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Abstract: In this paper, a class of semilinear integrodifferential equations of the form

u′′(t) + αu′′′(t) = βAu(t) + γAu′(t) + f(t, u(t)) +

∫ t

0

g(t, s, u(s))ds, t, s ≥ 0, satisfying

αβ < γ with prescribed initial conditions are studied. Using certain strongly continuous

families in operator theory and fixed point theory, we have established some sufficient con-

ditions for the existence and uniqueness of an asymptotically almost periodic solutions.
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1 INTRODUCTION

The study of the asymptotic behavior of solutions of a differential equation is one of the most
interesting themes of the qualitative theory of differential equations and for this reason has
attracted interest of many researchers over the years. Bose and Gorain [3] studied a more
realistic model of vibrations of elastic structure in which the stress is not simply proportional
to the strain. As a result they shown that the dynamics of vibrations of elastic structures
are governed by the following third order differential equation

αu′′′(t) + u′′(t)− β∆u(t)− γ∆u′(t) = 0, t ≥ 0 (1)

with suitable boundary and initial conditions. Several authors [4, 7, 8, 9] have discussed
the boundary stabilization and obtained the explicit exponential energy decay rate for the
solution of (1) subject to mixed boundary conditions. Andrade and Lizama [1] studied the
existence of asymptotically almost periodic solutions for damped wave equations and the
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results have significance in the study of vibrations of flexible structures possessing internal
material damping. The purpose of this paper is to prove the existence of asymptotically
almost periodic mild solutions for an abstract semilinear equation of the form

u′′(t) + αu′′′(t) = βAu(t) + γAu′(t) + f(t, u(t)) +

∫ t

0

g(t, s, u(s))ds, t, s ≥ 0 (2)

with appropriate initial conditions and where α, β, γ are positive constants satisfying αβ < γ.
A surprising fact is that in order to get asymptotic behavior, some initial conditions should
be forced to be zero. This leads to an unexpected property that is not present in the study
of the same qualitative property for the Cauchy problem of order less that 3, see [2].

2 PRELIMINARIES

Let α, β, γ ∈ R, α 6= 0 be given. We denote

k(t) =
1

α

∫ t

0

(t− s)e−
s

α ds = −α+ t+ αe−
t

α , t ∈ R+.

and

a(t) = βk(t) +
γ

α

∫ t

0

e−
s

α ds = −(αβ − γ) + βt+ (αβ − γ)e−
t

α , t ∈ R+.

In order to give a consistent definition of mild solution for equation (2) based on an operator
theoretical approach, we introduce the following definition [11].

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a Ba-
nach space X. We call A the generator of an (α, β, γ)-regularized family {R(t)}t≥0 ⊂ B(X)
if the following conditions are satisfied:
(R1) R(t) is strongly continuous on R+ and R(0) = 0;
(R2) R(t)D(A) ⊂ D(A) and AR(t)x = R(t)Ax for all x ∈ D(A), t ≥ 0;
(R3) The following equation holds:

R(t)x = k(t)x+

∫ t

0

a(t− s)R(s)Ax ds

for all x ∈ D(A), t ≥ 0. In this case, R(t) is called the (α, β, γ)-regularized family generated
by A.

Proposition 2.2. Let R(t)be an (α, β, γ)-regularized family on X with generator A. Then
the following holds:

(a) For all x ∈ D(A) we have R(.)x ∈ C2(R+;X)

(b) Let x ∈ X and t ≥ 0. Then

∫ t

0

a(t− s)R(s)xds ∈ D(A) and

R(t)x = k(t)x+A

∫ t

0

a(t− s)R(s)xds.

Results on perturbation, approximation, asymptotic behavior, representation as well as er-
godic type theorems for (α, β, γ)- regularized families can also be deduced from the more
general context of (a, k) - regularized families([12 - 16]).
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Definition 2.3 [17] A function f : R → X is called almost periodic if f is continuous,
and for each ǫ > 0 there exist l(ǫ) > 0 such that for every interval of length l(ǫ) contains a
number τ with the property that ||f(t+ τ)− f(t)|| ≤ ǫ for each t ∈ R. The number τ above
is called an ǫ - translation number for f , and the collection of such functions will be denoted
AP (X).

