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ABSTRACT 

Extended Kalman filter (EKF) has been found as most widely used algorithm for state estimation 
due to its simplicity for implementation and theoretically attractive in the sense that minimizes 
the variance of the estimation error. Nevertheless it is known that EKF algorithm strictly 
assumed that the nature of the noise or errors in the system is Gaussian white noise. Yet, in real 
world this is not always true, which will lead to less accurate estimation.  However, there is an 
estimation approach that does not require the assumption of a specific noise as EKF which is 
particle filter (PF), which hypothetically can provide more accurate estimation under non-
Gaussian noise condition. Hence, this work will study and compare accuracy performance of both 
estimation algorithms in simulated non-Gaussian white noise for satellite attitude application. 

Keywords: Extended Kalman filter; Particle filter; Satellite attitude estimation; Non-Gaussian 
white noise 

1 INTRODUCTION 

Satellite attitude determination is one of the important aspects in Attitude Determination and Control 

System (ADCS) of a satellite. Satellite attitude is important to be determined in a satellite system to 

be fed back to controller in accomplishing a specific satellite mission such as Earth observation, 

communication, scientific research and many other missions. However, not all states are directly 

available may be due to malfunction sensor or as a way to obtain a substantial reduction of sensors 

which represents a cost and hardware complexity reduction. Hence, state estimation is required to 

provide the current state of the satellite attitude. 

Since decades, a great number of research works have been devoted to the problem of estimating the 

attitude of a spacecraft based on a sequence of noisy vector observations such as [1][2][3][4]. 
Different algorithms have been designed and implemented in satellite attitude estimation problem. 

Early applications relied mostly on the Kalman filter for attitude estimation. Kalman filter was the 

first applied algorithm for attitude estimation for the Apollo space program in 1960s. Due to 

limitation of Kalman filter which work optimal for linear system only, several famous new 

approaches have been implemented to deal with the nonlinearity in satellite attitude system 
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including Extended Kalman Filter (EKF) [4][5][6], Unscented Kalman Filter (UKF) [7][8][9],  Particle 

Filter (PF) [10][11] and predictive filtering [12][13]. EKF is an extended version of Kalman filter for 

nonlinear system whereby the nonlinear equation is approximated by linearized equation through 

Taylor series expansion. UKF, an alternative to the EKF uses a deterministic sampling technique 

known as the unscented transform to pick a minimal set of sample points called sigma points to 

propagate the non-linear functions. All Kalman based approaches assume the noise in the system is 

Gaussian white noise process. However, in real world this is not always true, which will lead to less 

accurate estimation.  While, PF is a nonlinear estimation algorithm that approximates the nonlinear 

function using a set of random samples without restricted to a specific noise distribution as Kalman 

based approaches, which hypothetically it will provide more accurate estimation in non-Gaussian 

white noise condition. Therefore, this work will study the performance of EKF and PF algorithms’ 

accuracy using estimation of the satellite attitude under simulated Gaussian white noise and non-

Gaussian white noise. 

In signal processing system, noise is a general term for unwanted uncertainty signal that disturb and 

affect quality of the true signal [14]. Noise may arise in signals of interest to various scientific and 

technical fields. Through literature, the most well-known noise classification in various scientific and 

technical fields is Gaussian white noise [15].  Gaussian white noise is a noise that has white properties 

and distributed with Gaussian form. However in the real world, there are many other types of noise. 

A type of noise can be classified based on its statistical properties and named after the color and its 

probability distribution function (PDF) [14]. There are three famous types of colour for random noise 

in a system which are white, pink/flicker and brown/brownian noise [16].  White noise is perhaps 

the most familiar noise in signal processing [17]. It has been used widely as a noise model in many 

physical and engineering applications [18]. A type of noise can also be characterized based on its 

probability distribution. Amongst frequently used noise distribution model in many engineering 

fields are Gaussian, exponential, lognormal, inverse power-law, and uniform distribution [16]. In 

satellite attitude field practice, the non-Gaussianity of the noise could be due to geomagnetic field 

measurement as been reported in TechSAT real data, where double-peaked distribution of the 

geomagnetic field measurement by three-axis magnetometer data was observed [19]. Errors due to 

multipath effects [20] and gravitational field fluctuations generated during warm inflation also may 

lead to the non-Gaussian distributed noise [21].       

