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Abstract: In this paper, we present an approximate numerical solution of system of linear

differential equations using Haar wavelet method. Haar wavelet method is used because its

computation is simple as it converts the problem into algebraic matrix equation. The results

and graphs show that the proposed way is quite reasonable when compared to exact solution.
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1 Introduction

In the recent years wavelet approach has become more popular in the field of numerical
approximations. Different types of wavelets and approximating functions have been used in
numerical solution of initial and boundary value problems. Chen and Hsiao [2] have gained
popularity, due to their useful contribution in wavelet. Lepik [8 - 10] applied Haar wavelet
in solving differential equations and partial differential equations. According to Lapik, the
unknown function is defined according to the higher order derivative and then by using
the integrations of the Haar wavelet it is possible to obtain some algebraic systems in the
unknown wavelet coefficients. When these systems are solved, we obtain the coefficients of
some Haar wavelet series and this series gives us the wavelet solution. Lapik also showed
that the approximation is quite good already with few coefficients. Moreover, Lepik in some

∗Corresponding Author: nareshberwal.019@gmail.com (N. Berwal)



184 N. Berwal, D. Panchal and C. L. Parihar

further papers gave also the solution of integral equations and integro-differential equations
by using this method which is based on the operational matrices defined by him and pre-
viously by Chen-Hsiao. G. Hariharan et. al. [7] also gave a simple method for solution of
partial differential equations. Vedat Suat Erturk and Shather Momani [4] solve system of
fractional differential equations using differential transform method. Sachin Bhalekar and
Varsha Daftardar – Gejji [1] gave a new iterative method for system of nonlinear functional
equations.

In the present paper, a new direct computational method for solving system of linear
differential equations is introduced. This method consists of reducing the problem to a set
of algebraic equations by first expanding the terms, which has maximum derivative, given
in the equation as Haar functions with unknown coefficients. The differentiation of Haar
wavelet always results in impulse functions which must be avoided, in the procedure, the
integration of Haar wavelet is preferred. Since the integration of the Haar functions vector
is continuous function, the solutions obtained are continuous.
Linear differential equations play very important role in modeling numerous problems in
physics, chemistry, Biology and Engineering science [5, 6]. Many problems can be modeled
as system of linear differential equations, integral equations, fractional differential equations,
partial differential equations. Since some system of linear differential equations do not have
exact solution, numerical methods are widely used to solve these equations. Several tech-
niques such as Adomain decomposition method [5], Variational iteration method, homotopy
perturbation method have been used for solving these problems. Most of these techniques
encounter a considerable size of difficulty. But our method is new and very easy to use.
One main advantage of this method is that, we don’t need to solve it manually it is fully
computer supported.

2 Haar wavelet:

The Haar wavelet was first introduced by Alfred Haar [6] in 1910. Haar wavelet is a certain
sequence of rescaled “square-shaped” function which together forms a wavelet family or
basis. Haar wavelet is defined as t ∈ [0 1]

ψ(t) =























1 0 ≤ t < 1
2

−1 1
2 ≤ t ≤ 1

0 otherwise

(1)

Haar wavelet family for t ∈ [0 1] is defied as

hi(t) =























1 for t ∈ [η1, η2)

−1 for t ∈ [η2, η3]

0 otherwise

(2)

Where η1 = K
m

, η2 = K+0.5
m

, η3 = K+1
m

. The integer m = 2j(j = 0, 1, . . . , J)
indicates the level of the wavelet; k = 0, 1, ...,m − 1 is the translation parameter. The
maximal level of relation is J . The index i is calculated according to the formula i = m+k+1;
In the case of minimal values m = 1, k = 0, we have i = 2. The maximum value of i is
i = 2J+1 = M . It is assume that the value i = 1 corresponding to the scaling function for
which h1 = 1 for t ∈ [0 1].
By Hsiao-Chen method [3]
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pi,1(t) =

∫ x

0

hi (t) dx, (3)

pi,v (t) =

∫ x

0

pi,v−1 (t) dx, v = 2, 3 . . . (4)

Carrying out these integrations with the aid equation (3), we have

pi,1 (x) =























t− η1 for t ∈ [η1, η2)

η3 − t for x ∈ [η2, η3]

elsewhere

(5)

pi,2 (t) =







































1
2 (t− η1)

2
for t ∈ [η1, η2)

1
4m2 − 1

2 (η3 − t)
2

for t ∈ [η2, η3]

1
4m2 for t ∈ [η3, 1]

0 elsewhere

(6)

Any function y(t) ∈ L2([0, 1]) can be expanded in Haar series y(t) =
∑8

i=1 aihi(t).
where ai, i = 1, 2 . . . is the Haar coefficient, which is given by

ai = 2j
∫ 1

0

y(t)hi(t)dt.

