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ABSTRACT 

State-space modelling approach which is essentially time-domain developed in the late 1960s is 

a new approach to the analysis and design of complex control systems. Several researches have 

carried out modelling and analysis of mechanical systems with a number of degrees of freedom 

of movement using state space approach among which is the work of Sivak and Darina [33] who 

modelled a system with two degrees of freedom. In this paper, we provide an extension of the 

work of Sivak and Darina [33] to model and analyse a three degree of freedom translational 

mechanical system using state-space approach. The system was first presented in equivalent free 

body diagrams, then Newton’s second law of motion was used to derive its equations of motion. 

The state-space formulation in the controllable canonical form obtained from the time-domain 

differential equations is adopted and the Laplace transform method was used in the analysis to 

determine the poles (natural frequencies) of the system using two numerical examples in 

MATLAB software. Software was also used to determine the controllability and observability 

matrices of the system. The stability, controllability and observability of the system were then 

discussed from the poles, controllability matrix and observability matrix respectively. The results 

show the system was found to be stable, controllable and observable suggesting that a state 

feedback control design for the system is possible. 

Keywords: controllability, mechanical system, observability, stability, state-space.           

          

1     INTRODUCTION 

To design a control system that will behave in a desirable manner, we need a way to predict the 

behaviour of the quantities of interest over time, specifically how they change in response to different 

inputs. Mathematical models are most oftenly used to predict future behaviour and control system 

design methodologies are based on such models [1]. [2] reported that understanding control theory 

requires engineers to be well versed in basic mathematical concepts and skills, such as solving 

differential equations and problems in Laplace transformation. The role of control theory according 
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to [3] is to help us gain insight on how and why feedback control systems work and how to 

systematically deal with various design and analysis issues. Specifically, the following issues are of 

both practical importance and theoretical interest: 

1.  Stability and stability margins of closed-loop systems. 
2.  How fast and smooth the error between the output and the set point is driven to zero? 
3.  How well the control system handles external disturbances coming from the surrounding  
     environment, sensor noises and internal dynamic changes. 
 
Therefore, mathematical models of physical processes are the foundations of control theory. The 

existing analysis and synthesis tools are all based on certain types of mathematical descriptions of 

the systems to be controlled [4]. There has been increased interest in the application of active control 

to processes which involve mechanical systems such as load alleviation, active flutter control, fatigue 

reduction and ride control. For this purpose according to [5], the control system engineer requires a 

mathematical model of the plant to be controlled in order to design a system which will accomplish 

the desired objectives. According to [6], such differential equations may be obtained by using 

physical laws governing a particular system. For example, Newtons Law for mechanical systems and 

Kirchhoffs Law for electrical systems.  

In engineering and science, the Laplace transform is used for solving problems of time-invariant 

systems such as electrical circuits, harmonics, oscillations, mechanical system, control theory and 

optical devices [7]. The Laplace transforms the time domain into frequency domain (the inputs and 

output function of complex angular frequency in radians per unit time). Based on specifications, 

Laplace transform simplifies the process of analysing the behaviour of a dynamic or synthesizing a 

new system. However, a modern complex system may have many inputs and many outputs (MIMO) 

which may be interrelated in a complicated manner. To analyse such systems using the Laplace, we 

would rely on the principle of superposition to create a system of simultaneous Laplace equations 

for each of the output and input. For such systems, this classical approach doesn’t simplify the 

situation, because the systems of equations need to be transformed into the frequency domain first, 

manipulated, and then transformed back into the time domain [8].  

[9] also pointed out that, one of the drawbacks of using Laplace transforms to solve ordinary 

differential equations with a forcing term is its lack of generality where each new forcing function 

requires a repetition of the entire process. According to [10], the disadvantage of the Laplace 

transform method was that as the system grew in complexity including nonlinear, time-varying, high 

system order and multiple inputs and multiple outputs (MIMO) systems, the method either became 

too difficult or lost its applicability.  

Modern control theory which is a new approach to the analysis and design of complex control 

systems has been developed around 1960 [6]. This approach is based on the concept of ‘state’ where 

multiple first-order differential equations are analyzed in vector form to account for system with 

MIMO without adding much unnecessary complexity. In a state-space system, the internal state of 

the system is explicitly accounted for an equation known as the State Equation. The system output is 

given in terms of a combination of the current system state and the current system input, through 

the output equation. These two equations form a system of equations known collectively as state 

space equations: 
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Where YUX ,,  are the state, input and output vectors respectively. A  is the state matrix and D  is 

the direct transmission matrix. If ,0=D  this implies that there is no direct connection between the 

input U  and the output Y [11].