The organization of this paper proceeds as follows. Section 2 presents the nonlinear mathematical 
model of the observer. Section 3 describes briefly the nonlinear estimation algorithms used in this 
work which are Extended Kalman Filter and Particle Filter. Section 4 presents and discusses the 
results of the estimation performance. Lastly, Section 5 provides the paper's conclusions. 

2 NONLINEAR MATHEMATICAL MODEL OF THE OBSERVER  

A nonlinear observer is a nonlinear dynamic system that is used to estimate the unknown states from 

one or more noisy measurements. Mathematically, the nonlinear observer design is described as 

follows. Given the actual nonlinear system dynamics and measurement described by continuous-

time model [22]. 

 �̇� = 𝑓(𝑥) + 𝑤                        (1)  

https://en.wikipedia.org/wiki/Signal_processing
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 𝑦 = ℎ(𝑥) + 𝑣                   (2)  

Then, the observer is modelled as   

 �̇� = 𝑓(𝑥)                  (3) 

�̂� = ℎ(𝑥)                  (4)  

In Eqs. (1)-(4), 𝑥 ∈ 𝑅𝑛 is the state vector and 𝑦 ∈ 𝑅𝑝 is the output vector, 𝑤 and 𝑣 denote the noise or 

uncertainty vector in the process and measurement respectively.  While 𝑥 and �̂� denote the 

corresponding estimates. 

In this work, the system is designed to estimate the satellite’s angular velocity (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)  by using 

Euler angles attitude (∅, 𝜃, 𝜑) measurement only. Hence the state vector is 𝑥 =

[𝜔𝑥 , 𝜔𝑦, 𝜔𝑧, ∅, 𝜃, 𝜑]𝑇 , while the state equation is 

�̇� = [�̇�𝑥 , �̇�𝑦 , �̇�𝑧, ∅̇, �̇�, �̇�]
𝑇

               (5) 

with  

�̇�𝑥 = − (
𝐼𝑧−𝐼𝑦

𝐼𝑥
) 𝜔𝑦𝜔𝑧 + 3𝜔0

2 (𝐼𝑧−𝐼𝑦)

𝐼𝑥
𝑠∅𝑐∅𝑐2𝜃             (6) 

�̇�𝑦 = − (
𝐼𝑥−𝐼𝑧

𝐼𝑦
) 𝜔𝑥𝜔𝑧 + 3𝜔0

2 (𝐼𝑧−𝐼𝑥)

𝐼𝑦
𝑠𝜃𝑐𝜃𝑐∅             (7) 

�̇�𝑧 = − (
𝐼𝑦−𝐼𝑥

𝐼𝑧
) 𝜔𝑥𝜔𝑦 + 3𝜔0

2 (𝐼𝑥−𝐼𝑦)

𝐼𝑧
𝑠∅𝑐𝜃𝑠𝜃             (8) 

 ∅̇ = [𝜔𝑥 + 𝜔0𝑐𝜃𝑠𝜑 ] + 𝑠∅𝑡𝜃[𝜔𝑦 + 𝜔0(𝑐∅𝑐𝜑 + 𝑠∅𝑠𝜃𝑠𝜑)] + 𝑐∅𝑡𝜃[𝜔𝑧 + 𝜔0(−𝑠∅𝑐𝜑 + 𝑐∅𝑠𝜃𝑠𝜑)]    (9) 

�̇� = 𝑐∅[𝜔𝑦 + 𝜔0(𝑐∅𝑐𝜑 + 𝑠∅𝑠𝜃𝑠𝜑)] − 𝑠∅[𝜔𝑧 + 𝜔0(−𝑠∅𝑐𝜑 + 𝑐∅𝑠𝜃𝑠𝜑)]        (10) 

�̇� =
𝑠∅

𝑐𝜃
[𝜔𝑦 + 𝜔0(𝑐∅𝑐𝜑 + 𝑠∅𝑠𝜃𝑠𝜑)] +

𝑐∅

𝑐𝜃
[𝜔𝑧 + 𝜔0(−𝑠∅𝑐𝜑 + 𝑐∅𝑠𝜃𝑠𝜑)]        (11) 

