
App. Math. and Comp. Intel., Vol. 2(2) (2013) 195–203

http://amci.unimap.edu.my

c© 2013 Institute of Engineering Mathematics, UniMAP

Languages defined by pure patterns

Sindhu J Kumaara, P.J. Abishab, D. Gnanaraj Thomasb,

Nor Haniza Sarminc, K.G. Subramaniand,∗

aDepartment of Mathematics

B.S. Abdur Rahman University

Chennai 600048, India

bDepartment of Mathematics, Madras Christian College

Tambaram, Chennai 600059, India

cDepartment of Mathematical Sciences, Faculty of Science

Universiti Teknologi Malaysia

81310 UTM Johor Bahru, Johor, Malaysia

dSchool of Computer Sciences

Universiti Sains Malaysia

11800 USM, Penang, Malaysia

Received: 24 May 2013; Accepted: 4 September 2013

Abstract: Angluin’s pattern languages that use pattern strings as language descriptors,
have motivated researchers in formal language theory to introduce and investigate grammars
based on patterns. Both theoretical as well as application oriented properties of these gram-
mars have been studied. On the other hand pure grammars in line with the early works of
Thue have been proposed and studied for their properties. Here we introduce a new kind of
language generative device, called a pure pattern grammar, linking the notions of pattern
and pure grammars. Two modes of derivation in such a pattern grammar, called as syn-
chronized and non-synchronized modes, are introduced. The resultant families of languages
are compared for their generative power with certain other well-known families of languages.
Certain closure properties and descriptional complexity results are also obtained.

Keywords: Formal language; Pattern grammar; Pure grammar.

PACS: 02.70.-c, 89.20.Ff

∗Corresponding Author: kgsmani1948@gmail.com (K.G. Subramanian)



196 S.J. Kumaar et. al

1 Introduction

Formal language theory [1, 2], which is one of the foundation areas of theoretical computer
science, is replete with an abundance of grammars that have been introduced and investi-
gated with different motivations. The pure grammar introduced in [3] is more in line with
the early work of Thue on words [4] in the sense of not dividing the alphabet into terminals
and non-terminals unlike the well-known [1] Chomskian grammars. Also in contrast to the
well-investigated L systems [5] which involve rewriting in parallel, the rewriting process in
a pure grammar is sequential as in the Chomskian grammars. A number of investigations
on pure grammars in terms of theoretical properties and applications has been done in the
literature (See for example [6, 7, 8, 9, 10]).

On the other hand a different kind of language generative model, called pattern grammar,
was introduced in [11] motivated by Angluin’s pattern languages that use pattern strings as
language descriptors. Investigation of patterns has been of relevance in many areas such as
combinatorics on words, learning theory and so on. Unlike the classical models of grammars
and automata, pattern grammars are known to provide an alternative method in defining
languages. This grammar involves an operation of replacing in parallel all variables in a
pattern string by a specific set of strings. The replacement is done in a uniform way in the
sense of replacing all occurrences of the same variable in a pattern by the same string. This
kind of grammar takes motivation from the study of Angluin [12] on patterns describing a
set of strings. Pattern grammars have been subsequently investigated from different points
of view (See for example [13, 14, 15, 16, 17, 18]).

In this paper we consider a new generative device known as a pure pattern grammar,
which was originally introduced in [19]. This provides a natural link between pure gram-
mars [3] and pattern grammars [11] which had motivations from different directions. Pure
pattern grammars have found application as well in the problem of learning of languages
[20]. The pure pattern grammar has only one kind of symbol, namely, terminal symbol or
constant, as in pure grammars. Generation of words involves a process that is analogous to
that in a pattern grammar. In other words, the pure pattern grammar has patterns which
are strings of constants or terminal symbols. The constants are replaced initially by axioms
over terminal symbols. The process is continued by replacing at any step the symbols in
a pattern with the current set of words derived, there by yielding the associated language.
We introduce two modes of working of a pure pattern grammar which we call as synchro-
nized and non-synchronized modes. We compare the resultant families of synchronized and
non-synchronized pure pattern languages with other families of languages such as pattern
languages [11], pure languages [3], Chomskian languages [2]. Certain closure properties and
descriptional complexity results are also obtained.