 
The B  and C  in the model are matrices allowing the model to readily handle multiple inputs, 

multiple outputs systems as well as being able to handle time-varying and nonlinear systems. Also, 

because the system is represented compactly by matrices, it is easily manipulated by computers [12].

 Thus, the modern state-space design is a comprehensive term referring to modelling and control of 

complex systems. This approach maximizes computational accuracy, efficiency, and programming 

convenience within a general format that may include linear, nonlinear, discrete and time-varying 

representations [13]. [14] pointed out that the dynamic behaviour of any system can fully be 

determined by state variables and further recommends that, instead of using other methods to solve 

differential equations, the state equations can yield a great deal of information about a system even 

when they are not solved explicitly. [15] outlined some advantages of state-variable representation 

to dynamical systems as follows:

 
(i)    It provides systematic analysis and synthesis of higher-order systems without truncation of  
          system dynamics. 
(ii)   It is a convenient tool for MIMO systems. 
(iii)  It is a uniform platform for representing time-invariant systems, time-varying systems, linear     
          systems as well as nonlinear systems. 
(iv)  It can describe the dynamics in almost all systems (mechanical systems, electrical systems,  
         biological systems, economical systems, social systems etc). 

In view of the great efficiency and flexibility of the state-space approach and the substantial 

computational advantages available [13], the possibility of employing this kind of realization for 

multivariable control systems studies is obviously worth doing. Studies on state-space modeling are 

receiving considerable attention from many researchers because of its applications in many fields of 

engineering. 

 [13] stated that state space methods are used extensively in single-dimensional scalar and 

multivariable system studies. Mechanical engineering systems with two or more parts with 

significantly different levels of energy dissipation are encountered frequently in dynamical designs 

[16]. Following the recommendations given in recent works of literature [17], a state-space 
representation is suitable for analysis and control system design. [18] and [19] pointed out that 

modeling of MIMO mechanical systems has evolved from simple mass-spring models to relatively 

complicated models that include relatively high degrees of freedom. According to [20] and [21], 

MIMO systems modeling has been a topic of much research activity for the last few decades.  

The primary goal of using state-space representation for modeling mechanical systems is to predict 

the internal and external forces during a time interval [22], [23], [24], and [25]. [26] revealed that 

the inclusion of multi-degree of freedom in a mechanical system model normally leads to more 

precise results, but also much effort is needed to figure out the process and what is happening with 
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internal states in the system structure. The methodology described in the work of [17] for the 

production of simple models of mechanical systems revealed that state-space representation gives a 

suitable and compact way to model and analyze systems with more than one input and more than 

one output. [27] applied Laplace transform to find the eigen solution of the thermoelastic interaction 

in an unbounded medium with a spherical cavity using a state-space approach. [28] developed an 

algorithm using a state-space formulation for the equation of motion of a mechanical system to 

identify its state transition matrix from measured multiple-input/multiple-output frequency 

response functions. This work showed that it is possible to derive the natural frequencies and mode 

shapes of a mechanical system using state-space approach. [29] calculated the eigenvalues and 

eigenvectors of a spinning spacecraft containing elastic parts using a new concept in the form of a 

state-vector. 

 [30] developed a state-space formulation for controllability and observability testing using a single 

degree of freedom forced vibrating system and found that it is completely observable if the rank of 

the model matrix is equal to n ( n = order of the system ). The combination of state space and Laplace 

transform techniques has been found effective in the work of [31] in determining feedback gains of 

a simple distributed parameter flexible system. [32] developed a linear theory from the generalized 

Laplace transform method and study controllability and observability in terms of the Gramian and 

various rank conditions. This work proved the Kalman controllability and observability rank 

conditions. 

In a study conducted by [10], a state-space approach was used to model, identify and control a two 

degree of freedom (single-input, multiple-output (SIMO)) rotational mechanical system. The system 

was shown to be stable, having one negative real pole and another pole at the origin. It was however 

investigated that the model was uncontrollable and unobservable. The reason was that the 4th order 

model controllability and observability matrices were rank deficient and that the shaft that connects 

the two masses is not flexible enough to exhibit a spring-like behavior. [33] worked on a translational 

system with two degrees of freedom (SIMO) in a controllable canonical state-space representation 

and found that solving the system numerically by using state-space approach gave accurate results. 

