11 37 nts 00 0 0 o 43 [/ -2
63 2520 945 2520 315 7560 Frs1 7560 || f_s
81 1161 17 729 27 29 f 000 0 0 X f
N 112 4480 35 4480 560 4480 n+§ N 896 n—2
232 64 752 29 8 4 143
— = — == = —— fn+2 000 0 0 — ||fn-1
315 315 945 315 315 945 945
725 2125 125 3875 235 275 fn+5 00 00 O 3715 fn_l
1008 8064 189 8064 1008 24192 £ z 24192 Lf 2
27 27 34 27 27 41 L/n+3 41 n |
2 27 M 2727 41 00000 =%
L 35 280 35 280 35 280 A L 280
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2.2 Derivation of LMM at k = 4

For k = 4 the equation (5) is interpolated at y(x;) = V44,
fx) = fasi

1
i=(;
2

I11_)2J

3 .5
27727

3,2,4),

(12)

i = (0), and equation (6) will be collocate at

if t =1,c=9ands=1+4+9—1=9, wheret and ¢ is the

interpolation and collocation points while s is the degree of the polynomials, which give rise to a system of
non-linear equations of the form.

AX =B
where
— T p_
A = [ag,ay,a;,a3,a4,a506,a7,ag]" ,B = [}’n:f,H_ fn+1fn+§; fn+2'fn+_ fr+3fz f4]
2
1
X= [1xx2x3x x°,x6,x7 (1+ax+ a’x? +-adx + atxt + —a®x® + —abx® +
6 120 720
1
—0(7x7)]
5040
Specifically Equations (5) and (6) will give:
1
ag + a1x, + apx2 + azx3 + ayxp + asx;, + agxS + a;x? +ag(l+ ax, + Ea 2 4= a3 3+
1 4.4 5,5 6,6 7,7
—a*x a’x a’xp, +—a’xy) =
24 nt 0 120 nt 7% 720 nt 5040 n) = Yn
ag +ax +3+a2x 1+a3x 1+a4x 1+a5x 1+a6x6 1 +a7x7 e +a8(1+axn+l+
2 2 2 2 2 2
12 3,3 1 o545
~a?x? La’x —a b —q’ =
2 il +3 n+> + +l + 120 Xnel t720% it T soa0 +§) Yl
a, + 2a,x, 1+ 3azx> 1 + 4a4x3 1+ 5a5x at 6a6x e + 7a7x S ag(a + a?x_ 1+
s nty nts +2 *2 *2 nts
132 1 4.3 1 5.4 6,.5 7 —
P Xt e xn+§ T xn+§ 0% xn+§ + 720“ xn%) - fn+%

a, + 2a;x,,1 + 3a3x,%+1 + 40L4x,31+1 + 5a5x§+1 + 6a6x,§+1 + 7a;x8,, +ag(a+ a?x,.q +

1 3 o 1
Ea xn+1+ga xn+1+

5
P xn+1 +— 120 &

Xns1 t s

79
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5 6 2
2a 2 4a,x’ 4 a ag(a+ a
a, +2a,x_ 3+ 3a3xn+§ + a4xn+% + 5a5xn+§ +6 6xn+§ + 7a7xn+% +ag(a+a“x_ s+

Tl+5 TL+E
1 2 1 3 5 1 6

Zadx? s4-atx s+ —aSxt s+ —abx® s+ —a'x8 ) =f

2 n+5 6 n+5 24 n+5 120 n+5 720 n+ n+—

a, + Zazxn+2 + 3a3x,21+2 + 4a4xfl+2 + Sasxp,, + 6a6x,51+2 + 7a;x8,, +ag(a + a’x,,, +

13,2
Ea Xn+2 + a xn+2 + a xn+2 + a xn+2 + 0( xn+2) = fn+2

2 3 4 5 6 2

a 2a,x_ s + 3asx 4da,x S5acx 6a.x 7a-x ag(a + a“x._ s
1t 2n+5+ 3n+§+ 4n+§+ 5n+§+ 6n+§+ 7Xn +ag(a + n+5+

1 1

Za8x? s4-atxd s+ —aSx* s+ —atx® s+—a'x’ ) =f

2 n+2 6 +— 24 n+5 120 n+5 720 n+ n+—

a, + Zazxn+3 + 3a3x,%+3 + 4a4x,3;+3 + 5asxp, 3 + 6a6x,51+3 + 7a,x8 + ag(a + a’x,,3 +