2 Preliminaries

We recall some needed definitions. For unexplained notions and notations, we refer to [5, 2].
An alphabet Σ is a finite set of symbols. A word over Σ is a finite sequence of symbols

of Σ. The set of all words over Σ is denoted by Σ∗ which includes the empty word λ. We
write Σ+ = Σ∗ − {λ}.

Definition 1. A pure grammar [3] is a triple G = (Σ, P, S) where Σ is a finite alphabet, S
is a finite set of words over Σ and P is a finite set of ordered pairs (x, y) of words over Σ.
The elements of P are referred to as productions, usually written as x → y. If x ∈ Σ, in
every production x → y of P , then G is called a pure context-free grammar (PCF ).

In a pure grammar, a word w over Σ yields directly a word w′ over Σ according to G
if there are words w1, w2 ∈ Σ∗ and a production x → y in P such that w = wlxw2 and



App. Math. and Comp. Intel., Vol. 2(2), 2013 197

w′ = wlyw2. We then write w ⇒G w′ or briefly w ⇒ w′ (if G is understood). The reflexive,
transitive closure of ⇒ is denoted by ⇒∗. The language L(G) generated by G, called a pure
language, is defined as L(G) = {w | s ⇒∗ w, for some s in S}. The language generated by a
PCF grammar is called a PCF language.

Example 1. The PCF grammar G = ({a, b}, {a → ab}, {a}) generates the PCF language
L(G) consisting of all words of the form abn, n = 0, 1, 2, · · · .

Though in both the Chomskian and pure grammars, the rewriting process is sequential,
it is known [3] that these two families of languages are incomparable.

Definition 2. A pattern grammar [11, 15] is a 4-tuple G = (Σ, X,A, P ) where Σ is an
alphabet whose elements are called constants, X is an alphabet whose elements are called
variables, A ⊆ Σ∗ is a finite set of words, called axioms, P ⊆ (Σ ∪ X)∗ is a finite set of
words, called patterns where each pattern contains at least one variable.

The rewriting in G is defined as follows: Initially, words are obtained by replacing in
parallel and uniformly all the variables in a pattern in P by axioms of A with different
occurrences of the same variable being replaced by the same word. The process is continued
in a similar way by replacing variables by words of the current set of strings obtained. The
language generated by G is L(G) = A ∪ P (A) ∪ P (P (A)) ∪ . . . , where P (X) denotes the set
of strings obtained from patterns in P by using strings of the set X in the manner described
above.

Example 2. G = ({a, b}, {δ}, {ab}, {aδb}) is a pattern grammar generating the language
L(G) consisting of all words of the form anbn, n = 1, 2, · · · . In fact A = {ab} and initially
the axiom word ab replaces δ in the pattern aδb to yield aabb. The process is repeated. Thus
P (A) = {aabb}, P (P (A)) = {aaabbb} and so on.

It is known [11] that the pattern grammars generate a family of languages incomparable
with Chomskian languages [2] and Lindenmayer languages [5].

3 Synchronized Pure Pattern Grammars

In this section, we consider the notion of a synchronized pure pattern grammar (SPPG).
Pure pattern grammar (PPG) was introduced in [19] linking the studies of pure grammars [3]
and pattern grammars [11]. Here we call the PPG as a synchronized pure pattern grammar
(SPPG) and recall the grammar.

Definition 3. A synchronized pure pattern grammar (SPPG) is a triple G = (Σ, A, P )
where Σ is an alphabet, A ⊆ Σ∗ is a finite nonempty set of elements of Σ∗, called axioms
and P is a finite nonempty subset of Σ+, called the set of patterns. For a set of words
X ⊆ Σ∗, let P (X) be the set of strings obtained by replacing uniformly and in parallel, all
the letters in every pattern of P, by strings in X. Different occurrences of the same letter
in a pattern are replaced by the same string.
Initially the symbols in a pattern are replaced by the axioms and subsequently the replacement
process is continued with the words obtained at the current step. The synchronized pattern
language (SPPL) generated by G, denoted by L(G), is the smallest language L ⊆ Σ∗ for
which we have P ⊆ L, A ⊆ L and P (L) ⊆ L. In fact L(G) = P ∪A∪P (A)∪P (P (A))∪ . . . .
We denote by SPPL itself the family of languages generated by SPPGs.

