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Abstract: The bi-level programming problem (BLPP) is a suitable method for solving the 
real and complex problems in applicable areas. There are several forms of the BLPP as 
an NP-hard problem. The linear-quadratic bi-level programming (LQBP) and the linear-
fractional bi-level programming (LFBP) problems are two important forms of the BLPP. 
In this article, we show an effective method based on genetic algorithm (GA) for solving 
such problems. To obtain efficient upper bounds and lower bounds we use the Karush-
Kuhn-Tucker (KKT) conditions for transforming the LQBP and the LFBP into single level 
problems. Thus by using the proposed GA, the single problems are solved. The proposed 
approach achieves efficient and feasible solutions and they are evaluated by comparing 
with references and test problems. 

Keywords: Linear-fractional bi-level programming problem, Linear-quadratic bi-level 
programming problem, genetic algorithm.  

PACS: 02.60.Pn 

1. Introduction 

The bi-level programming problem (BLPP) is a nested optimization problem, 
which has two levels in hierarchy. The first level is called leader and the second level is 
called follower which they have their own objective functions and constraints. It has been 
proved that the BLPP is NP- Hard problem even to seek for the locally optimal solutions 
[1, 2].  Nonetheless the BLPP is an applicable problem and practical tool for solving 
decision making problems. The BLPP is used in several areas such as economic, traffic, 
finance and so on. For example in congestion pricing problem which provides an optimal 
price for vehicles entering the bridges or specified areas a BLPP model is the best known 
model which in first level the income of the leader that in this case usually the municipal 
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is maximized whenever in the second level the users or drivers are trying to minimize 
their route from origin to the destination.  

Several algorithms have been presented for solving the BLPP [3, 4, 11-13]. These 
algorithms are divided into the following classes:  Transformation methods [3, 4, 22, 23, 
24], Fuzzy methods [5, 6, 7, 8, 25, 26], Global techniques [9, 10, 11, 12, 29, 30], Primal–
dual interior methods [13], Enumeration methods [14], Metaheuristic approaches [15, 16, 
17, 18, 19, 27-28]. 

In this paper, we consider two forms of the BLPP: the linear-quadratic bi-level 
programming (LQBP) which the objective function of the upper level is linear and the 
objective function of the lower level is quadratic and the linear-fractional bi-level 
programming (LFBP) which the objective function of the upper level is fractional and the 
objective function of the lower level is linear. It will be presented a procedure based on 
genetic algorithm to solve these two problems. In the remaining of pages, literature review 
is proposed in Section 2. In Section 3, basic concepts of LQBP and LFBP are proposed. 
We provide the GA for solving LQBP and LFBP in Section 4. Section 5 describes the 
steps of our algorithm. Computational results are proposed in Section 6 and finally, the 
paper is finished in section 7.   

 

2 Literature review  

 R. Mathieu [11] has proposed a global method to solve BLPP by using genetic 
algorithm.  This algorithm primarily produces feasible solutions which they eligible for 
optimized solutions to the follower objective function then in the next step algorithm 
provides the optimal solution for the leader objective function. W.T. Weng [13] proposed 
a primal-dual method to solve BLPP. S.R. Hejazi et al [15] presented a very efficient 
method based on genetic algorithm. This approach can solve the BLPP with several sizes. 
H. I. Calvete [21] solved the BLPP problem using a penalty function algorithm. Lv et al 
used KKT conditions to convert the BLPP into a single level problem. Then they append 
the complementary conditions to the high level objective function. Finally by 
decomposing the linear bi-level programming to a number of simpler and smaller linear 
programming problems, they solved the BLPP problem [3]. Wang and Wan constructed a 
genetic method based on the simplex algorithm. This method, which is proposed to solve 
the linear quadratic bi-level programming problem, first transforms the problem into a 
single level problem by using KKT conditions then solves the single level problem which 
can be simplified to a linear problem [16]. Baran et al [18] proposed a global method 
based on genetic algorithm to solve fuzzy quadratic bi-level programming problem. Hu 
and Guo [17] also proposed a new neural network for solving linear bi-level problem. This 
method not only has been proved to be stable but also it can generate the optimal solution. 
Allende and Still surveyed the advantages and disadvantages of the Karush-Kuhn-Tucker 
conditions [4]. Wan et al [19], proposed a hybrid intelligent algorithm by combining the 
particle swarm optimization with chaos searching technique (CST) for solving nonlinear 
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bi-level programming problems. In this paper, the algorithm is initialized by a set of 
random particles. Then, an optimization problem is solved by CST. B. Luce [23] 
introduced a new reformulation of the bi-level knapsack problem (BKP). In this paper an 
algorithm was proposed based dynamic programming for solving the BKP. J. Yan [27], 
using Karush-Kuhn-Tucker (KKT) condition to the lower level problem, transformed the 
non-linear bi-level programming (NBLP) into a regular nonlinear programming with 
complementary constraints. Then by particle swarm optimization (PSO) approach solved 
the smoothed nonlinear programming. 