 

where 𝐼 = 𝑑𝑖𝑎𝑔[𝐼𝑥, 𝐼𝑦, 𝐼𝑧], �̇� = [�̇�𝑥 ,  �̇�𝑦,  �̇�𝑧], 𝜔 = [𝜔𝑥,  𝜔𝑦,  𝜔𝑧] represent satellite’s moment of 

inertia, angular acceleration and angular velocity vectors respectively. While ∅ is rotational angle 

about X-axis (roll); 𝜃 is rotational angle about Y-axis (pitch); and 𝜑 is rotational angle about Z-axis 

(yaw). In the above equation c, s and t denote cosine, sine, and tangent functions, respectively. While,  

𝜔0 is the orbital rate of the spacecraft. 

Meanwhile, the measurement equation of the observer is  

𝑦 = ℎ(𝑥) = [
∅
𝜃
𝜑

]                (12) 
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3 NONLINEAR ESTIMATION ALGORITHMS  

3.1 Extended Kalman Filter 

In this work, Extended Kalman Filter (EKF) is used as one of the methods since it is widely used 
estimation algorithm in real practice of spacecraft community and theoretically attractive in the 
sense that it minimizes the variance of the estimation error. EKF algorithm is described as below. 
[23]  

Let the continuous model in Eqs. (1) and (2) are transformed into the discrete-time model such that  
 
𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑤𝑘−1                            (13) 
 𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘                (14) 
 
Here the subscript of the variables denotes the time step, while 𝑤𝑘−1 and 𝑣𝑘 are restricted assumed 
as Gaussian distributed noises with mean zero and covariance 𝑅𝑤 and 𝑅𝑣 respectively such that  
𝑤𝑘−1~𝑁(0, 𝑅𝑤) and 𝑣𝑘~𝑁(0, 𝑅𝑣). Then, the estimated state is obtained through the following step: 
 
Step 1: Set the initial state estimate 𝑥0 = 𝑥0|0 and variance 𝑃0 = 𝑃0|0.            (15) 

Step 2: Repeat 
(i) Prediction step (priori estimate)  

• Jacobian of 𝑓(𝑥𝑘−1):  𝐹𝑘−1 =
𝜕𝑓

𝜕𝑥
|

�̂�𝑘−1|𝑘−1

                                       (16)  

• Predicted state estimate: 𝑥𝑘|𝑘−1 = 𝑓(𝑥𝑘−1|𝑘−1)                            (17)  

• Predicted covariance estimate:   𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇 + 𝑅𝑤          (18)                                                  

  (ii) Update step (posteriori estimate) 

• Jacobian of ℎ(𝑥𝑘): 𝐻𝑘 =
𝜕ℎ

𝜕𝑥
|

 �̂�𝑘|𝑘−1

                                                        (19)                                                                          

• Kalman gain: 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇[𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑣]
−1

                       (20)                                         

• Updated state estimate:       𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘[𝑦𝑘 − ℎ( 𝑥𝑘|𝑘−1)]            (21)      

• Updated covariance estimate:  𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐻𝑘]𝑃𝑘|𝑘−1             (22) 

3.2 Particle Filter 

In this work, Particle Filter (PF) is used as one of the methods since it does not require any 
assumption about the state-space or the noise of the system to be Gaussian as restricted in 
conventional method EKF. The method approximates the posterior density using a set of particles. 
PF algorithm is described as below. [24] 
 
Let the continuous-time model in Eqs. (1) and (2) are transformed into the discrete-time model as 
described in Eqs. (13) and (14) written again for convenience  
 
𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑤𝑘−1                 (23) 
𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘                   (24)  
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Here the subscript of the variables denotes the time step, while 𝑤𝑘−1 and 𝑣𝑘 are process and 
measurement noises respectively with variance 𝑅𝑤 and 𝑅𝑣. Then, the estimated state is obtained 
through the following step: 

 
Step 1: Set the number of particles 𝑁𝑠 and set the initialization 

• Initial state estimate:   𝑥0 = 𝑥0|0                             (25) 