Note that the patterns in a SPPG are also in the language of the grammar.

Example 3. We illustrate with some SPPGs and the corresponding languages generated.



198 S.J. Kumaar et. al

i) G1 = ({a}, {a}, {aa}). Here L(G1) = {a2
n

/n = 0, 1, 2, · · · }. In fact initially the
axiom a replaces both a′s in the pattern aa to yield the word a2 which is then used to replace
again both the a′s in the pattern aa giving a4 and the process continues.

ii) G2 = ({a, b}, {λ, a, b}, {ab}). L(G2) = Σ∗. Any of the axioms λ, a, b can initially re-
place independently a as well as b in the pattern ab yielding λ, a, b, aa, ab, ba, bb. The resulting
words can be used in a similar manner in the pattern ab and the process can be continued to
yield the language consisting of all strings over a, b including the empty string.

iii) G3 = ({a, b}, {a, b}, {aaa}). L(G3) = {a3
n

/n = 0, 1, 2, · · · } ∪ {b3
n

/n = 0, 1, 2, · · · }.
Again initially the axiom a replaces all the a′s in the pattern aaa yielding a3. Likewise the
axiom b yields b3. It can be seen that only powers of a3 or b3 are generated subsequently.

iv) G4 = ({a, b}, {aa, bb}, {aa}).
L(G4) = {(aa)2

n

/n = 0, 1, 2, · · · } ∪ {(bb)2
n

/n = 0, 1, 2, · · · }.

Lemma 1. Any λ−free finite non-empty set F is a synchronized pure pattern language if
and only if F contains atleast one word of length one.

Proof. If a word p of length one is in the finite set F, λ /∈ F, then a SPPG G generating F
has the axiom set F itself and the singleton set {p} is the set of patterns of G. Conversely,
let F = {w1, w2, ..., wm} be a finite set over an alphabet Σ and |wi| > 1, for i = 1, · · · ,m.
Suppose F is a SPPL generated by a SPPG GF with alphabet Σ, axiom set F and the
set P of patterns. Then P contains at least one wj ∈ F and A atleast one wk ∈ F. Let

|wj | = l. Then GF generates a language L containing the infinite set {wl
k, w

l2

k , ...} which is
a contradiction.

Remark 1. i) Note that we can not relax the condition of F being λ−free in the Lemma 1,
since the set {λ, a2} is a SPPL generated by a SPPG with axiom λ and pattern aa.
ii) It can be noticed from examples 3(i), 3(iii) or 3(iv) that if G = (Σ, A, P ) is a SPPG with
P containing at least one pattern with length greater than or equal to 2 and all the axioms
being nonempty, then L(G) is not always a context-free language.

Lemma 2. If L ∈ SPPL, then there is a constant k such that for all z ∈ L with |z| > k,
we can write z = u1u2 . . . un, ui ∈ L, i = 1, 2, . . . n where not all ui need be distinct.

Proof. Let G = (Σ, A, P ) be such that L(G) = L. Take k = max{|x|/x ∈ A ∪ P}. If z ∈ L
and |z| > k then z 6∈ A and z 6∈ P . Therefore z must have been obtained from a pattern
p ∈ P using strings in P r(A) for some r more than 1. If |p| = n, then z = u1u2 . . . un where
ui ∈ P r(A), i = 1, 2, . . . , n. But then ui ∈ L.

Lemma 3. If L ∈ SPPL is an infinite language over Σ, then there is u ∈ Σ+ such that for
all n > 1, a string of the form ukn

is in L, where k is the length of a pattern.