In the above studies, state-space method is worthy to be noted for its high efficiency and 

practicability regarding the vibration and control of mechanical systems. The application of state-

space approach is simple and unique for cases of multi-degree of freedom systems. 

The reviewed works of literature of interest to this study are the works of [10] and [33]. In 2009, 

Anderson modelled and controlled a two degree of freedom rotational mechanical system using a 

state-space approach. This model was found to be rank deficient because the stiffness of the system 

was not flexible to exhibit spring-like behavior. Hence, the system was reduced and controlled as a 

single degree of freedom. Anderson further suggested that if his work is repeated on a similar 

rectilinear (translational) system where the two masses are connected via true springs, then the 

model would have full rank and the two masses could be controlled independently. This similar 

translational system was explored in the work of [33] who dealt with a two degree of freedom. The 

work successfully carried out the state-space formulation and solved numerically to simulate the 

motion of the system using MATLAB. However, investigation of the system’s stability, controllability, 

and observability was not carried out in that work. Therefore this work will deal with a three degree 

of freedom translational mechanical system and in addition to the work of [33], the work will 

investigate the stability, controllability, and observability of the system. 
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2     DERIVING THE SYSTEM’S EQUATIONS OF MOTION 

According to [34], the equation of motion of a system with n-degrees of freedom is paired with 

normal second-order ordinary differential equations. The equilibrium equation of a multiple-degree 

of freedom system can be shown as [35]: 

)2()(][][][ tKBM FXXX =++ 
 

Where [M], [B], [K] are the mass, damper, and stiffness matrices respectively while ,,, XXX  F  are 

vectors of accelerations, velocities, displacements, and input of the system respectively.  

The system as shown in Figure 1 below has bodies of masses ,1M ,2M 3M  with stiffnesses ,1K 2K  

and dampers ,1B 2B . The masses are not connected to any rigid frame and the system performs 

linear motion in the direction of springs and dampers axes. The weights of the springs are not 

considered. A step input force is used for the model excitation and the respective masses perform 

linear forced oscillating motion. 

 

 

Figure 1: Original damped three degrees of freedom system model 

 

The free-body diagrams of the masses, with the assumed positive directions for their displacements, 

velocities, and accelerations describing the coordinates ),(1 tZ ),(2 tZ )(3 tZ
 
measured from their 

respective equilibrium positions are indicated in Figure 2. The application of Newton’s second law of 

motion gives the equations of motion of the masses ,1M ,2M 3M  respectively as follows: 
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Figure 2: Three free-body diagrams for M1, M2, M3 
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)5(33222322233 FZKZKZBZBZM =+−+−   

 

The three equations above are second-order differential equations that require knowledge of the 

initial states of position and velocity for all the three degrees of freedom in order to solve for the 

transient response. 

3     STATE SPACE MODEL 

Solving (3), (4), and (5) for the highest derivatives, ,1Z 2Z  and 
3Z : 
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Changing the notation from Z to ,X  we define our state variables as: 

)9(111 MofpositionZX =  

)10(112 MofvelocityZX =  

)11(223 MofpositionZX =  

)12(224 MofvelocityZX =  

)13(335 MofpositionZX =  

)14(336 MofvelocityZX =  

Thus, the three second-order differential equations above are converted to six first-order differential 

equations. Observing the relationship between the position states and velocity states and combining 

in matrix form, we have the state equation as: 
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Written in the standard form as 

)16(UXX BA +=  

and the output of the system as 

)17(UXY DC +=  

With 0=D  as stated in [11], the output becomes 
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3.1     State Space System Block Diagram 

Consider the block diagram as shown in Figure 3.  

 

 

Figure 3: Vector Block Diagram Described by the State-Space System Dynamic 

 

The scalar input )(tu  is fed into both the input matrix B  and the direct transmission matrix D . The 

output of the input matrix is an 1n  vector, where n  is the number of states. The direct transmission 

matrix is a scalar, and its output is fed into a summing junction to be added to the output of the C

matrix. The output of the B matrix is added to the feedback terms coming from the system matrix A

and is fed into an integrator block, “ 1−S ” with nn  identity matrix. The output )(ty  is obtained by 

the summation of the results from C  and D matrices. 