Definition 2.4. A function f : R × Y → X is called almost periodic if f is continu-
ous, and for each ǫ > 0 and any compact K ⊂ Y there exist l(ǫ) > 0 such that every interval
of length l(ǫ) contains a number τ with the property that ||f(t+ τ, x)− f(t, x)|| ≤ ǫ for all
t ∈ R, x ∈ K, and the collection of such functions will be denoted by AP (R× Y,X).

Lemma 2.5 [18] Let f ∈ AP (R × Y,X) and h ∈ AP (Y ) then the function f(., h(.)) ∈
AP (X).

Let C0(R+, X) be the subspace of BC(R+, X) such that limt→∞||x(t)|| = 0 and
C0(R+ × Y,X) denotes the space of all continuous function h : R+ × Y → X such that
limt→∞h(t, x) = 0 uniformly for x in a compact subset of Y.

Definition 2.6. A continuous function f : R+ → X(resp., R+ × Y → X) is called
asymptotically almost periodic if it admits a decomposition f = g + φ, where g ∈ AP (X)
(resp., g ∈ AP (R × Y,X)) and φ ∈ C0(R+, X) (resp., φ ∈ C0(R+ × Y,X)). Denote by
AAP (X) (resp., AAP (R+ × Y,X)) the set of all such functions. We observe that AAP (X)
is a Banach space with sup norm.

Lemma 2.7 [1] LetX and Y two Banach spaces. Suppose that f ∈ AAP (R+×Y ;X) is uni-
formly continuous on any bounded subset K ⊂ Y, uniformly for t ≥ 0. Then, u ∈ AAP (Y )
implies f(., u(.)) ∈ AAP (X).

Let h : R+ → R be a continuous function such that h(t) ≥ 1 for all t ∈ R+,and
h(t) → ∞ as t → ∞. we consider the space

Ch(Z) = {u ∈ C(R+, Z) : lim
t→∞

u(t)

h(t)
= 0}

endowed with norm ||u||h = supt≥0
||u(t)||
h(t) .

Lemma 2.8.[5] A subset K ⊆ Ch(X) is a relatively compact set if it verifies the fol-
lowing conditions:
(c-1) The set {Kb = u|[0,b] : u ∈ K} is relatively compact in C([0, b];X) for all b ≥ 0.

(c-2) limt→∞
||u(t)||
h(t) = 0 uniformly for all u ∈ K.

3 EXISTENCE OF SOLUTIONS

Let α, β, γ ∈ (0,∞).Consider the linear equation

u′′(t) + αu′′′(t) = βAu(t) + γAu′(t) + f(t), (3)

with initial condition u(0) = x, u′(0) = y, u′′(0) = z,where A is the generator of a (α, β, γ)-
regularized family R(t).By a solution of (3.1) we understand a function u ∈ C(R+;D(A))∩
C3(R+;X)such that u′ ∈ C(R+;D(A)).

The following result gives a complete description of the solutions for equation(3) in terms
of (α, β, γ)-regularized families. It corresponds to an extension of the standard variation of
parameters formula for the second order Cauchy problem.
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Proposition 3.1. Let R(t) be an (α, β, γ)-regularized family on X with generator A. If
f ∈ L1

loc(R+, D(A2)), x ∈ D(A3), y ∈ D(A2) and z ∈ D(A2)then u(t)given by

u(t) = αR′′(t)x+R′(t)x− γAR(t)x+ αR′(t)y +R(t)y + αR(t)z

+

∫ t

0

R(t− s)f(s)ds, t ≥ 0,

is a solution of (3)

Proof. For all i = 1, . . . , 5,we can write R(i)(t)ω as follows:

R′(t)ω = (1− e−
t

α )ω +

∫ t

0

[

β + (
γ

α
− β)e−

1

α
(t−s)

]

R(s)Aωds, ω ∈ D(A),

and we conclude from Proposition 2.3(b) that R′(t)ω ∈ D(A) for ω ∈ D(A).

R′′(t)ω =
1

α
e−

t

αω +
γ

α
R(t)Aω +

∫ t

0

(
β

α
−

γ

α2
)e−

1

α
(t−s)R(s)Aωds, ω ∈ D(A),

and hence by (R2), we have R′′(t)ω ∈ D(A) for ω ∈ D(A2).

R′′′(t)ω = −
1

α2
e−

t

αω +
γ

α
R′(t)Aω +

β

α
R(t)Aω −

γ

α2
R(t)Aω

+

∫ t

0

(
γ

α3
−

β

α2
)e−

1

α
(t−s)R(s)Aωds, ω ∈ D(A2),

and R′′′(t)ω ∈ D(A) for ω ∈ D(A2).