Proof. Let G = (Σ, A, P ) be a SPPG generating L. As L is infinite, P must contain at least
one pattern p with |p| > 1. Let |p| = k and p = a1a2 . . . ak, ai ∈ Σ. Here an ai may be
equal to aj for some i and j. If u ∈ A ∩ Σ+ is an axiom, then L(G) contains all strings of
the form ukn

. This can be proved using induction on n. As u ∈ A, P (A) contains a string
of the form uk = ukn

, n = 1 which is obtained by replacing all ai’s in p = a1a2 . . . ak by u.
Let us assume that there is a u ∈ A such that ukm

∈ L. We need to prove that ukm+1

∈ L.
since ukm

∈ L we have ukm

∈ P r(A) for some r > 1. Therefore P r+1(A) = P (P r(A))

will contain ukm+1

. This is obtained by replacing every ai in p = a1a2 . . . ak by ukm

to get
ukm

ukm

. . . ukm

= ukm

k = ukm+1

. This completes the induction.

Theorem 1. The family of synchronized pure pattern languages (SPPL) is incomparable
but not disjoint with



App. Math. and Comp. Intel., Vol. 2(2), 2013 199

1. the family of pattern languages

2. the family of pure context free languages

3. the family of regular and hence with the family of context-free languages.

Proof. The incomparability of SPPL with the family of pattern languages is seen by con-
sidering the language L1 = {anbn/n = 1, 2, · · · } which is a pattern language (example 2).
But if L1 is generated by a SPPG, then there must be atleast one pattern in the SPPG
with length greater than or equal to 2 for, otherwise the set generated is finite or might
contain λ. Also the axioms of the SPPG are in {anbn/n = 1, 2, · · · }. Hence if ajbj is an
axiom and p is a pattern with |p| > 2 then words having ba as a subword are also generated,
which is a contradiction. Therefore L1 is not in SPPL. On the other hand L2 = a∗ ∪ {ab}
is generated by the SPPG, G = ({a, b}, {λ, a}, {ab}). But L2 is not a pattern language [11].

For proving the incomparability with the family of pure context free languages, we note
that the language L3 = {abn/n = 1, 2, · · · } is generated by the pure context free grammar
({a, b}, {a → ab}, {ab}). But L3 can not be generated by any SPPG. For, if L3 is generated
by a SPPG, then there must be atleast one pattern p in the grammar with |p| > 1 and so
words with ba as a sub word will be generated. On the other hand L4 = {a2

n

/n = 0, 1, 2, . . . }
is in SPPL (example 3(i)). But pure context-free languages are included in the family
of context-free languages [3]. Hence L4 being a non context-free language, is not a pure
context-free language.

The incomparability with the families of regular and context-free languages follows from
the fact that the language {a2, a3} is regular (in fact finite) but is not in SPPL by Lemma 1,
whereas the language {a2

n

/n = 0, 1, · · · } is in SPPL but is known [2] to be non-context-free.
Finally, we note that the families of pure context-free languages and pattern languages

and SPPL are not disjoint as {an/n = 0, 1, 2, · · · } is a member of all the three families.

Theorem 2. The family SPPL is not closed under i) Catenation ii) Intersection iii) In-
tersection with regular sets iv) Kleene Closure v) Union.

Proof. i) Consider the languages K1 = {a2
n

/n = 0, 1, · · · } generated by the SPPG G1 =
({a}, {a}, {aa}) and K2 = {a, a3} generated by the SPPG G2 = ({a}, {a3}, {a}) so that

K1K2 = {a2
n

+1, a2
n

+3/n = 0, 1, 2, · · · }.

