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Abstract: The linear system of equations Ax̃ = b̃ where A is a n× n singular crisp matrix
and the right-hand side is a fuzzy number vector is called a singular fuzzy linear system
of equations. Drazin inverse is one of the generalized inverses. In this paper the effect of
Drazin inverse in solving such systems using LU factorization is investigated. Here the com-
puting Drazin inverse and solving singular fuzzy linear systems using MATLAB software are
illustrated.
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1 Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations were first introduced by Zadeh
[28, 29]. System of simulations linear equations play major mathematics, physics, statistics.
engineering and social sciences. One of the major applications using fuzzy number arithmetic
is treating linear systems their parameters are all or partially represented by fuzzy numbers.
A n×m linear system whose coefficient matrix is crisp and the right hand side column is an
arbitrary fuzzy number vector, is called a fuzzy linear system. Friedman et al. [8] introduced
a general model for solving fuzzy linear system. In [3] the original fuzzy linear system

Ax̃ = b̃,

with the nonsingular matrix A is replaced by two n× n crisp linear systems. A fuzzy linear
system where any entry of the coefficient matrix A is a fuzzy number is called a fully fuzzy
linear system and is denoted by Ãx̃ = b̃ [25]. Solving fuzzy linear systems and fully fuzzy
linear systems is a current issue in recent years [1, 2, 24, 26, 27].

Unlike the case of the nonsingular matrix, which has a single unique inverse for all pur-
poses, there are different generalized inverses for different purposes. For some purposes, as
in the examples of solutions of linear systems, there is not a unique inverse, but any matrix
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of a certain class will do [4]. Drazin inverse is one of the generalized inverses. Drazin inverse
has important spectral properties that make it extremely useful in many applications [4, 6].
A special case of the Drazin inverse, is called the group inverse. The Drazin inverse has var-
ious applications in the theory of finite Markov chains, the study of singular differentail and
difference equations, the investigation of Cesaro-Neumann iterations, cryptograph, iterative
methods in numerical analysis, multibody system dynamics and others [4]. In the important
paper [5], Cline and Greville extended the Drazin inverse of a square matrix to a rectangular
matrix and introduced the notion of W-weighted Drazin inverse. Many properties and ap-
plications of the W-weighted Drazin inverse have been discussed later in [15, 16, 17, 18, 19].
Drazin inverse in solving consistent or inconsistent singular linear system [11], singular fuzzy
linear system [12], singular constrained linear system [13], singular linear regression [14] is
used. The system

Ax̃ = b̃

with given crisp matrix A and an arbitrary fuzzy number vector b̃, is called a singular fuzzy
linear system. Such system is converted to a crisp linear system. In this paper, the effect
of Drazin inverse is extended and in solving singular consistent or inconsistent fuzzy linear
systems is used.

In section 2, we recall some preliminaries. New results on the singular matrices are given
in section 3. Solving consistent or inconsistent singular fuzzy linear systems are investigated
in section 4. In section 5 two numerical examples are given.

2 Preliminaries

e first present some preliminaries and basic definitions which are needed in this paper. For
more details, we refer the reader to ([4, 7, 20, 21, 22, 23]

Definition 1. Let A ∈ Cn×n . The index of matrix A is equivalent to the dimension of
largest Jordan block corresponding to the zero eigenvalue of A and is denoted by ind(A) .

Definition 2. Let A ∈ Cn×n , with ind(A) = k . The matrix X of order n is the Drazin
inverse of A ,denoted by AD , if X satisfies the following conditions

AX = XA, XAX = X, AkXA = Ak,

Theorem 1. ([6]) Let A ∈ Cn×n , with ind(A) = k , rank(Ak) = r . We may assume that
the Jordan normal form of A has the form as follows

A = P

(
D 0
0 N

)
P−1,

where P is a nonsingular matrix, D is a nonsingular matrix of order r , and N is a nilpotent
matrix that Nk = ō . Then we can write the Drazin inverse of A in the form

AD = P

(
D−1 0
0 0

)
P−1.