 

4     STABILITY, CONTROLLABILITY, AND OBSERVABILITY 

In this section, three fundamental properties of the system will be discussed from the state space 

point of view as each has an impact on the control strategy of the system which are stability, 

controllability and observability [10]. Stability is a key to understand the dynamic behavior of a 

system. Meanwhile the controllability and observability is important to determine whether the 

system is well suited for a pole placement control strategy. 
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4.1     Stability 

According to [6], a system is stable if the output eventually comes back to its equilibrium state when 

the system is subjected to an initial condition. It is unstable if the output diverges without bound from 

its equilibrium state when the system is subjected to an initial condition. The most important 

problem in linear control systems concerns stability, that is, under what conditions will a system 

become unstable. If it is unstable, how should we stabilize the system. According to [36], the time 

response of a control system consists of two parts: the transient response and the steady-state 

response. Transient response is the component of the of the system due to initial conditions while 

steady state response represent the output due to the forcing function and it describes the manner 

in which the system output behaves as time )(t approaches infinity [37]. Thus, the system response 

)(tY  may be written as: 

)19()()()( ttt sstr YYY +=
 

Where )(ttrY  and )(tssY  are the transient response and the steady state response respectively. For 

system stability, this transient response eventually reaches equilibrium. 

  

4.1.1     Condition for Stability 

A control system is stable if and only if all closed-loop poles (eigenvalues) lie in the left-half S-plane 

or on the imaginary S-plane. 

 

4.1.2     The System’s Eigenvalues (Poles) 

As discussed in [38], any successful control strategy must take into consideration the effect of the 

control forces associated with the independent elastic degree of freedom as well as the effect of the 

selection of the reference conditions and the associated mode shapes on the design of the control 

system. Thus, the system frequencies that define the control bandwidth, stability, and response 

characteristics need to be identified. One of basic analyses of a dynamic system is to solve for its 

eigenvalues (natural frequencies) which show the frequencies where the system will amplify inputs 

and basic characteristic of the system. In this system, we set the forcing function to zero and write 

the homogeneous state equation: 

 

)20(0)0(, == XXX A  

By taking the Laplace transform of the above equation, the system’s response function can be 

expressed as an eigenvalue problem [35]. Taking the Laplace transform of the first derivative for the 

homogeneous state equation above, we have: 
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Thus, we have: 

)22()()0()( SASS XXX =−  

Assuming the zero initial conditions and solving for )(SX : 
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Where the complex variable S is given by S = σ+iω, such that σ is the real part and iω is the imaginary 

part with i2 = −1 and I is an n×n identity matrix. Equation (23) is the eigenvalue problem in Laplace 

transform form where the determinant of the term (SI−A) has to equal to be zero in order to have 

nontrivial solution. 

)24(0|)(| =− ASI  

Taking the system matrix and inserting it in equation (24), we have: 
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For the three degree of freedom system matrix, taking the closed-form determinant is complicated 

so we used MATLAB’s ’eig’ function to solve the eigenvalue problem numerically. We consider 2 cases 

in this study which are: 

 

Case 1: ,1321 kgMMM === mNKK /121 ==  and proportional damping of mNsBB /1.021 == . 

 

Case 2: ,10001 kgM = ,7502 kgM = ,5003 kgM = ,/17501 mNK = mNK /35002 =  and non- 

  proportional damping of mNsBmNsB /70,/140 21 == . 

 

The resulting eigenvalues for each case are tabulated in Tables 1 and 2 respectively and plotted in 

complex plane as shown in Figures 4 and 5. 
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Table 1:  Damped 3-degree-of-freedon system’s eigenvalues, SJ with proportional damping 
B1=B2=0.1Ns/m 

_______________________
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Figure 4: Plot of the damped eigenvalues with B1 = B2 = 0.1 

 
Note that the two eigenvalues which correspond to each of the three modes are complex conjugate 
of each other and their real parts are all negatives.
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Table 2:  Damped 3-degree-of-freedon system’s eigenvalues, SJ with non-proportional damping B1=140Ns/m, 
B2=70Ns/m 

_______________________

5850.31764.0
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6858.11036.0
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0000.00000.0
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Figure 5: Plot of the damped eigenvalues with B1=140, B2=70 

Note that the two eigenvalues which correspond to each of the three modes are complex conjugate 

of each other and their real parts are all negatives. 
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4.2     Controllability and Observability 

A system is said to be controllable at time t0 if it is possible by means of an unconstrained control 

vector to transfer the system from any initial state X(t0) to any other state in a finite interval of time.  