Which are determined such that the following integral square error ε is minimized

ε =

∫ 1

0

[

y (t)−
m
∑

i=1

aihi(t)

]2

dt, m = 2j , j ∈ {0} ∪N

The series expansion of y(t) contains an infinite terms. If y(t) is piecewise constant, or may
be approximated as piecewise constant during each subinterval, then y(t) will be terminated
at finite terms, i.e.

y(t) ≈

m
∑

i=1

aihi(t) = aTH

Where m = 2j , the superscript T indicates transposition. The Haar coefficient vector aT

and Haar function vector H are defined as

aT = [a1,a1,a2, . . . am]

H =
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Where hT1 , h
T
2 . . .h

T
m are the discrete form of the Haar wavelet.

Haar wavelet for m = 8 is given by

H =
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1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 −1





















































3 Method for solutions of system of linear differential equations:

In this study, we consider following system of linear differential equations

Dα1y1 (t) = f1(t, y1, y2 . . . yn)
Dα2y2 (t) = f2(t, y1, y2 . . . yn)

...

...
Dαnyn (t) = fn(t, y1, y2 . . . yn)

Where Dαj is the derivative of yi of order αj , 0 < αj ≤ 1, subject to the initial conditions
y1 (0) = c1, y2 (0) = c2, y3 (0) = c3 . . . yn (0) = cn
Suppose

Dα
j yn (t) =

m
∑

i=1

(ai)nhi(t), j = 1, 2 . . . , n = 1, 2 . . . (7)

After integrating above system of linear differential equations with respect to t from 0 to t
and using initial conditions we have

yn (t) =

m
∑

i=1

(ai)nPi,1(t) + cj , n = 1, 2 . . . (8)

Now substituting equations (7) and (8) in system of linear differential equations then we get
algebraic form of system of linear differential equations. After solving these equations we
can calculate haar coefficients(ai)j . Then from equation (8) we can find approximate value
of yn (t) , n = 1, 2 . . .

4 Examples and results:

Example 1: Consider the following system of linear differential equations with initial con-
ditions

y
′

1 (t) = y3 (t)− cost, y1 (0) = 1 (9)
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y
′

2 (t) = y3 (t)− et, y2 (0) = 0 (10)

y
′

3 (t) = y1 (t)− y2 (t) , y3 (0) = 2 (11)

Exact solution of above system is y1 (t) = et, y2 (t) = sint, y3 (t) = et + cost

Suppose

y
′

1 (t) =
m
∑

i=1

(ai)1hi(t) = aT1H (12)

y
′

2 (t) =

m
∑

i=1

(ai)2hi(t) = aT2H (13)

y
′

3 (t) =

m
∑

i=1

(ai)1hi(t) = aT3H (14)

Now integrating equation (12) – (14) with respect to t from 0 to t we get

y1 (t) =

m
∑

i=1

(ai)1Pi,1(t) + 1 = aT1 P1 + 1 (15)

y2 (t) =

m
∑

i=1

(ai)2Pi,1(t) = aT2 P1 (16)

y3 (t) =
m
∑

i=1

(ai)3Pi,1(t) + 2 = aT3 P1 + 2 (17)

Now substitute values from equations (12) – (17) in equations (9) – (11) then we get

aT1H − aT3 P1 − 2 + cost = 0 (18)

aT2H − aT3 P1 − 2 + et = 0 (19)

aT3H − aT1 P1 − 1 + aT2 P1 = 0 (20)

After solving equations (18) – (19) we have

aT1 = aT3 P1H
−1 + FH−1 (21)

aT2 = aT3 P1H
−1 + GH−1 (22)

Now from equations (20) – (22)

aT3 = FH−1P1H
−1 − GH−1P1H

−1 + H−1 (23)

Where F and G are discrete values of 2− cost and 2− et respectively of order 1×m.
With the help of equations (21) - (23) we can find value of aT2 , a

T
1 and aT3 . Then from

equations (15)- (17) we get approximate value of y1 (t), y2 (t) and y3 (t). Now absolute
error in between our method and Adomain decomposition method is shown in following
table 1 and figure 1 and figure 2.

Table - 1
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t/32 y1(haar) − y1(adom.) y1(haar) − y1(adom.) y1(haar) − y1(adom.)

1 0.000499396180104 0.000009349337806 0.000026310235501
3 0.000524451062944 0.000026257110923 0.000082348087596
5 0.000554571628228 0.000039377103342 0.000143711097876
7 0.000590185803811 0.000048292660451 0.000210559676086
9 0.000631737410419 0.000052577817734 0.000283056049077
11 0.000679686677002 0.000051797464946 0.000361365126040
13 0.000734510837021 0.000045507449291 0.000445655449932
15 0.000796704812708 0.000033254610995 0.000536100237600
17 0.000866781994559 0.000014576744485 0.000632878511192
19 0.000945275123650 0.000010997521744 0.000736176323482
21 0.001032737284564 0.000043948933628 0.000846188079866
23 0.001129743017108 0.000084767915569 0.000963117959848
25 0.001236889555230 0.000133954977384 0.001087181441002
27 0.001354798201923 0.000192021231612 0.001218606928532
29 0.001484115849219 0.000259489028844 0.001357637493701
31 0.001625516652769 0.000336892718862 0.001504532724648

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

t−axis

Y
−a

xi
s

Y3

Y1

Y2

Figure 1: Approximate solution of system of linear differential equations.
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Figure 2: Exact solution of system of linear differential equations.