When ind(A) = 1 , it is obvious that N = ō .

Example 1. Consider the following symmetric matrix

C =



−1 −1 −1
−1 1

3 −1
−1 −1 −1


 .
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The matrix C has the eigenvalues λ1 = 0, λ2 = 1, λ3 = − 8
3 . The index of matrix C is equal

to one, because rank(C) = rank(C2) . So Jordan normal form of matrix C has the following
form

J = PCP−1 =



[1] 0 0
0 [− 8

3 ] 0
0 0 [0]


 , P =




1
11 − 3

11
1
11

− 9
22 − 3

11 − 9
22

1
2 0 − 1

2


 . (1)

P is a nonsingular matrix. The dimension of largest Jordan block corresponding to the zero
eigenvalue of (1) is equal to one. By Theorem (1) we have

Cg = P−1JP =
1

16



−1 −6 −1
−6 12 −6
−1 −6 −1


 .

Theorem 2. ([6]) ADb is a solution of

Ax = b, k = ind(A), (2)

if and only if b ∈ R(Ak) , and ADb is an unique solution of (2) provided that x ∈ R(Ak).

Definition 3. A fuzzy number ũ in parametric form is a pair (ū(r), u(r)) of functions
ū(r), u(r), 0 ≤ r ≤ 1, which satisfy the following requirements

1. u(r) is a bounded left continuous non-decreasing function over [0, 1].

2. ū(r) is a bounded left continuous non-increasing function over [0, 1].

3. u(r) ≤ ū(r), 0 ≤ r ≤ 1.

Definition 4. Let A be an n× n matrix be factored as

A = LU,

where L is a lower triangular matrix and U is a upper triangular matrix. This factorization
is known as LU factorization.

If A is factored into L and U , a system of equations Ax = b is reduced to the form
LUx = b. Thus it can be solved by solving two triangular systems: first Ly = b for the
unknown y, then Ux = y for the unknown x.

Definition 5. For arbitrary fuzzy numbers x̃ = (x(r), x̄(r)) , ỹ = (y(r), ȳ(r)) and k ∈ R ,
we may define the addition and the scalar multiplication of fuzzy numbers as

1. x̃+ ỹ = (x(r) + y(r), x̄(r) + ȳ(r)),

2. kx̃ =

{
(kx, kx̄) k ≥ 0
(kx̄, kx) k < 0

Definition 6. The system
Ax̃ = b̃, (3)

with given crisp matrix A ∈ Cn×n , b is an arbitrary fuzzy number vector is called a singular
fuzzy system. It is shown that



α11 · · · α1n

...
. . .

...
αn1 · · · αnn






x̃1

...
x̃n


 =



b̃1
...

b̃n


 ,

wherein A = (αij) can be extended into a crisp linear system as follows
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SX = Y, (4)

where S = (sij) are determined as follows :

αij ≥ 0 ⇒ sij = αij , si+n,j+n = αij ,

αij < 0 ⇒ si,j+n = −αij , si+n,j = −αij ,

while all the remaining (sij) are taken zero, and

X =




x1
...
xn

−x̄1

...
−x̄n




, Y =




y
1
...
y
n

−ȳ1
...

−ȳn




,

and the structure of S implies that S = (sij) ≥ 0, 1 ≤ i ≤ 2n , 1 ≤ j ≤ 2n and that

S =

(
B C

C B

)
,

where B contains the positive entries of A and C contains the absolute value of the negative
entries of A , i.e., A = B − C .

Definition 7. The fuzzy linear system (3) is called a singular fuzzy linear system while (4)
is a crisp singular linear system of equations.

Corollary 1. ([22]) The fuzzy linear system (3) is consistent if and only if

rank[S] = rank[S|Y ].