1.3 5
2@ Xh43 += P "xnea + 24 Xn43 t 50 ®Xn+3 T "Xp43) = fras

a; +2a,x_ 7+ 3asx? 4+ 4ax> .+ 5a5x 2t 6a6x 7 +7a7x 7 +ag(a + a’x_ 7+
nts n+3 nts +7 +2 *2 nty

1 2 1 4 1 5 1 6

“adx® s+ -atx 7+ a’x* s +—abx> ,+—a’x® ) =f_.s

2 n+ 6 n+s 120 Tn+s | 7200 T n+l n+;

a, + Zazxn+4 + 3a3x5+4 + 4a4x,31+4 + 5asxpi, + 6agxs,, +7a;x8,, +ag(a+ a’x, 4+
1
Ea xn+4 + 0( xn+4 + 0( xn+4 + CZ xn+4 +%0{ xn+4) = fn+a

(13)

Following the same analysis as of Block method at k = 3 to obtain the continuous formulation of the
form

V() = anCOyn + &, 1Y, 3+ b B (futB 1 Of 1+ Bais (s + B, 30OF s

+Bn+2(X) frr2 +ﬁn+5(x)fn+i + Bz () fnes + ﬂn%(x)fn% + Brta () frsa (14)
2 2

Similarly, Maple 17 Mathematical software was used to determine the continuous functions of
anyj(x) and +fp,,;(x)in equation (14) and which then evaluated atx = x4 ,i=
G, 1,;, 2,;, 3, g, 4) to obtain our discrete block method as follows:

16083 1152169 242653 296053 2102243
yn+1 ~Yn = 3960 hfn+— 241920 hfner + 26880 hfn+— 26880 hfnea + 241920 hfn+§ -
115747 32863 5257

———h —_— 7 ——
26880 U3 ¥ Tgos0 fn+5 34560 Un+a
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368 703 179 79417 874 3473
— Yo =—hf 1——h ~—hf s———h =—hf s———h
Yn+1 = In 189 fn"'E 168 fn+1 + 21 fn"'E 7560 fn+2 + 105 fn+5 840 fn+3 +

1111 41
Mlpr —2Lh
945 fn+; 280 W+

497 35723 80127 95783 75577
53— Yy = — 1———h +——hf s———h +——hf s—
Y2 TV = 556 fn+5 so60 U1 ¥ o fn+; soe0 n+z T 5og fn+;

37473 2129 265
383 ffs + 2 pf =2
soe0 Mn+s T 105 fn+; 1797 s

68 3784 964 1087 7892 436
— Yy =—=hf 1—=—hfp+—hf 3——hfpir+—hf s———hfp.3+
Yn+2 = In 35 fn+5 945 fn+1 105 fn"'E 105 fn+2 945 fn+5 105 fn+3

124 139
2hf ,—22p
105 fn+5 55 W+

93965 21485 49145 487225 46415
5 — Y == 1———h +——hf 3— h +——hf s—
Y2 ™ In 48384 fn+5 5376 1+ 5g fn+5 ss3ss U2 ¥ 537 fn+5
22535 57515 265

——h ——hf 71——=h
5376 Mn+s + gags fn+5 179z na

68 1121 321 2843 314 1107
—yp===hf 1———hfpy +=—hf 3——Hhfps t—hf s———hfpis+
Yn+3 = In 35 fn+5 280 fn+1 35 fn+5 280 fn+2 35 fn+5 280 fn+3

41 41
Ehfn+% - 280 hfn+4

497 27587 7007 38563 303653
7— Y, =—hf 1—=——h +—hf 3———h +— 5 —
yn+5 Yn = 556 fn+5 6912 fraa 768 fn+5 3840 fr+2 34560 fn+5

13573 5257 5257
SELIEY RN Ly P L
3820 Unes T 3ga fn+5 34560 Un+s

368 424 976 1087 9836 976
— Yo ="=hf 1———hfp +—hf 3———Nfpir+——hf s——hfp,z+
Yn+a = Yn 189 fn+5 105 fn+1 105 fn+5 105 fn+2 945 fn+5 105 fn+3

368

Ehfn%
(15)

The above equation (15) at k = 4, can be represented in matrix equation form as follows:

- ..
—1000000()-y"+5-0000000—1-”"'E
0100000 of™floooo0oo0o0 o0 —1f/"3
0010000 ol oooo0o0o0 o0 —t1fns
0 001 00 0 Of[yne2] |0 0 0 0 0 0 0 —1|[yn-
000010 0 0l[Vyus| |0 000 o0 0 0 —1ffy,:
0000010 0fy,s[]0 000000 -1y,
000000 10|y ,[]0000000 -1y
-00000001’”50000000—1-{”"

L Vn+4 4 Yn
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3

3.1 Order and Error constant at methods k =3 and k = 4

Given linear differential operator:

Lly(x); h] = ¥ o[(a; y(x + jR) — hB;y' (x + jh)] = 0

r16083 1152169 242653 296053 2102243 115747 32863 5257 A
8960 241920 26880 26880 241920 26880 26880 34560
368 703 179 79417 874 3473 1111 41
189 168 21 7560 105 840 945 280
497 35723 80127 95783 75577 37473 2129 265
256 8960 8960 8960 8960 8960 1792 1792
68 3784 964 1087 7892 436 124 139
35 945 105 105 945 105 105 945
93965 21485 49145 487225 46415 22535 57515 265
48384 5376 5376 48384 5376 5376 48384 1792
68 1121 321 2843 314 1107 41 41
35 280 35 280 35 280 35 280
497 27587 7007 38563 303653 13573 5257 5257
256 6912 768 3840 34560 3840 3840 34560
368 424 976 9836 976 424 368
- 189 105 105 945 105 105 189
_f 7_
n-3;
0 0 0 0 0 O s
-
0 000 0 O f s
0 00 0 0 ofl":
0 0 0 0 0 Ol|lfn
0000 0 O||f,:
0 000 0 O f 2
0 000 0 O f’H
1
0 0 0 0 0 oll/n
| £,

(16)

ANALYSIS OF BASIC PROPERTIES OF THE NEWLY HYBRID BLOCK INTEGRATOR METHODS

where y(x) is an arbitrary function, continuously differentiable on an interval [a, b].

The Taylor’s expansion about the point x, gives

LIy (x); hl = Coy(x) + C1hy' () + Cohy" () + C3hy"' (%) + Cohy™ (x) + -+ +

We obtained the coefficients of h as

Co=apta;+a,+-+ag

Co = @y + 20, + 3 + -+ ket = (Bo + B+ + i
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1 1
Cq = a(a’l + an’z + 3qa3 + -+ kqak)m(ﬁl + 2q—1’32 + 3q_1,33 + .- kq_lﬁk)

q=23,... a7
suchthat, Cp =C; =-Cp =0 and Cpyq #0 see ([12], [13])

Using formula (17) for the method (12)of k=3, Cu =C; =C, =C3=C4 =C5 = (g =

C; =0 butCg # 0

Implies that the order and the error constant are given by  p =[7,7,7,7,7,7]" and Cp,, = Cg =

[ 275 1 9 1 275 ]T
6193152’ 30240’ 229376’ 3240’ 6193152’ 716800

respectively.

Similarly, using formula (17) for the method (16) at k = 4, the orders and the error constants were obtained

as p= [8,8,8,8,8,8,8,8]T and Cp+1 =Cy =
[ 1070017 32377 12881 4063 41705 401 149527 989 ]T
1857945600’ 58060800’ 22937600’ 7257600’ 74317824’ 716800’ 265420800’ 1814400

3.2 Zero Stability of the Methods

A block method of k=3 and k=4, (12) and (16) respectively are said to be zero stable if the roots
||rA(°) —A(l)” = 0, we have

10000 0 000001
010000 0000O0O0 1
A® [0 0 100 0 AD |0 0 00 0 1
00010 of 0000O0O0 1
000010 000001
000001 000001

[ 1 0 0 0 0 00 0 0 0 0 0 11

0100 0 0 [00 0 o0 0 1

_ 0 D1 o010 0 o0f |00 o0 o0 0 1|

p(r) = det|rA® —AD]=det|rl o o 1 5 o|=lo 0 0 0 o 1||
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= det =r’'[r—1]=0

S oo o
oo o
oo ©O
o © O O
S oo oo
I
—_

0 0 0 0 0 r—1-

This implies thatr; =1, =13 =1, =15 =15 = 0 and 1, = 1is zero stable.
Similarly, for (16) at k = 4. is also zero stable.