The empty word λ is not in K1K2. Hence the word a2 which is in K1K2 has to be an axiom
or a pattern if K1K2 is generated by a SPPG. In any case this will give rise to several words
over a with even powers of a. But only a2 and a4 with even powers are in K1K2. For all
other words in K1K2, the words are over a and the powers of a are odd. Therefore K1K2 is
not in SPPL.

ii) The language K3 = {ab} ∪ a∗ is generated by the SPPG
G3 = ({a, b}, {λ, a}, {ab}) and the language K4 = {ab} ∪ b∗ is generated by the SPPG
G4 = ({a, b}, {λ, b}, {ab}). Both K3 and K4 are in SPPL but K3 ∩K4 = {ab} which is not
in the family SPPL, by Lemma 1.

iii) Let K5 = {λ, ab, a2} ∪ {a2n−1/n = 1, 2, · · · } which is a regular language generated
by the regular grammar ({S,A}, {a, b}, P, S) where P consists of the rules S → λ, S →
ab, S → a2, S → a2A, A → a,A → a2A. The language K6 = {a2

n

/n = 1, 2, · · · } is also
a SPPL, generated by the SPPG ({a}, {aa}, {aa}). But K5 ∩ K6 = {a2} which is not in
SPPL again by Lemma 1.

iv) The language K6 in iii) above is a SPPL. The Kleene Closure of K6 is the language
K∗

6 = {a2n/n = 1, 2, · · · }. If K∗

6 is generated by a SPPG G, then any axiom in G is of
the form a2p and any pattern is of the form a2r so that only words of the form a4rp will be



200 S.J. Kumaar et. al

generated. But this would mean words like a6, a10, a14 which are in K6 cannot be generated.
For example if 4rp = 6, then 2rp = 3 which does not hold as 2rp is even.

v) Let K7 = {a3
n

/n = 1, 2, · · · .} The union language K6 ∪ K7 6∈ SPPL with K6 in
iii) above. The reason is that there cannot be a SPPG with a pattern set which generates
words which are powers of a with the powers being only multiples of 2 or multiples of 3.

Various descriptional complexity measures of language generating mechanisms have been
studied by different researchers and continue to be of interest (See for example [21] and
references therein). Certain descriptional complexity measures [22] for synchronized pure
pattern grammar (SPPG) are now obtained. We recall these measures but define them with
respect to SPPG.

For a SPPG G = (Σ, A, P ),
Ax(G) = card A,
Pat(G) = card P, where cardX is the number of elements in the finite set X;
LAx(G) = max{|w| : w ∈ A},
LPat(G) = max{|w| : w ∈ P}.

Extending these measures to languages we have the following: For a SPPL L,

M(L) = inf{M(G) : L = L(G)},M is any of Ax,Pat, Lax or LPat.

A measure M is said to be connected [22] if for all n = 1, 2, · · · there is a Ln in SPPL such
that M(Ln) = n.

Theorem 3. Each of the measures, Ax,Pat, LAx,LPat is connected with respect to the
family SPPL.

Proof. For each n = 1, 2, · · · , the language Bn = {a, a2, a3, . . . , an, an+1} is a SPPL. Then
Ax(Bn) = n, for any SPPG G generating Bn must have all the n words a2, · · · , an+1 in
the axiom set A and cannot have less than these n words. Also, for each n = 1, 2, · · · ,
the language Cn = {a, a2, a3, . . . , an} is a SPPL. Then LAx(Cn) = n, for any SPPG G
generating Cn should have an in the axiom set A and no other word larger in length. Hence
Ax,LAx are connected.

Likewise, for each n = 1, 2, · · · , the language Dn = {an}∪{λ} is generated by the SPPG
G = ({a}, {λ}, {an}). Note that λ cannot be a pattern. Then Pat(Dn) = LPat(Dn) = n.
Hence Pat, LPat are also connected.

4 Non-synchronized Pure Pattern Grammars

In this section pure pattern grammar working in a non-synchronized mode is introduced.
The two modes of working: synchronized and non-synchronized, are then compared.

Definition 4. A non-synchronized pure pattern grammar (NSPPG) is a triple G = (Σ, A, P )
where Σ is an alphabet A ⊆ Σ∗ is a finite nonempty set of elements of Σ∗ called axioms
and P is a finite nonempty subset of Σ+ called the set of patterns. The difference in the
working of a NSPPG is that at the rth step, each letter of a pattern is replaced by words
from

⋃r−1

i=0
P i(A) unlike in SPPG where at the rth step each letter of the pattern is replaced

by words from P r−1(A). In other words we start with the axiom set A and use the words of
the axiom set in the replacement of symbols in a pattern in P to obtain P (A). We then use
the words in A∪P (A) to obtain P (A∪P (A)) and the process is continued. Thus the languge
of the NSPPG G is L(G) = P ∪A∪P (A)∪P (A∪P (A))∪P (A∪P (A)∪P (A∪P (A)))∪ . . . .