Definition 8. ([30]) Let X = {xi(r),−x̄i(r)), 1 ≤ i ≤ n} denote a solution of (4). The
fuzzy number vector U = {ui(r),−ūi(r)), 1 ≤ i ≤ n} defined by

ui(r) = min{xi(r), x̄i(r), xi(1), x̄i(1)},
ūi(r) = max{xi(r), x̄i(r), xi(1), x̄i(1)},

is called a fuzzy solution of SX = Y. If (xi(r), x̄i(r)), 1 ≤ i ≤ n) , are all fuzzy numbers and
xi(r) = ui(r), x̄i(r) = ūi(r), 1 ≤ i ≤ n , then U is called a strong fuzzy solution. Otherwise,
U is a weak fuzzy solution.

3 New results on the singular matrices

In this section, some new results on the Drazin inverse are given.

Theorem 3. Let A be a singular matrix, show that

(
B C

C B

)
,

is a singular matrix, wherein A = B − C .

Proof. The same as the proof of Theorem 1 in [6].
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Corollary 2. Let (3) be a fuzzy singular fuzzy linear system. Therefore (4) is a singular
crisp linear system.

Theorem 4. The Drazin inverse of matrix

S =

(
B C

C B

)
,

is

SD =

(
D E

E D

)
, (5)

where

D =
1

2
[(B + C)D + (B − C)D], E =

1

2
[(B + C)D − (B − C)D].

Proof. Let SD be the Drazin inverse of S , it is unique. Without loss generality, suppose
that

SD =

(
D E

E D

)
,

we know SDS = SSD, hence

(
D E

E D

)(
B C

C B

)
=

(
B C

C B

)(
D E

E D

)
,

and get

BD + CE = DB + EC ,CD +BE = EB +DC. (6)

By adding and then by subtracting the two parts of (6), we obtain

(B + C)(D + E) = (D + E)(B + C) , (B − C)(D − E) = (D − E)(B − C),

also, from (
D E

E D

)(
B C

C B

)(
D E

E D

)
=

(
D E

E D

)
,

we get

(D + E)(B + C)(D + E) = (D + E) , (D − E)(B − C)(D − E) = (D − E),

and by (
B C

C B

)k (
D E

E D

)(
B C

C B

)
=

(
B C

C B

)k

,

we have

(B + C)k(D + E)(B + C) = (B + C)k , (B − C)k(D − E)(B − C) = (B − C)k.

Thus SD must have the structure given by (5). In order to calculate E and D, we have

(B + C)D = (D + E) , (B − C)D = (D − E),

and consequently we get,

D =
1

2
[(B + C)D + (B − C)D], E =

1

2
[(B + C)D − (B − C)D].
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4 Singular fuzzy linear systems

In this section on the singular fuzzy linear systems is discussed.

4.1 Shortcomings of the existing methods

In this subsection, the shortcomings of the existing direct methods for solving fuzzy linear
systems are pointed out.

1. Friedman et al. [8] considered the fuzzy linear system Ax̃ = b̃ where A is a nonsingular
matrix. They converted the n×n fuzzy linear system (3) into the 2n× 2n crisp linear
system (4). They used the ordinary inverse for solving the crisp system (4) while the
matix S be a singular matrix.

2. Asady et al. [3] replaced the system SX = Y by two n × n crisp linear systems
E(x̄ − x) = (ȳ − y) and A(x̄ + x) = (ȳ + y) when the matrices S, A = B − C and
E = B + C are nonsingular matrices and solves these systems using ordinary inverse.

3. For solving the fuzzy linear system (3) wherein A ∈ Cn×n is a nonsingular crisp matrix.
Ezzati [34] first solve the following system





a11(x1 + x̄1) + · · ·+ a1n(xn + x̄n) = (y
1
+ ȳ1),

a21(x1 + x̄1) + · · ·+ a2n(xn + x̄n) = (y
2
+ ȳ2),

...
...

an1(x1 + x̄1) + · · ·+ ann(xn + x̄n) = (y
n
+ ȳn),

and suppose the solution of this system is as

d =



d1
...
dn


 =



x1 + x̄1

...
xn + x̄n


 .