R(iv)(t)ω =
1

α3
e−

t

αω +
γ

α
R′′(t)Aω +

β

α
R′(t)Aω −

γ

α2
R′(t)Aω +

γ

α3
R(t)Aω

−
β

α2
R(t)Aω +

∫ t

0

(
β

α3
−

γ

α4
)e−

1

α
(t−s)R(s)Aωds, ω ∈ D(A2),

and R(iv)(t)ω ∈ D(A) for ω ∈ D(A3).

R(v)(t)ω =
1

α4
e−

t

αω +
γ

α
R′′′(t)Aω +

β

α
R′′(t)Aω −

γ

α2
R′′(t)Aω +

γ

α3
R′(t)Aω

−
β

α2
R′(t)Aω +

β

α3
R(t)Aω −

γ

α4
R(t)Aω

+

∫ t

0

(
γ

α5
−

β

α4
)e−

1

α
(t−s)R(s)Aωds, ω ∈ D(A3),

and R(v)(t)ω ∈ D(A) for ω ∈ D(A4). From the above, we deduce that if x ∈ D(A3), y ∈
D(A2) and z ∈ D(A2) then R(.)x ∈ C5(R+, X), R(.)y ∈ C4(R+, X) and R(.)z ∈
C3(R+, X). Since f ∈ L1

loc(R+, D(A2)) we have

u′(t)=αR′′′(t)x+R′′(t)x− γR′(t)Ax+αR′′(t)y +R′(t)y + αR′(t)z+

∫ t

0

R′(t− s)f(s)ds,

and hence u′(t) ∈ D(A) for x, y ∈ D(A2) and z ∈ D(A).

u′′(t) = αR(iv)(t)x+R′′′(t)x− γR′′(t)Ax+ αR′′′(t)y +R′′(t)y

+αR′′(t)z +

∫ t

0

R′′(t− s)f(s)ds,
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and hence u′′(t) ∈ D(A) for x ∈ D(A3) and y, z ∈ D(A2).

u′′′(t) = αR(v)(t)x+R(iv)(t)x− γR′′′(t)Ax+ αR(iv)(t)y +R′′′(t)y

+αR′′′(t)z +
1

α
f(t) +

∫ t

0

R′′′(t− s)f(s)ds,

and hence u ∈ C3(R+, X). Using the fact that A is closed and the expressions for R(i)(t), i =
1, . . . , 5

[

αR(v)(t) +R(iv)(t)
]

x = [γAR′′′(t) + βAR′′(t)]x,

[

αR(iv)(t) +R′′′(t)
]

y = [γAR′′(t) + βAR′(t)] y,

[αR′′′(t) +R′′(t)] z = [γAR′(t) + βAR(t)] z,

[αR′′′(t− s) +R′′(t− s)] f(s) = [γAR′(t− s) + βAR(t− s)] f(s), and

we conclude that u(t) satisfy (3) with initial conditions u(0) = x, u′(0) = y and u′′(0) = z.

Remark 3.2. Observe that in the border case α = 0 with γ = 0, the above theo-
rem recover the variation of parameters formula for the second order Cauchy problem
u′′(t) = Au(t) + f(t), so that the (0, β, 0)-regularized family R(t) corresponds in this case
to the sine family generated by A and R′(t) is the respective cosine family.

Theorem 3.3 [6] Let -B be a positive self adjoint operator on a Hilbert space H such
that αβ ≤ γ. Then B is the generator of a bounded (α, β, γ)-regularized family on H.

4 ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS

In this section we study the existence of asymptotically almost periodic solutions for the
equation

u′′(t) + αu′′′(t) = βAu(t) + γAu′(t) + f(t),

with initial conditions u(0) = x, u′(0) = y, u′′(0) = z, where A is the generator of a (α, β, γ)-
regularized family R(t). Assume that R(t) is differentiable. We introduce the following
assumption.

(A) There exist constants M > 0 and ω > 0 such that

||R′(t)||+ ||R(t)|| ≤ Me−ωt, t ≥ 0.

Then we say that R(t) and R′(t) are exponentially stable. The following result on reg-
ularity of the convolution under asymptotically almost periodic functions is one of the keys
to obtain our results.