Example 2: (Biomass Transfer) Consider a European forest having one or two variables of
trees. We select some of the oldest trees, these are expected to die off in the next few years,
then follow the cycle of living trees into dead trees. The dead trees eventually decay and fall
from seasonal and biological events. Finally, the fallen trees become humus. Let variables
y1, y2, y3 and t be defined by
y1 (t) = Biomass decayed into humus,
y2 (t) = Biomass of dead trees,
y3 (t) = Biomass of living trees,
t = time in decades
A typical biological modal is

y
′

1 (t) = y1 (t) + 3y2 (t) , (24)

y
′

2 (t) = −3y2 (t) + 5y3 (t) , (25)

y
′

3 (t) = − 5y3 (t) , (26)

Suppose there are no dead tree and no humus at t = 0, with initially Z0 units of living tree
biomass. These assumptions imply initial conditions

y1 (0) = 0, y2 (0) = 0, y3 (0) = Z0

Exact solution of above system is y1 (t) =
15
8 Z0

(

e−5t − 2e−3t + e−t
)

,

y2 (t) =
5

2
Z0

(

−e−5t + e−3t
)

, y3 (t) = Z0 e
−5t.

The live tree biomass y3 (t) = Z0 e
−5t decreases according to a Mathusan decay law

from its initial size Z0. It decays to 60% of its original biomass in one year.
In our numerical solution we consider Z0 = 1, 0 = t = 1 and m = 16.
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Suppose

y
′

1 (t) =
m
∑

i=1

(ai)1hi(t) = aT1H (27)

y
′

2 (t) =

m
∑

i=1

(ai)2hi(t) = aT2H (28)

y
′

3 (t) =

m
∑

i=1

(ai)3hi(t) = aT3H (29)

Now integrating equation (27) -(29) with respect to t from 0 to t we get

y1 (t) =

m
∑

i=1

(ai)1Pi,1(t) = aT1 P1 (30)

y2 (t) =

m
∑

i=1

(ai)2Pi,1(t) = aT2 P1 (31)

y3 (t) =

m
∑

i=1

(ai)3Pi,1(t) + 1 = aT3 P1 + 1 (32)

After solving above equations we get

aT1 =
3aT2 P1

(H + P 1)
(33)

aT2 =
5aT3 P1

(H + 3P 1)
+

5I

(H + 3P 1)
(34)

aT3 =
−5I

(H + 5P 1)
(35)

Where I = [1 1 1 . . . 1]1×m.

Now from equations (24) - (35) we can find approximate value of y1 (t), y2 (t) and y3 (t).
Now absolute error in between our method and Adomain decomposition method is shown
in following table 2 and figure3 and figure 4.
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Table - 2

t/32 y1(haar) − y1(adom.) y1(haar) − y1(adom.) y1(haar) − y1(adom.)

1 0.00456106306258 0.01436046162941 0.00951953755744
3 0.00061472371808 0.00655544016708 0.00533359448599
5 0.00134235346321 0.00202698824583 0.00271191688908
7 0.00211257271492 0.00043315348400 0.00111553880007
9 0.00221029389604 0.00162018015065 0.00018234471623
11 0.00195833977911 0.00205076721369 0.00032909711857
13 0.00155356695974 0.00205520792954 0.00057827504933
15 0.00111112464071 0.00184020073194 0.00066936063842
17 0.00069409439591 0.00153139236782 0.00066943661019
19 0.00033315172069 0.00120201139138 0.00062091870429
21 0.00003945633719 0.00089198660039 0.00054997672776
23 0.00018702110846 0.00062058968344 0.00047220882049
25 0.00035222293815 0.00039469667217 0.00039643767143
27 0.00046474725396 0.00021410600848 0.00032722871503
29 0.00053391041603 0.00007489570004 0.00026654335581
31 0.00056865859265 0.00002851263694 0.00021481048135
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Figure 3: Approximate solution of system of linear differential equations.
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Figure 4: Exact solution of system of linear differential equations.

5 Conclusion:

The main goal of this paper is to demonstrate that the Haar wavelet operational method
is a powerful tool for solving system of linear differential equations. Approximate solution
of the system of linear differential equations, obtain by Matlab, are compared with exact
solution. This calculation shows the accuracy of the Haar wavelet solution. Applications
of this method are very simple, and also it gives the implicit form of the approximate
solutions of the problems. Hence, the present method is a very reliable, simple, fast, minimal
computation costs and flexible.
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