3 Bi-level Programming Problem:  Concepts & Properties 

 In this research we propose only two special classes of bi-level programming:  linear-
quadratic bi-level programming (LQBP) and Linear-fractional bi-level programming 
(LFBP). The LQBP is formulated as follows [16]: 

 

 

 

Where                                                                                                                        and 

f (x, y), g (x, y) are the objective functions of the leader and the follower, respectively. 
Also                                is symmetric positive semi –definite matrix. 

Suppose that   

 

 

Which                                                        

 Then the follower problem of the LQBP is   

 

 

 

The LFBP problem is formulated as follows [21]: 
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Which          

 

The feasible region of the LQBP and LFBP problems is            

                                                                          

Which, this region is nonempty. 

On the other hand if x is fixed, the feasible region of the follower can be explained as  

 

Based on the above assumptions the follower rational reaction set can be shown as 

 

Where the inducible region is as follows  

 

Finally the bi-level programming problem can be written as 

 

If there is a finite solution for the BLP problem, we define feasibility and optimality for 
the BLP problem as 
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Definition 2: 

            , is an optimal solution to the bi-level problem if  

 

4  The Proposed Genetic Algorithm (GA-LQBP/GA-LFBP) 

In this section, basic and general concepts of GA-LQBP/GA-LFBP are discussed. 
Genetic algorithms are global methods which are used for global searches. The basic 
characteristics of these algorithms, as the previous researchers indicate [11, 15-16], consist 
of:  

1. Initial population of feasible solutions is produced randomly. Some of the genetic 
algorithms use other Metaheuristic methods to produce the initial population. 

2. Genetic algorithms use many of feasible solutions therefore they usually avoid local 
optimal solutions.  

3. Genetic algorithms can solve large problems with many variables.  
4. These algorithms are simple and they do not need extra conditions such as continuity 

and differentiability of objective functions.   
5. Genetic algorithms usually gain several optimal solutions instead unique optimal 

solution. This property is useful for multi objective function and multi level 
programming. 

The parameters which are used, as follows:  

U and v are used by KKT optimality conditions.  
W is a positive slack variable which convert inequality constraint into equality constraint.   
P (t) is population of chromosomes in         generation. 
M is number of constraints in the lower level problem in the BLPP. 
N is number of variables in the lower level problem in the BLPP, and    is given positive 
small number.  

In the GA-LQBP/GA-LFBP, each feasible solution of BLPP usually is transformed by 
string of characters from the binary alphabet that is called chromosome. This genetic 
algorithm works as follows: 
   Initial generation, that is generated randomly, is divided in overall the feasible 
space similarly. Then chromosomes are composed together to construct new generation. 
This process continues till to get appropriate optimal solution. The general genetic 
algorithm process as follows: 

 

),( ** yx

)10(.),(),(),( ** IRyxyxfyxf ∈∀≤

ε

tht.



 

 
 

App. Math. and Comp. Intel., Vol. 2 (1), 2013                                                                                174     

                                                                                                                                                                                                                                                                                          

End.:11
 Whileof End:10

1  :9
))(''( select)1( :8

)('' evaluate:7
)11()(' mutate )('' :6

)( recombine)(' :5
do not  While:4

)( evaluate:3
)( initialize:2

0:1

:1lg

+=
=+

=
=

=

tt
QtPtP

tP
tPtP

tPtP
terminate
tP
tP

t

BLPPsolvetoGAorithmA



 

Figure 1: the general genetic algorithm process 

Where P (t) is a population of chromosomes in          generation and Q is a set of 
chromosomes in the current generation which are selected.  

In the suggested method, every chromosome is demonstrated by a string. This 
string consists of               binary components. Also these chromosomes are applied in the  

The following problems that they are created by using Karush-Kuhn-Tucker 
(KKT) conditions for LQBP and LFBP respectively:  
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Now the chromosomes are applied according the following rules [15]: 

If the        component of the chromosome is equal to zero, then                                

Else                              If the         component of the chromosome is equal to zero, then 

                            Else 

Theorem 1: 

               , is the optimal solution to the problem (1) if and only if there exists                       
, such that                                     is the solution of the problem (12).   

Proof : 
 
Theproof of this theorem was given by [16].  

Theorem 2: 

           , is the optimal solution to the problem (3) if and only if there exists                        , 
such that                                   is the solution of the problem (13).   

 
Proof : 
 
Theproof of the theorem  was shown by reference [12].  

5  The steps of algorithm GA-LQBP/GA-LFBP 

The algorithm for solving the LQPP/LFPP problems by genetic algorithm is proposed as 
follow: 

Step 1: Generating the initial population. 

   The initial population includes solutions in the feasible region that are called 
achievable chromosomes. These chromosomes are generated by solving the following 
problem to the LQBP and LFBP respectively: 
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, which r is a random vector that changes the optimal solution. 

Step 2: Keeping the present best chromosome in an array. 