Lemma 4.1. Let R(t) be an exponentially stable (α, β, γ)-regularized family on X with
generator A. If f ∈ AAP (X)then the function

F (t) =

∫ t

0

R(t− s)f(s)ds

belongs to AAP(X).
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Proof. If f = g + h with g ∈ AP (X) and h ∈ C0(R+, X) then we have that F (t) =

G(t) +H(t), where G(t) :=

∫ t

−∞

R(t− s)g(s)ds and

H(t) :=

∫ t

0

R(t− s)h(s)ds−

∫ 0

−∞

R(t− s)g(s)ds

For ǫ > 0,we take l(ǫ) involved in Definition 2.3, then for every interval of length l(ǫ)
contains a number τ such that ||g(t+ τ)− g(t)|| ≤ ǫ for each t ∈ R. The estimate

||G(t+ τ)−G(t)|| ≤

∫ ∞

0

||R(s)||||g(t− s+ τ)− g(t− s)||ds

≤ (M

∫ ∞

0

e−ωsds)ǫ.

is responsible for the fact that G ∈ AP (X). We claim that ||H(t)|| → 0 as t → ∞. In fact,
for each ǫ > 0 there exists a T > 0 such that ||h(s)|| ≤ ǫ for all s > T. Then for all t > 2T
we deduce

||H(t)|| ≤

∫ t

2

0

Me−ω(t−s)||h(s)||ds+

∫ t

t

2

Me−ω(t−s)||h(s)||ds+

∫ ∞

t

Me−ωs||g(t− s)||ds

≤ M(||h||∞ + ||g||∞)

∫ ∞

t

e−ωsds+ ǫM

∫ ∞

0

e−ωsds.

Therefore, limt→∞H(t) = 0, that is, H ∈ C0(R+, X). This completes the proof.

Consider the initial value problem

u′′(t) + αu′′′(t) = βAu(t) + γAu′(t) + f(t, u(t)) +

∫ t

0

g(t, s, u(s))ds, t, s ≥ 0 (4)

u(0) = 0, u′(0) = y, u′′(0) = z,

where α, β, γ ∈ (0,∞), A is the generator of a (α, β, γ)-regularized family R(t) and f :
R+ ×X → X, g : R+ ×R+ ×X → X is a suitable function.

Definition 4.2. R(t) be an (α, β, γ)-generalized family on X with generator A is a contin-
uous function u : R+ → X satisfying the integral equation

u(t) = αR′(t)y +R(t)y + αR(t)z +

∫ t

0

R(t− s)f(s, u(s))ds

+

∫ t

0

R(t− s)

∫ s

0

g(s, τ, u(τ))dτds, s, τ ≥ 0

where y, z ∈ X is called a mild solution to the equation (4).
Initially we study conditions to existence and uniqueness of a mild solution for (4) when

the function f, g are Lipschitz continuous.

Theorem 4.3. Let R(t) be an (α, β, γ) regularized family on X with generator A that
satisfies assumption (A). Let f ∈ AAP (R+ × X,X) and g ∈ AAP (R+ × R+ × X,X)and
suppose that there exist an integrable bounded function L : R+ → R+ such that

||f(t, x)− f(t, y)|| ≤ L(t)||x− y||, ∀x, y ∈ X, t > 0 (5)
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and integrable bounded function K : R+ ×R+ → R+ such that

||g(t, s, x)− g(t, s, y)|| ≤ K(t, s)||x− y||, ∀x, y ∈ X, s, t > 0. (6)

Then equation (4) has a unique asymptotically almost periodic mild solution.

Proof: Define the operator Λ on the space AAP(X) by

Λu(t) = αR′(t)y +R(t)y + αR(t)z +

∫ t

0

R(t− s)f(s, u(s))ds

+

∫ t

0

R(t− s)

∫ s

0

g(s, τ, u(τ))dτds, s, τ ≥ 0. (7)

We show that Λu ∈ AAP (X). We observe that since t → ∞ we have ||αR′(t)y|| ≤
α||y||Me−ωt → 0, ||R(t)y|| ≤ ||y||Me−ωt → 0, ||αR′(t)z|| ≤ α||z||Me−ωt → 0, then
R(·)y ∈ AAP (X), αR′(·)z ∈ AAP (X) and αR′(·)y ∈ AAP (X). It follows from Lemma
2.7 that the functions s → f(s, u(s)) is AAP(X) and (t, s) → g(t, s, u(s)) is AAP (X). Then
by Lemma 4.1

∫ t

0

R(t− s)f(s, u(s))ds ∈ AAP (X)

and
∫ t

0

R(t− s)

∫ s

0

g((s, τ, u(τ))dτ)ds ∈ AAP (X).