Let matrices B and C have defined as definition 6 . Now using matrix notation for
(3), He get Ax̃ = ỹ or (B − C)x̃ = ỹ and in parametric form

(B − C)(x(r), x̄(r)) = (y(r), ȳ(r)).

Then he write this system as follows:
{

Bx(r)− Cx̄(r) = y(r),
Bx̄(r)− Cx(r) = ȳ(r),

are equivalent. By substituting of x̄(r) = d− x(r) and x(r) = d− x̄(r) in the first and
second equation of above system, respectively. He get

(B + C)x(r) = y(r) + Cd,

and
(B + C)x̄(r) = ȳ(r) + Cd.

If the ordinary inverse of matrix F = B + C exist then, He can solve fuzzy linear
system (3) by solving following crisp linear systems

{
x(r) = F−1(y(r) + Cd),
x̄(r) = F−1(ȳ(r) + Cd).
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4. The authoe et.al [12] formed the normal equation for singular fuzzy linear systems.
We used of pseudoinverse and Drazin inverse for solving noemal equations.

The existing methods is incapable to use the Drazin inverse to find a solution for the non-
singular fuzzy linear systemm

(
1 1
2 −2

)(
x̃1

x̃2

)
=

(
(r, 2− r)
(0, 1− r)

)
,

and the singular fuzzy linear system




1
2 −1 − 1

2
1
2 1 1

2
0 1 1






x̃1

x̃2

x̃3


 =



(1 + r, 3− r)
(r, 2− r)
(0, 1− r)


 .

4.2 Singular fuzzy Linear systems

The singular fuzzy linear systems are divided into two parts; consistent and inconsistent. In
this subsection, indicial equations of inconsistent singular fuzzy linear systems is introduced
and the effect of Drazin inverse in solving consistent or inconsistent fuzzy linear systems are
investigated.

Theorem 5. The consistent singular crisp linear system (4) has a set of solutions and
X = SDY is the element of this set.

Proof . The crisp consistent singular linear system (4) has a set of solutions [9]. The
minimal solution is the element of this set having the least Euclidean norm. Therefore from
[12]

X = SDY,

is is the element of this set.

Corollary 3. If S is factored into L and U the system of equations (4) is reduced to the
form

LUX = Y.

Thus it can be solved by solving two triangular systems: first LZ = Y for the unknown Z,
then UX = Z for the unknown x. Using Drazin inverse Z = LDY if and only if

Y ∈ R(Ll), l = ind(L),

and X = UDZ if and only if

Z ∈ R(Uu), u = ind(U).

According to [31, 10] and properties of the Drazin inverse [32, 6], in order to obtain the
Drazin inverse the projection method solves consistent or inconsistent singular linear system
(4) through solving the following indicial equations

SkSX = SkY, k = ind(S). (7)

Therefore from [10] X = (SkS)DSkY is solution of (7).

Now, the Asady’s method is extended and on the solving inconsistent singular fuzzy
linear system is performed.
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Generalized Asady’s method. Let

S =

(
B C

C B

)
, Y =

(
y

−ȳ

)
.

We obtain the following linear system
{

B(x) + C(−x̄) = y,

C(x) +B(−x̄) = −ȳ,
(8)

Which is a crisp linear system. If (4) is consistent, by adding and then subtracting the part
of Equation (8), we obtain

{
(B + C)(x̄− x) = ȳ − y,

(B − C)(x̄+ x) = ȳ + y,

We get {
Eσ = ȳ − y,

Aδ = ȳ + y,
(9)

Wherein , E = B + C, A = B − C and δ = x̄ + x , σ = x̄ − x. By adding and subtracting
the two solutions of above systems we obtain

x̄ =
σ + δ

2
, x =

δ − σ

2
.

Corollary 4. We can solve the systems (9) using theorem 2.

4.3 MATLAB software

In this subsection, the algorithms for computing the Drazin inverse of matrix A and solving
consistent or inconsistent singular fuzzy linear systems using MATLAB software are given.
There is no function in MATLAB software for computing Drazin inverse of matrix A ∈ Cn×n.