We denote the family of languages generated by NSPPG by NSPPL.



App. Math. and Comp. Intel., Vol. 2(2), 2013 201

Remark 2. Note that there is no difference in the components of a SPPG and a NSPPG.
The difference lies only in the working.

Example 4. We give some NSPPGs and describe the corresponding languages generated.
i) Consider the NSPPG G1 = ({a}, {a}, {aa}), L(G1) = {a2

n

/n = 0, 1, · · · }. In the
first step, the axiom a replaces each of the two a′s in the pattern aa to yield a2. In the next
step the words a, a2 are used and the process repeated to yield a2, a4. The process continues.
Note that this grammar in the synchronising mode generates the same language.

ii) Consider the NSPPG G2 = ({a, b}, {λ, a, b}, {ab}). L(G2) = Σ∗. Note that starting
with {λ, a, b} and working in the non-synchronising mode we obtain {λ, a, b, ab, ba, aa, bb}.
In the subsequent step we obtain the words
{λ, a, b, ab, ba, aa, bb, aab, aba, aaa, abb, bab, bba, baa, bbb, abab, abba, abaa, abbb,
baab, baba, baaa, babb, aaab, aaba, aaaa, aabb, bbab, bbba, bbaa, bbbb}.
Here again there is no difference in the language obtained while working in the synchronized
mode.

iii) Consider the NSPPG G3 = ({a, b}, {a}, {abb}). L(G3) = {abb} ∪ {a2n−1/n =
1, 2, 3, . . . }. In the first step, using a we obtain a3 and in the next step we obtain a3, a5, a7, a9.
Note that if we work in the synchronized mode we can obtain only a9. In the subsequent step
in the non-synchronized mode we obtain a11, a13, a15, a17, a19, a21, a23, a25, a27. Again note
that the languge obtained in the synchronized mode in this grammar is {a3

n

/n = 1, 2, · · · }.

Remark 3. Note that Lemma 1 holds in the case of non-synchronized pure pattern languages
as well.

Lemma 4. If the patterns are over a single letter then the families of NSPPL and SPPL
are the same.

Proof. Let G = (Σ, A, P ) be a pure pattern grammar with patterns in P over a single letter.
While working in the synchronized mode or non-synchronized mode, the same word replaces
all the letters in a pattern as the pattern involves only the same symbol. So in the non-
synchronized mode using the words obtained in a prior step does not make a difference as
each of these can only be independently used. But this amounts to working in synchronized
mode as well. Therefore SPPL coincides with NSPPL.

Lemma 5. If a pure pattern grammar G does not include λ as an axiom and if a pattern
consists of different symbols, then the languages obtained from the non-synchronized mode
could be different from the synchronising mode.

This result is noticed from example 4(iii).

Theorem 4. NSPPL− SPPL 6= φ.

Proof. The language L = {abb} ∪ {a2n−1/n = 1, 2, 3, . . . } is in the family NSPPL as seen
in example 4(iii) but it cannot be generated by any SPPG. In fact, if we work in the
synchronized mode, λ cannot be an axiom, since λ is not in L and hence a ∈ L has to be
an axiom. But we cannot derive words such as a5, a7 which are in the language, as the
axiom a will be used only in the first step yielding a3 and will be unavailable for use in the
subsequent steps in the synchronized mode of working.

Theorem 5. The family of non-synchronized pure pattern languages (NSPPL) is incom-
parable with
i) the family of pattern languages (PL) and
ii) the family of pure context free languages (PCF ).

The proof of this result is similar to the proof of Theorem 1.

Remark 4. Closure results for NSPPL can be obtained as done for SPPL in Theorem 2.