The best chromosome is kept in the array at the each iteration. This process 
continues till the algorithm is finished, then the best chromosome is found in the array as 
the optimal solution. 

Step 3: Crossover operation 

   Crossover is a major operation to compose a new generation. In this stage two 
chromosomes are selected randomly and they are combined to generate a new 
chromosome. In the new generation components are created by the following rules: 

1. The        component of the first child is replaced by the sum of the        components of 
parents                        . The operation sum is defined as follows: 

 

1+0=1 

 

0+1=1 0+0=0 1+1=0 

 

The other components are remained the same as the first parent.  

2. The                     component of the second child is replaced by the sum of the              
components of parents                         . The operation sum is defined as above.  The other 
components are remained the same as the second parent.  

For example, by applying the present method to the following parents, and m= 5,              
we generate the following children: 

Parents:                                        Children: 
10110 1001                                 01100 1001 
11010 0111                                 11010 1110 

Step 4: Mutation 

  The main goal of mutation in GA is to avoid trapping in local optimal solutions. 
In this algorithm each chosen gene of every chromosome, mutates as follows: 

If the value of the chosen gene be 0, it will be changed to 1 and if the value of the chosen 
gene be 1, it will be changed to 0. 

Step 5: Selection 
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  The chromosomes of the current population are arranged in descending order of 
fitness values. Then we select a new population similar to the size of the first generation. 
If the number of   the generations is sufficient we go to the next step, otherwise the 
algorithm is continued by the step3.  

Step 6: Termination 

  The algorithm is terminated after a maximum generation number or whenever:  

                                         

 

, which    is a small positive number and                are the best solutions at the n and n+1 
iteration.   The best produced solution that has been recorded in the algorithm is reported 
as the best solution to BLPP by proposed GA algorithm.  

6. Computational results 

To illustrate the feasibility and efficiency of the GA-LQBP/GA-LFBP two following 
examples are solved. The first example is LQBP and the second example is LFBP.  

Example 1: 

Consider the following linear quadratic bi-level programming problem [16].  

 

 

 

 

 

 

 

Using KKT conditions following problem is obtained: 
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It is easy to show that by relaxing the u and v variables (by fixing them on zero or 
one) in the main problem, we can obtain upper bounds for the problem which might be not 
promising as expected. By enumeration of possible relaxation the best upper bound is 
shown in Table 1.  

 

In genetic algorithm the initial population is created according to the proposed rules in 
section 4. Also the best solution is produced by the following chromosome: 

001100 

According to this chromosome and above rules, we have the following results: 

 
 

According to the Table 1, the best solution by the proposed algorithm equals to 
the optimal solution exactly. It can be seen that the proposed method is efficient and 
feasible from the results. 
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(6.31, 1.68, 4, 
0) 

19.99 (6.312, 1.687, 4, 
0) 

20  (7.25, 2.23, 4.51, 
0) 

  23.01 

    

Example 2: 

The following problem is linear fractional bi-level programming problem [13].  

 

 

 

 

 

 

Appling KKT conditions the above problem convert to this problem: 

 

 

 

 

 

 

 

 

By enumeration of possible relaxation, the best upper bound is 

 

In genetic algorithm the initial population is created according to the proposed 
rules in section 4. Also the best solution is produced by the following chromosome: 
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0011100 

Choosing                                                                                 by the proposed 
genetic algorithm, the optimal solution is obtained. The best solution is                                        
and the upper level’s objective function is 1.66 also the lower level’s objective function is 
8.66. The results are all close to the exact values in Ref [12, 21]. It is easy to see that the 
GA-LQBP/GA-LFBP algorithm is feasible according to the results. More computations 
are provided in Table 2. We use personal computer and MATLAB 7.1 for all our 
computations. 

Table 1 comparison optimal solutions and elapsed time with deferent sizes of BLPP 
Table 2: comparison optimal solutions and elapsed time with deferent sizes of BLPP                               
Prob
. No. 

#Constra
ints 

#Varia
bles 

Opti
mal 

Soluti
on 

Best  
Solution 

by BLGA   

Gap 
by  

GA-
LQBP 

Best Solution 
by reference 

[17]           

Gap 
by 

refere
nce 

1 4 2 -12 -
12 

0.15 0 -
12.01 

1.12 0.08
% 

2 3 3 8.44 8.
44 

0.25 0 8.38 2.31 0.07
% 

3 5 5 ---- -
31.
3 

1.3
5 

----      ---
- 

  ---- ---- 

     4 6        10 ---- 2.5 3.5 ----   ---- ---- ---- 
 

7. Conclusion  

  We presented a genetic method for solving linear-quadratic bi-level programming 
and linear-fractional bi-level programming problems. Using the KKT conditions LQBP 
and LFBP were converted into single level problems. Then the problems were made 
simpler to linear programming by the chromosome according to the rule. Finally the 
algorithm finds the best solution better than references. In fact the GA-LQBP/GA-LFBP 
algorithm is a novel assay for solving two important forms of bi-level programming 
problem.  
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