3.3 Consistence

A numerical method is said to be consistent if the order of LMM is

p= 1, ie the order of the scheme must be greater or equals to 1.

The condition was satisfied for both block methods, since orders are uniform order 7 and 8. Hence it
is consistent.

3.4 Convergence

Zero stability and consistence are the necessary conditions for convergence of LMM. [8], hence both
Block methods were convergent.

4 NUMERICAL EXPERIMENTS
Problem1. SIR Model (see [5])

The SIR model is an epidemiological model that computes the theoretical number of people infected
with a contagious illness in a closed population over time. The name of this class of models derives
from the fact that they involve coupled of equations relating the number of susceptible people S(t),
number of people infected I(t) and the number of people who have recovered R(t). It is given by the
following three (3) coupled equations:

as

Lo u1-9) @)
d

L= —ul -yl + IS (b)
S = —uR+yI ©

where u,y and f are positive parameters.

Define y to be
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y=S+I+R (d)

and adding the solution of (a), (b) and (c), we obtain the following evolution equation for y,

y' =ul-y) (e

Taking ¢ = 0.5 with initial condition y(0) = 0.5 (for a particular closed population) we obtain,
y'(t)=05(1-y), y(0)=05

whose exact solution is,

y(t) =1 —0.5e705¢

Problem 2. Mixing problems

A 1500-gallon tank initially contains 600 gallons of water with 5lbs of salt dissolved in it. Water
enters the tank at a rate of 9gal/hr and the water entering the tank has a salt concentration of

%(1 + cosx)lbs/gal. If a well-mixed solution leaves the tank at a rate of 6gal/hr, how much salt is in
the tank when it overflows? See ([13])

Formulation:

So the IVP for this situation is,

y'=9 (%(1 + Cosx)> - 6(ﬂ),y(o) =5 or

600+3x

y’:2(1+cosx)—(2y(x)), y(0)=5

5 200+x

The exact solution is

9 =000+ 0 e+ 55 ) G
Problem 3

Solve the IVP

V' = xe™ =2y, y(0) = 0

The exact solution is

1 3x 1 3x 1 _ox
X)) =-xe’>* ——e> +—e
y() 5 25 25
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Table 1: Performance of New Hybrid Block Integrator at k=3 for Problem 1

X Exact solution New Hybrid Block Error in Ref [5] Error in New Hybrid
integrator method Order six Block integrator method
atK=3 integrator K=5 atK=3

0.1 0.524385287749643 0.524385287749646 5.574 x 10712 3.000 x 10~15

0.2 0.547581290982020 0.547581290982020 3.946 x 10~12 —

0.3 0.569646011787471 0.569646011787471 8.183 x 10712 -

0.4 0.590634623461009 0.590634623461011 3.436 x 10~ 11 2.000 x 10715

0.5 0.610599608464298 0.610599608464296 1.929 x 1010 2.000 x 10715

0.6 0.629590889659141 0.629590889659141 1.879 x 10710 —

0.7 0.647655955140644 0.647655955140645 1.776 x 10~10 1.000 x 10715

0.8 0.664839976982180 0.664839976982180 1.724 x 10~10 —

0.9 0.681185924189114 0.681185924189114 1.847 x 101 -

1.0 0.696734670143684 0.696734670143686 3.005x 10710 2.000 x 10715

3.5E-10 -
3E-10 -
2.5E-10
2E-10 -
—&— Error k=5
1.56-10 1 New Error k=3

1E-10 -
5E-11 -

O I A_\A T — 1

1 2 3 4 5 6 8 9 10

Figure 1: Error graph of Problem between Ref [5] at k = 5 and New Hybrid Integrator at k=3
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Table2: Approximate solutions on Test Problem two (2) Mixing problem

