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ABSTRACT 

The main focus of this paper is to investigate the simplest non-linear Markov operators which is 
quadratic one. Study of quadratic stochastic operators (QSOs) is not an easy task as linear 
operators. Thus, researchers introduced classes of QSOs such as Volterra QSOs, strictly non-
Volterra QSOs, Orthogonal preserving QSOs, Centered QSOs and etc. However, all the introduced 
classes were not yet cover the whole set of QSOs. Thus, we introduce a new class of QSOs, namely 
b-bistochastic-Volterra QSOs or simply bV-QSOs. In this paper, the canonical form of bV-QSO 
defined on one dimensional simplex is provided. We note that, the main problem in the nonlinear 
operator theory is to study their dynamics. Thus, the set of all fixed points of bV-QSOs are then 
obtained and classified into attracting, repelling, saddle and non-hyperbolic by applying 
Jacobian matrix. This helps understanding the dynamical behaviours of bV-QSOs.  

Keywords: Quadratic Stochastic, Markov operators, b-Bistochastic QSOs, Volterra QSOs 

1 INTRODUCTION 

A quadratic stochastic operators (in short QSOs) was originally introduced by [1] which usually arise 
from the problems of population genetics (see also [2]). QSOs become one of the main sources of 
analysis in studying dynamical properties and modelling in a system which requires many 
interactions. For the sake of comprehension, let us consider the following biological ambiance. 
Assume that each individual in this population belongs precisely to one of the species (trait) which 
denoted by 𝐼 = 1,2, . . . , 𝑛. The probability of an individual is denoted by 𝑃𝑖𝑗,𝑘, where an individual in 

𝑖𝑡ℎ species and 𝑗𝑡ℎ species to cross-fertilize and produce an individual from 𝑘𝑡ℎ species. These 
coefficients 𝑃𝑖𝑗,𝑘 are known as heredity coefficients which define a QSO 𝑉. Provided initial probability 

distribution of the species, 𝑥(0) = (𝑥1
(0)
, . . . , 𝑥𝑛

(0)
), the probability distribution of the first generation, 

𝑥(1) = (𝑥1
(1)
, . . . , 𝑥𝑛

(1)
) can be found by applying the QSO as a total probability that is, 

𝑥𝑘
(1)
= ∑

𝑛

𝑖,𝑗=1

𝑃𝑖𝑗,𝑘𝑥𝑖
(0)
𝑥𝑗
(0)
=:𝑉(𝐱)𝑘 ,        𝑓𝑜𝑟 𝑎𝑛𝑦    𝑘 ∈ {1, . . . , 𝑛}. 
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Generally, the operator, 𝑉 starts from the initial state of probability distribution 𝑥(0) in a population, 
then it describes the evolution of the probability distribution of the first generation, 𝑥(1) = 𝑉(𝑥(0)), 

second generation, 𝑥(2) = 𝑉(𝑥(1)) = 𝑉(𝑉(𝑥(0)) = 𝑉(2)(𝑥(0)) and iterates continuously. These states 
of population,  

𝑥(0),        𝑥(1) = 𝑉(𝑥(0)),        𝑥(2) = 𝑉2(𝑥(0)), . . .        𝑥(𝑛) = 𝑉𝑛(𝑥(0)), 

 define a dynamical system. 

Studying QSOs in general is challenging unlike the linear case. Therefore classes of QSOs were 
introduced by researchers such as QSOs on Banach Lattices, Volterra QSOs, b-bistochastic QSOs, 
centered QSOs, Orthogonal preserving QSOs, Lebesgue QSOs, QSOs corresponding to permutations 
and etc (for example see ( [3], [4], [5], [6], [7], [8], [9]). However these classes do not yet cover the 
whole set of QSO. The introduction of this new class of QSO is to contribute the knowledge in the 
theory of non-linear operator. The book by [10] serves a comprehensive reference in the theory of 
QSOs. Recent acheivement of QSOs could be further read ( [11], [12], [13]) and the references therein. 

The concept of majorization was first introduced by Lorenz in [14] and further investigate by Hardy 
et al. in [15]. Later on, a new order called majorization was then introduced in [16] by referring the 
majorization that was popularized by [15] as classical majorization. This new order majorization 
generalize the classical majorization. Besides, it is indeed a partial order on sequence which is an 
advantage compared to classical majorization. In this paper, we consider majorization as 𝑏-order 
which is denoted as ≤𝑏. A QSO, namely bistochastic QSO, also called as doubly stochastic is defined 
in terms of classical majorization [17], where 𝑉(𝐱) ≺ 𝐱, for all 𝐱 from 𝑛 − 1 dimensional simplex. 