• Initial particles:     𝜒0
𝑖 = 𝑥0|0 for  𝑖 = 1,2, ⋯ , 𝑁𝑠                         (26) 

• Initial weight: 𝑤0
𝑖 =

1

𝑁𝑠
  for  𝑖 = 1,2, ⋯ , 𝑁𝑠             (27) 

Step 2: Repeat  
   (i) Sequential importance sampling 

• Draw particles:   𝜒𝑘
𝑖 ~𝑁(𝑥𝑘; 𝑓𝑘−1(𝜒𝑘−1

𝑖 ), 𝑅𝑤) for  𝑖 = 1,2, ⋯ , 𝑁𝑠            (28) 

• Compute the weight for each particle:   

             𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖 𝑁(𝑧𝑘; ℎ𝑘(𝜒𝑘
𝑖 ), 𝑅𝑣)    for  𝑖 = 1,2, ⋯ , 𝑁𝑠                (29)                                                                  

• Calculate the total weight:    𝑇 = ∑ 𝑤𝑘
𝑖𝑁𝑠

𝑖=1                                           (30) 

• Normalize the weight:    𝑤𝑘
𝑖 =

𝑤𝑘
𝑖

𝑇
    for  𝑖 = 1,2, ⋯ , 𝑁𝑠                          (31) 

(ii) Resampling (To eliminate samples with low importance weights) 
• Initialize cumulative sum of weight (CSW) : 𝑐1 = 0                  (32) 

• Construct CSW:  𝑐𝑖 = 𝑐𝑖−1 + 𝑤𝑘
𝑖   for  𝑖 = 2,3, ⋯ , 𝑁𝑠               (33) 

• Start at the bottom of the CSW:  𝑖 = 1               (34) 

• Draw a starting point:   𝑢1~𝑈 [0,
1

𝑁𝑠
]               (35) 

• For   𝑗 = 1,2, ⋯ , 𝑁𝑠 

o Move along the CSW:  𝑢𝑗 = 𝑢1 +
1

𝑁𝑠
(𝑗 − 1)                          (36) 

o Set if 𝑢𝑗 > 𝑐𝑖 , then update 𝑖 = 𝑖 + 1                                          (37) 

o Assign particles:  𝜒𝑘
𝑗

= 𝜒𝑘
𝑖                             (38) 

o Assign weight:  𝑤𝑘
𝑗

=
1

𝑁𝑠
                                                       (39) 

 (iii) State estimation  

• Compute estimated state:  𝑥𝑘|𝑘 = ∑ 𝜒𝑘
𝑖 𝑤𝑘

𝑖𝑁𝑠
𝑖=1              (40) 

4 RESULTS AND DISCUSSION 

In this section, a simulation to study and compare the accuracy performance of EKF and PF under 

two various type of noise is carried out using MATLAB software. 

The first study is to compare the performance of EKF and PF under Gaussian white noise 

circumstances. Figure 1 shows the time series, histogram and autocorrelation plots of measurement 

corrupted by simulated Gaussian white noise for roll, pitch, and yaw angles. Histogram is plotted in 

this work to verify whether the time series is generated by Gaussian or non-Gaussian noise. 

Meanwhile autocorrelation is plotted to verify whether the color of the generated simulated noise is 

white or non-white colored.  
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(a) 

 
(b) 

 
(c) 

Figure 1: Time series, histogram and autocorrelation plots of measurement corrupted by Gaussian white 
noise for (a) roll, (b) pitch, and (c) yaw angles. 

Figure 2 shows the result of estimation by using the measurement of roll, pitch and yaw corrupted 

by Gaussian white noise. The result shows that both EKF and PF exhibit almost similar performance 

with insignificant difference and able to track all the three true angular velocities very well. However, 

by observing the Root Mean Squared Error (RMSE) values of estimated angular velocity as tabulated 

in Table 1, it is observed that the error norm of EKF is smaller than PF with 0.0014 deg/s and 0.0018 

deg/s respectively. Hence, it is concluded that under Gaussian white noise circumstances, EKF 

provide slightly more accurate estimation than PF. This could be due to capability characteristic of 

EKF to cater with Gaussian white noise.  
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 2: Comparison between estimated states via EKF and PF versus the true states under measurement 

corrupted by Gaussian white noise for (a) angular velocity X-axis, (b) angular velocity Y-axis, and (c) angular 
velocity Z-axis. 