X Exact solution At K=3 Values At K=4 Values Error Error of
of K=3 K=4
0.1 5.354524092320860 5.35452409232080 5.354524092319910 6.0 9.5
x 1071  x 10713
0.2 5.706901931222570 5.706901931222080 5.706901931221200 4.9 1.37
x 10713 x 10712
0.3 6.055359334472330 6.055359334472180 6.055359334471210 1.5 1.12
x 10713 x 10712
0.4 6.398159569553200 6.398159569552600 6.398159569551910 6.0 1.29
x 10713 x 10712
0.5 6.733620708232820 6.733620708232250 6.733620708230830 5.7 1.99
x 10713 x 10712
0.6 7.060132433607410 7.060132433607230 7.060132433605500 1.8 1.91
x 10713 x 10712
0.7 7.376172131694110 7.376172131693260 7.37617213169160 8.5 2.15
x 10713 x 10712
0.8 7.680320106810110 7.680320106810050 7.680320106808730 6.0 1.38
x 107" x 10712
0.9 7.971273768733360 7.971273768733290 7.971273768731030 7.0 2.33
x1071*  x 10712
1.0 8.247860649884670 8.247860649883960 8.247860649882210 7.1 2.46
x 10713 x 10712
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3E-12

2.5E-12 -

2E-12

1.5E-12 -

1E-12

5E-13 -

—&— Error K=3

Error K=4

Figure 2: Error graph between K=3 and K=4 of New Hybrid Integrator Method

Table 3: Approximate solutions on problem 3

X Exact Solution Approximation in New Block New Block

Ref [1], 4-step Integrator Method Integrator
Optimal Order atK=3 Method at K=4

Scheme

0.1 0.005752053971 0.0057518112 0.005752052639 0.005752044314
0.2 0.026812801841 0.0268122411 0.0268128007921 0.026812793897
0.3 0.071144527666 0.0711435312 0.0711445287688  0.071144521176
0.4 0.150777835474 0.1507845599 0.150777832725 0.150777830527
0.5 0.283616521867 0.2836371233 0.283616519730 0.283616481466
0.6 0.496019565629 0.4960597062 0.496019569246 0.496019532413
0.7 0.826480869814 0.8265583436 0.826480862870 0.826480842668
0.8 1.330857026396 1.3309723576 1.330857021019 1.330857005553
0.9 2.089774397011 2.0899659578 2.089774407153 2.089774331648
1.0 3.219099319039 3.2193643909 3.219099308038 3.219099268188
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Table 4. Absolute Error of New methods k = 3 and k = 4 of Problem 3

Error [1], Error in New Hybrid Error in New Hybrid
4-step Optimal Order Scheme integrator method of K=3 integrator method of K=4
2.427 x 1077 1.332 x 107° 9.657 x 107°
5.607 x 10~7 1.049 x 10~° 7.943 x 10~°
9.964 x 1077 1.101 x 107° 6.490 x 10~°
6.724 x 107 2.748 x 107° 4,946 x 107°
2.060 x 107° 2.136 x 107° 4.040 x 107°
4014 x 107> 3.617 x 107° 3.321x 1078
7.747 x 107 6.943 x 107° 2.714 x 1078
1.153 x 10~* 5.377 x 107° 2.084 x 1078
1.915 x 10~* 1.014x 1078 6.536 x 1078
2.6507 x 10~* 1.100 x 1078 5.085 x 1078
0.0003 -
0.00025 -
0.0002 -
——[1]
.00015
0.00015 New Method at k=3
0.0001 - New Method at k=4
0.00005 -
O TR T T T T T T T T M

Figure 3: Error graph between [1] and New Hybrid Method k=3 and k=4 of Problem 3
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7E-08
6E-08
5E-08 -

4E-08 -
——o— New Method at k=3

3E-08 - New Method at k=4

2E-08 -
1E-08 - M
0

Figure 4: Error graph between New Method k=3 and New Hybrid Method k=4 of Problem 3

5 DISCUSSION OF THE RESULTS

Table 1 display the result on SIR model, the new method of k = 3 of uniform order 7.
performed excellently well when compared with [5], of method K=5 with order 6 (see Figure 1).

Table 2 shows the result of mixing problem models with methods k = 3 and k = 4. The method at
k = 3 displays its superiority over the method at k = 4 despite of it’s of uniform order 8 (see Figure
2).

Table 3 shows the numerical computation to example 3 with methods [1], k = 3 and k = 4. The
method at k = 3 also displays its superiority over the method at k = 4 despite of it’s of uniform
order 8 (see Figures 3 and 4). Our interest in this research is based on the accuracy of the solutions
of the methods rather than computational time

6 CONCLUSION

We conclude that the block integrator method, utilizing a combination of basic functions, is
computationally reliable for solving both linear and nonlinear first-order ordinary differential
equations. Additionally, increasing the step size does not necessarily ensure the convergence of the
results, as demonstrated in Figures 2 and 3.
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