Further, for u1, u2 ∈ AAP (X), we have

‖Λu1(t)− Λu2(t)‖

≤ M

∫ t

0

e−ω(t−s)L(s)ds||u1 − u2||∞ +M

∫ t

0

e−ω(t−s)

∫ s

0

g(s, τ, u(τ)dτ)ds||u1 − u2||∞

≤ M

∫ t

0

L(s)ds||u1 − u2||∞ +M

∫ t

0

∫ s

0

g(s, τ, u(τ)dτ)ds||u1 − u2||∞

≤ M [||L||1 + ||K||1] ||u1 − u2||∞

||Λ2u1(t)− Λ2u2(t)||

≤ M2

(
∫ t

0

L(s)(

∫ s

0

L(τ)dτ)ds

)

||u1 − u2||∞

+M2

∫ t

0

(
∫ s

0

K(s, τ)

(
∫ τ

0

K(τ, ξ)dξ

)

dτ

)

ds||u1 − u2||∞

≤
M2

2
(

∫ t

0

L(τ)dτ)2||u1 − u2||∞ +
M2

2
(

∫ t

0

∫ s

0

K(s, τ)dτds)2||u1 − u2||∞

≤ M2 (||L||1 + ||K||1)
2

2
||u1 − u2||∞

By Mathematical induction, we get the following estimate

||Λnu1(t)− Λnu2(t)|| ≤ Mn (||L||1 + ||K||1)
n

n!
||u1 − u2||∞.

Since Mn (||L||1+||K||1)
n

n! < 1, for n sufficiently large, by the fixed point iteration method Λ
has a unique fixed point u ∈ AAP (X).
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Theorem 4.4. Let R(t) be an (α, β, γ)-regularized family on X with generator A that satis-
fies assumption (A). Let f ∈ AAP (R+×X,X) and g ∈ AAP (R+×R+×X,X) and suppose
that f and g satisfies Lipschitz condition (5)and(6), L and K a bounded continuous func-

tion. Let β(t) =
∫ t

0
e−ω(t−s)L(s)ds and γ(t) =

∫ t

0

e−ω(t−s)

(
∫ s

0

g(s, τ, u(τ))dτ

)

ds if there

are constants k1, k2 < 1, such that Mβ(t) ≤ k1 < 1,Mγ(t) ≤ k2 < 1 where M > 0 is the
constant given in assumption ED, then equation (4) has a unique mild solution u ∈ AAP (X)

Proof: Define the operator Λ : AAP (X) → AAP (X) by expression (7). We prove that Λ
is a k-contraction. In fact, given u, v ∈ AAP (X) we have that

||Λu(t)− Λv(t)||

≤ M

∫ t

0

e−ω(t−s)L(s)||u(s)− v(s)||ds+M

∫ t

0

e−ω(t−s)

∫ s

0

g(s, τ, u(τ)dτ)||u(s)− v(s)||ds

≤ Mβ(t)||u− v||∞ +Mγ(t)||u− v||∞

≤ k1||u− v||∞ + k2||u− v||∞

≤ (k1 + k2)||u− v||∞

≤ k||u− v||∞

Hence, by Banach’s fixed point theorem, Λ has a unique fixed point u ∈ AAP (X).

Corollary 4.5. Ler R(t) be an (α, β, γ)-regularized family on X with generator A that
satisfies assumption (A). Let f ∈ AAP (R+ ×X,X) and g ∈ AAP (R+ ×R+ ×X,X) and
suppose that f and g satisfies Lipschitz condition

||f(t, x)− f(t, y)|| ≤ k1||x− y||,

||g(t, s, x)− g(t, s, y)|| ≤ k2||x− y||, ∀x, y ∈ X, s, t > 0.

If Mk1

−ω
+ Mk2

ω2 < 1 where M and ω are constant given in the assumption (A) then equation(4)
has a unique mild solution u ∈ AAP (X).