Meanwhile, a system is observable at time t0 if it is possible to determine X(t0) from the observation 

of the output over a finite interval of time [39]. The concept of controllability and observability 

introduced by Kalman in 1960 plays an important role in the design of control systems in state space. 

In fact, [40] reported that the conditions of controllability and observability may govern the existence 

of a complete solution to the control system design problem. As pointed out in [41], various 

important system properties, such as the existence of an optimal control under a criterion like 2H  

and H  norm, possibilities of stabilizing a plant and/or locating its poles to a desirable area, 

convergences of a state estimation procedure are closely related to the controllability and/or 

observability of the plant at hand. 

 

4.2.1     Conditions for Controllability and Observability 

Consider the state-space model: 

)26(
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+=

+=
  

[31] proved the Kalman controllability and observability rank conditions and found out that the 

system given by the state space model above is completely state controllable if the vectors

BABAABB
12 ........,,,, −n

  

are linearly independent or the nn matrix ]........[ 12
BABAABB

−n
  

is of rank n. This is called the controllability matrix and is denoted by Cm 

Similarly, the system described by the state space model is completely observable if the vectors

CACAACC
12 ........,,,, −n

  

are linearly independent or the nn matrix ]........[ 12
CACAACC

−n
  

is of rank n. This is called the observability matrix and is denoted by Om.  

 

4.2.2     Controllability and Observability Matrices of the System 

MATLAB was used to calculate the controllability and observability matrices Cm1, Om1 and Cm2, Om2 

respectively for the two numerical cases considered in subsection 4.1.2. The results are given below:  
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4444.18514.13950.09800.01000.01

8514.13950.09800.01000.010

5928.27327.25910.09700.01000.00

7327.25910.09700.01000.000
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1
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





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−−

−−

−−

−

=

Rank

Cm
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9444.913537.1125593.47543.91960.04000.1

3537.1125593.47543.91960.04000.10
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4.3     Discussion and Interpretation of Results 

The real parts of the eigenvalues (poles) of the system as tabulated in Tables 1 and 2 are all negatives. 

The plots of these eigenvalues presented in Figures 4 and 5 also show that the damped system has 

six complex eigenvalues, two at the origin and the remaining four all lying with their real parts on the 

left-half of the iω axis. This is a marginally stable system. The matrices Cm1, Om1 in equations (27) and 

(28) and the matrices Cm2, Om2 in equations (29) and (30) respectively represent controllability and 

observability matrices in each case. Both Cm1 and Cm2 have six (6) linearly independent vectors. This 
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shows that Cm1 and Cm2 are of full ranks, suggesting that the system is controllable. Similarly, to 

observability, both Om1 and Om2 have six (6) linearly independent vectors. This shows that Om1 and 

Om2 are of full ranks, suggesting that it is observable. 

 

5     CONCLUSION 

In this paper, a translational mechanical system with three degrees of freedom was model and 

analyzed using state-space approach. The system was first presented in equivalent free body 

diagrams, then Newton’s second law of motion was used to derive its equations of motion and 

subsequently presented in state-space form using the controllable canonical representation. The 

natural frequencies were calculated and finally the stability, controllability, and observability of the 

system were discussed. Interpretations of the eigenvalues, controllability, and observability matrices 

show that the system is stable, controllable, and observable which suggests that a state feedback 

control design for the system is possible.  

The study identified one of the system’s most important properties (eigenvalues) for various masses, 

stiffnesses, and dampers which will help in solving problems commonly encountered by mechanical 

engineers (for example, resonance problem). With the knowledge of these properties, the control 

engineer will be able to adjust the dynamics of the system in order to achieve stability and balance in 

the system structure. The study helps us to understand some complex general concepts about control 

systems, in explaining controllability, and observability which will help in further research.  

However, in the control design process, the mathematical model used and the real plant are different. 

Ideally, outputs should follow the inputs but the presence of uncertainties, disturbance signals, and 

sensor noises makes the process vulnerable leading to errors in the system performance. Therefore, 

a study can be carried out on the system “steady state error” in order to determine how well, the 

system tracks the desired trajectory. Further more, in order to obtain the final control solution of our 

system, with the knowledge of the system controllability and observability, state feedback and 

observer designs should be carried out. 
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