 

0 200 400 600 800 1000
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (minutes)

A
n

g
u

la
r 

v
e

lo
c
it
y
 X

-a
x
is

 (
d

e
g

/s
)

Real and Estimated Angular Velocity around X-axis

 

 

True

EKF

PF

0 200 400 600 800 1000
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time (minutes)

A
n

g
u

la
r 

v
e

lo
c
it
y
 Y

-a
x
is

 (
d

e
g

/s
)

Real and Estimated Angular Velocity around Y-axis

 

 

True

EKF

PF

0 200 400 600 800 1000
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (minutes)

A
n

g
u

la
r 

v
e

lo
c
it
y
 Z

-a
x
is

 (
d

e
g

/s
)

Real and Estimated Angular Velocity around Z-axis

 

 

True

EKF

PF



Nor Hazadura et al / Satellite Attitude Estimation in Simulated Non-Gaussian White Noise using 
Particle Filter and Extended Kalman Filter 
 

34 

Table 1: RMSE of estimated angular velocity under measurement corrupted by Gaussian white noise. 

Algorithm 

RMSE (deg/s) 

Angular velocity  

X-axis, 𝝎𝒙  

Angular velocity               

Y-axis,  𝝎𝒚 
Angular velocity               

Z-axis,  𝝎𝒛 
Norm 

EKF 8.1167 x 10-4 8.1875 x 10-4 7.9481 x 10-4 0.0014 

PF 0.0012 9.5102 x 10-4 9.1561 x 10-4 0.0018 

 

The second study is to analyze the performance of EKF and PF under non-Gaussian white noise 
circumstances. Figure 3 shows the time series, histogram and autocorrelation plots of measurement 
corrupted by simulated non-Gaussian white noise for roll, pitch, and yaw angles. 
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(c) 

 
Figure 3: Time series, histogram and autocorrelation plots of measurement corrupted by non-Gaussian white 

noise for (a) roll, (b) pitch, and (c) yaw angles. 

 

Figure 4 shows the result of estimation by using the measurement of roll, pitch and yaw corrupted 

by non-Gaussian white noise. The result shows that both EKF and PF also able to track all the three 

true angular velocities well. However, by observing the RMSE values of estimated angular velocity as 

tabulated in Table 2, it is observed that the error norm of PF is smaller than EKF with 0.0038 deg/s 

and 0.0046 deg/s respectively. Hence, it is concluded that under non-Gaussian white noise 

circumstances, PF provides slightly more accurate than EKF. This could be due to capability 

characteristic of PF to cater with non-Gaussian densities.  
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Figure 4: Comparison between estimated states by using EKF and PF versus the true states under 

measurement corrupted by non-Gaussian white noise for (a) angular velocity X-axis, (b) angular velocity Y-
axis, and (c) angular velocity Z-axis. 

 

Table 2: RMSE of estimated angular velocity under measurement corrupted by non-Gaussian white noise. 
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shows its capability to provide better accuracy estimation compared to EKF. Hence it verifies that PF 

will provide more accurate estimation than EKF under non-Gaussian noise type.  

5 CONCLUSION 

In this paper, accuracy performance to estimate the satellite attitude under simulated non-Gaussian 

white noise condition has been studied and compared between EKF and PF algorithms. PF shows its 

ability to provide more accurate estimation in non-Gaussian white noise circumstances due to its 

nature that does not restrict the noise to be Gaussian as restricted by EKF. This verifies the 

assumption that the PF can provide more accurate estimation than EKF under non-Gaussian noise 

type. Therefore, PF could be a realistic option in practice when one considering statistical 

performances in terms of accuracy and it is strongly suggested during contingency condition of 

extremely inaccurate or large uncertainty measurements such as due to unexpected failure of the 

existing sensor which represent the non-Gaussian noise situation. However, the conventional 

method EKF is still preferred to be used for less computation on-board implementation for the real-

time application. Hence, it is suggested to ADCS designers to design a hybrid tracker that can switch 

between the EKF and PF depending on the tracking conditions and modes for more efficient on-board 

implementation. 
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