Next we prove the existence of asymptotically almost periodic mild solution of the prob-
lem (4) when the function f, g are not Lipschitz continuous. To establish our result, we
consider the functions f : R+ × X → X, g : R+ × R+ × X → X satisfying boundedness
condition
(B) There exists a continuous non-decreasing function
W1 : R+ → R+, cW2 : R+ ×R+ → X such that

||f(t, x)|| ≤ W1(||x||)

||

∫ t

0

g(t, s, x)ds|| ≤ W2(||x||)

Theorem 4.6. Let f ∈ AAP (R+ ×X;X), g ∈ AAP (R+ ×R+ ×X;X) be a function that
satisfies assumption (B) and the following conditions:
(a) For each ν ≥ 0,

lim
t→∞

1

h(t)

∫ t

0

e−ω(t−s)W1(ν(s))ds = 0

lim
t→∞

1

h(t)

∫ t

0

e−ω(t−s)W2(ν(s))ds = 0
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(b) For each ǫ > 0 there is δ > 0 such that for every u, v ∈ Ch(X), ||v−u||h ≤ δ implies that

M

∫ t

0

e−ω(t−s)||f(s, v(s))− f(s, u(s))||ds ≤
ǫ

2

M

∫ t

0

e−ω(t−s)||

∫ t

0

(g(t, s, v(s))− g(t, s, u(s)))||ds ≤
ǫ

2

for all t ∈ R+

(c) For all a, b ∈ R+, a ≤ b and r > 0, the set

{f(s, h(s)x) : a ≤ s ≤ b, x ∈ X, ||x|| ≤ r}

{g(t, s, h(s)x) : a ≤ (s, t) ≤ b, x ∈ X, ||x|| ≤ r}

are relatively compact in X.

(d) lim infξ→∞
ξ

β(ξ)
> 1, where

β(ν) =
∥

∥

∥
||αR′(.)y||+ ||R(.)y||+ ||αR(.)z||+M

∫ t

0

e−ω(t−s)W1(νh(s))ds

+M

∫ t

0

e−ω(t−s)W2(νh(s))ds
∥

∥

∥

h

then equation (4) has a asymptotically almost periodic mild solution.

Proof: We define a operator Λ on Ch(X) by

Λu(t) = αR′(t)y +R(t)y + αR(t)z +

∫ t

0

R(t− s)f(s, u(s))ds

+

∫ t

0

R(t− s)

∫ s

0

g((s, τ, u(τ))dτ)ds.

We show that Λ has a fixed point in AAP(X).
(i) For u ∈ Ch(X), we have that

||Λu(t)|| ≤ (α+ 1)M ||y||+ αM ||z||+M

∫ t

0

e−ω(t−s)W1(||u||hh(s))ds

+M

∫ t

0

e−ω(t−s)W2(||u||hh(s))ds

It follows from condition (a) that Λ : Ch(X) → Ch(X).

(ii) The map Λ is continuous. In fact, for ǫ > 0 we take δ involved in condition (b). If
u, v ∈ Ch(X) and ||u− v||h ≤ δ then

||Λu(t)− Λv(t)|| ≤ M

∫ t

0

e−ω(t−s)||f(s, u(s))− f(s, v(s))||ds

+M

∫ t

0

e−ω(t−s)

∫ t

0

||(g(t, s, u(s))− g(t, s, v(s))||ds

≤ ǫ



214

(iii) We next show that Λ is completely continuous. We set Br(Z) for the closed ball
with center at 0 and radius r in a space Z. Let V = Λ(Br(Ch(X))) and v = Λ(u) for
u ∈ Br(Ch(X)). Initially, we prove that Vb(t) is relatively compact subset of X for each
t ∈ [0, b]. We get

v(t) = αR′(t)y +R(t)y + αR(t)z +

∫ t

0

R(s)f(t− s, u(t− s))ds

+

∫ t

0

R(s)

∫ s

0

g(s− τ, τ − θ, u(τ − θ))dθds

∈ αR′(t)y +R(t)y + αR(t)z + ¯tc(K1) + ¯tc(K2),

where c(K1) denotes the convex hull of K1 and K1 = {R(s)f(ξ, h(ξ)x) : 0 ≤ s ≤ t, 0 ≤ ξ ≤
t, ||x|| ≤ r} and c(K2) denotes the convex hull of K2 and K2 = {R(s)g(s, ξ, h(ξ)x) : 0 ≤ s ≤
t, 0 ≤ ξ ≤ t, ||x|| ≤ r}. Using the fact that R(.) is strongly continuous and the property (c),
we infer that K1,K2 are relatively compact set, and

Vb(t) ⊆ αR′(t)y +R(t)y + αR(t)z + ¯tc(K1) + ¯tc(K2),

which establishes our assertion.