202 S.J. Kumaar et. al

5 Conclusion

We have considered here two modes of derivation of pure pattern grammar and obtained
theoretical properties such as closure and comparison results. Other properties such as
decidability results remain for future study.

Acknowledgments

The authors gratefully acknowledge the comments of the reviewers. The author K.G.
Subramanian gratefully acknowledges support for this research from a FRGS grant No.
203/PKOMP/6711267 of the Ministry of Higher Education (MoHE), Malaysia.

References

[1] G. Rozenberg and A. Salomaa (Eds.) Handbook of formal languages: Vol. 1. Word,
language, grammar, Springer-Verlag, Berlin, 1997.

[2] A. Salomaa. Formal languages, Academic Press, New York, 1973.

[3] H.A. Maurer, A. Salomaa and D. Wood. Pure grammars. Inform. Control, 44:47–72,
1980.

[4] J. Berstel. Axel Thue’s Papers on Repetitions in Words: a Translation, Publications
du LaCIM, Dpartement de mathmatiques et d’informatique 20, Universit du Qubec
Montral, 1995.

[5] G. Rozenberg and A. Salomaa. The Mathematical theory of L-systems, Academic Press,
New York, 1980.

[6] A. Gabrielian. Pure grammars and pure languages. Int. J. Comput. Math., 9:3–16, 1981.

[7] G. Georgescu. On the index of pure context-free grammars and languages. In: G.
Rozenberg, (Ed.): Developments in Language Theory, At the Crossroads of Mathemat-
ics, Computer Science and Biology, World Scientific, Singapore, pages 60-69, 1994.

[8] E. Mäkinen. On Szilard languages of pure context-free grammars. J. Inf. Process. Cy-
bern., 22:527-532, 1986.

[9] M. Novotný. Construction of pure grammars. Fundam. Inform., 52:345-360, 2002.

[10] K. G. Subramanian, R. M. Ali, M. Geethalakshmi, A. K. Nagar. Pure 2D picture
grammars and languages. Discrete Appl. Math., 157:3401-3411, 2009.

[11] J. Dassow, Gh. Păun and A. Salomaa. Grammars based on patterns. Int. J. Found.
Comp. Sci., 4:1–14, 1993.

[12] D. Angluin. Finding patterns common to a set of strings. J. Comp. System Sci., 21:46–
62, 1980.

[13] G. Castiglione, A. Restivo and S. Salemi. Patterns in words and languages. Discrete
Appl. Math., 144:237–246, 2004.

[14] H. C. M. Kleijn and G. Rozenberg. On the generative power of regular pattern gram-
mars. Acta Inform., 20:391–411, 1983.



App. Math. and Comp. Intel., Vol. 2(2), 2013 203

[15] Gh. Păun, G. Rozenberg and A. Salomaa. Pattern Grammars. Journal of Automata,
Languages and Combinatorics, 1:219–235, 1996.

[16] V. Mitrana. Iterated pattern languages. J. Autom. Lang. Comb., 1:305–311, 1996.

[17] V. Mitrana, Patterns and languages: An Overview. Grammars, 2:149–173, 1999.

[18] V. Mitrana, Gh. Păun, G. Rozenberg and A. Salomaa. Pattern systems. Theoret. Com-
put. Sci., 154:183–201, 1996.

[19] P.J. Abisha, K.G. Subramanian and D.G. Thomas. Pure pattern grammars. Proc. Int.
Workshop on Grammar Systems, Austria, pages 253–262, 2000.

[20] P.J. Abisha, D.G. Thomas, and S. J. Kumaar. Learning subclasses of pure pattern
languages.Proc. Int. Colloquium on Grammatical Inference (ICGI 2008), LNCS 5278
pages 280-282, 2008.

[21] S. Turaev, G. Mavlankulov, M. Othman, and M. H. Selamat. Descriptional complexity
of lindenmayer systems. App. Math. and Comp. Intel., 1:12–23, 2012.

[22] J. Gruska. The descriptional complexity of context-free languages. In Proc. MFCS
Symp., pages 71–84, 1973.