From [33] we have
AD = Ak(A(2k+1))†Ak,

wherein k = ind(A).

Algorithm 3.1 Computing Drazin inverse of matrix A ∈ Cn×n using MATLAB software

1 - Input A is the n-by-n matrix

2 - Input k is the index of matrix A

3 - G=pinv(mpower(A,(2*k)+1))
4 - H=mtimes(mpower(A,k),G)
5 - D=mtimes(H,mpower(A,k))

The MATLAB software incorporates built in functions pinv and mpower for computing
the Moore-Penrose inverse and the matrix power respectively.

Algorithm 3.2 Sloving consistent singular fuzzy linear system using MATLAB software

1 - Input S is the 2n-by-2n matrix

2 - Input k is the index of matrix S

3 - Input Y is the 2n-vector
4 - M=mpower(S,k)
5 - D=mtimes(mtimes(M,pinv(mpower(S,(2*k)+1))),M)
6 - X=mtimes(D,Y)
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Algorithm 3.3 Sloving inconsistent singular fuzzy linear system using MATLAB software

1 - Input S is the2n-by-2n matrix

2 - Input k is the index of matrix S

3 - Input Y is the 2n-vector
4 - M=mtimes(mpower(S,k),S)
5 - D=mtimes(mtimes(M,pinv(mpower(M,(2*k)+1))),M)
6 - N=mtimes(mpower(S,k),Y)
7 - X=mtimes(D,N)

5 Numerical examples

In this section, the effect of Drazin inverse in solving singular fuzzy linear system are illus-
trated.

Example 2. Consider the following inconsistent singular fuzzy linear system


− 1

2 −1 − 3
2

−1 −1 −1
− 3

2 −1 − 1
2






x̃1

x̃2

x̃3


 =



(1 + r, 3− r)
(r, 2− r)
(0, 1− r)


 (10)

with a given subspace The index of the coefficient matrix of the extended crisp linear system
SX = Y of (10) is equal to one. Therefore

X =




1
3 + 1

3r

− 2
3 + 1

3r

− 5
3 + 1

3r

− 7
18 − 5

18r
1
9 + 2

9r
11
18 + 13

18r




.

That is satisfies in the indicial equations SSX = SY . We can give a weak fuzzy solution
for this system by definition (8).

Example 3. Consider the following consistent singular fuzzy linear system



1
2 −1 − 1

2
1
2 1 1

2
0 1 1






x̃1

x̃2

x̃3


 =



(1 + r, 3− r)
(r, 2− r)
(0, 1− r)


 (11)

with a given subspace By generalized Asady’s method we can get,

σ =




3
4

1
4 − 1

2
3
4

1
4 − 1

2
− 5

4
1
4

3
2




D 

2− 2r
2− 2r
1− r




δ =




1 1 0
−1 1 −1
1 −1 2




D 


4
2

1− r




Therefore

X =




9
4 + 3

4r

− 9
4 + 5

4r
9
4 − 5

4r

− 15
4 + 3

4r
3
4 + 1

4r

− 7
4 + 3

4r
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is a solution of the extended crisp linear system of (11). We can give a weak fuzzy solution
for this system by definition (8). The MATLAB software incorporates built in functions
lu for the LR factorization. The statement [L,U, P ] = lu(A) returns an upper triangular
matrix in U , a lower triangular matrix L with a unit diagonal, and a permutation matrix
P , such that LU = PS. Therefore we give

X =




4
2r − 4
−2r + 4

−2
r − 1
0




is a solution of the extended crisp linear system of (11). We can give a weak fuzzy solution
for this system by definition (8). is a solution of the extended crisp linear system of (11).
We can give a weak fuzzy solution for this system by definition (8).

6 Conclusions

There is a difference between the normal equations and indicial equations [11, 12]. In this
paper, the indicial equations for inconsistent singular fuzzy linear system is introduced and
the effect of Drazin inverse in solving consistent or inconsistent singular fuzzy linear stystems
are explained.
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