We next show that Vb is equicontinuous and in fact we can decompose

v(t+ s)− v(t)

= α(R′(t+ s)−R′(t))y + (R(t+ s)−R(t))y + α(R(t+ s)−R(t))z

+

∫ t+s

t

R(t+ s− ξ)f(ξ, u(ξ))dξ +

∫ t

0

(R(ξ + s)−R(ξ))f(t− ξ, u(t− ξ))dξ

+

∫ t+s

t

(R(t+ s− ξ)

∫ s

0

g(ξ, θ, u(θ))dθ

+

∫ t

0

R(ξ + s)−R(ξ))

∫ s

0

g(s− ξ, ξ − θ, u(ξ − θ))dθds

For each ǫ > 0 we can choose δ1 > 0, δ2 > 0 such that

||

∫ t+s

t

R(t+ s− ξ)f(ξ, u(ξ))dξ|| ≤ M

∫ t+s

t

e−ω(t+s−ξ)W1(rh(ξ))dξ ≤ ǫ/7,

||

∫ t+s

t

R(t+ s− ξ)

∫ s

0

g(ξ, θ, u(θ))dθ|| ≤ M

∫ t+s

t

e−ω(t+s−ξ)W2(rh(ξ))dξ ≤ ǫ/7

for s ≤ δ1, δ2. Moreover {f(t − ξ, u(t − ξ)) : 0 ≤ ξ ≤ t, u ∈ Br(Ch(X))} and {g(s − ξ, ξ −
θ, u(ξ − θ) : 0 ≤ ξ, θ ≤ t, u ∈ Br(Ch(X))} are relatively compact set, R(.)and R′(.) are
strongly continuous, we can choose δi > 0, i = 3, 4, ...7 such that

||α(R′(t+ s)−R′(t))y|| ≤
ǫ

7
, s ≤ δ3

||(R(t+ s)−R(t))y|| ≤
ǫ

7
, s ≤ δ4

||α(R(t+ s)−R(t))z|| ≤
ǫ

7
, s ≤ δ5

||(R(ξ + s)−R(ξ))f(t− ξ, u(t− ξ))|| ≤
ǫ

7t
, s ≤ δ6 and

||R(ξ + s)−R(ξ)g(s− ξ, ξ − θ, u(ξ − θ)|| ≤
ǫ

7t
, s ≤ δ7.
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Combining these estimate, we get ||v(t+ s)− v(t)|| ≤ ǫ for s small enough and independent
of u ∈ Br(Ch(X)).
Finally, applying condition (a) we can show that

||v(t)||

h(t)
≤

(α+ 1)M ||y||

h(t)
+

αM ||z||

h(t)
+

M

h(t)

∫ t

0

e−ω(t−s)W1(||u||hh(s))ds

+
M

h(t)

∫ t

0

e−ω(t−s)W2(||u||hh(s))ds → 0, t → ∞

and this convergence is independent of u ∈ Br(Ch(X)). Hence V satisfies conditions (c-
1)and (c-2)which completes the proof that V is a relatively compact set in Ch(X).

(iv) If uλ(.) is a solution of the equation uλ = λΛ(uλ) for some 0 < λ < 1, we have

the estimate
||uλ||h

β(||uλ||h)
≤ 1 and, combining with condition (d) we conclude that the set

K̃ = {uλ : uλ = λΛ(uλ), λ ∈ (0, 1)} is bounded.

(v) It follows from Lemma 2.7 and Lemma 4.1, that Λ(AAP (X)) ⊆ AAP (X) and, con-
sequently we consider Λ : AAP (X) → AAP (X). Using the properties (i)-(iii), we have
that this map is completely continuous. Taking into account that K̃ is bounded and using
Leray-Schauder alternative theorem ([10, theorem 6.5.4]), we infer that Λ has a fixed point
u ∈ AAP (X). Let (un)n be a sequence in AAP (X) that converges to u. We see that (Λun)n
converges to Λu = u uniformly in R+. This implies that u ∈ AAP (X) and this completes
the proof.

5 CONCLUSION

In this work we have established some sufficient condition for the existence of asymptotically
almost periodic solution of integrodifferential equations by using fixed point theory.
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