Most well-studied class of QSOs is known as Volterra QSO, 𝑉. Biological meaning of this operator is 
that: the child could inherit the trait from their parents only. In the study of the Volterra dynamical 
systems (acting on finite dimensional simplex) for a given biological population, the following 
question may arise: what kind of genotypes will preserve and which of them will disappear? There are 
many papers published on the investigations of discrete Volterra operators( [18], [19], [20]). We note 
that most of the studies in the theory of QSOs were done by considering 𝑉 that maps from 𝑆𝑛−1 into 
itself. 

Rozikov and Zhamilov extend the domain of mapping 𝑉 from 𝑆𝑛−1 × 𝑆𝑛−1 to itself where they 
considered 𝑉 as Volterra QSOs [21]. Motivated from these ideas, a new class of QSOs on 𝑆𝑛−1 × 𝑆𝑛−1 
is introduced, namely b-bistochastic-Volterra QSOs, or simply bV-QSO. This paper is organized as 
follows: In section 2, we introduced required definition and preliminaries results. The canonical form 
of operator bV-QSO is developed by applying the properties of b-bistochastic QSO and Volterra QSO 
simultaneously in Section 3. Section 4 is devoted to the description of all fixed point and their stability 
properties. 
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2 PRELIMINARIES 

This section will briefly explain the required definitions and preliminaries results. Let 𝑆𝑛−1 be the set 
of all probability distribution i.e, 

𝑆𝑛−1 = {𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ
𝑛|𝑥𝑖 ≥ 0,∑𝑥𝑖 = 1

𝑛

𝑖=1

} ,  (1) 

where 𝑛 ∈ ℕ∗ = {1,2, … , 𝑛}. We simply call 𝑆𝑛−1 as a simplex. Next, a mapping 𝑉 on 𝑆𝑛−1 is defined by 

𝑉(𝐱)𝑘 = ∑ 𝑃𝑖𝑗,𝑘𝑥𝑖𝑥𝑗

𝑛

𝑖,𝑗=1

, 𝑘 = 1, 𝑛̅̅ ̅̅̅ 

where 𝑃𝑖𝑗,𝑘 are heredity coefficients. The properties of heredity coefficients, 𝑃𝑖𝑗,𝑘 include non-

negativity, symmetrical and stochasticity i.e., 

𝑃𝑖𝑗,𝑘 ≥ 0, 𝑃𝑖𝑗,𝑘 = 𝑃𝑗𝑖,𝑘 , 𝑎𝑛𝑑  ∑ 𝑃𝑖𝑗,𝑘 = 1

𝑛

𝑘=1

,  (2) 

respectively, where 𝑖𝑗, 𝑘 = 1,2,… , 𝑛 and 𝑛 ∈ ℕ∗. Such mapping 𝑉 is called Quadratic Stochastic 
Operators (QSOs). Recall that, b-order was introduced as follows [5]: 

Definition 1. [5] Let us define functional 𝑢𝑘:ℝ
𝑛 → ℝ, 

𝑢𝑘(𝑥1, … , 𝑥𝑛) =∑𝑥𝑖

𝑘

𝑖=1

, 

where 𝑘 = 1,2, … , 𝑛 − 1. Let 𝐱, 𝐲 ∈ 𝑆𝑛−1, we said that 𝐱 is b-ordered by 𝒚 if, 

𝐱 ≤𝑏 𝐲 ⇔ 𝑢𝑘(𝐱) ≤ 𝑢𝑘(𝐲), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1,2, … , 𝑛 − 1. 

Remark 1. The relation is partial order which satisfies the following conditions: 

i. For any 𝐱 ∈ 𝑆𝑛−1, 𝐱 ≤𝑏 𝐱, 

ii. if 𝐱 ≤𝑏 𝐲 and 𝐲 ≤𝑏 𝐱, then 𝐱 = 𝐲, 

iii. if 𝐱 ≤𝑏 𝐲 and 𝐲 ≤𝑏 𝐳, then 𝐱 ≤𝑏 𝐳. 

Moreover, it has the following properties: 

i. 𝐱 ≤𝑏 𝐲 if and only if 𝜆𝐱 ≤𝑏 𝜆𝐲, for any 𝜆 > 0, 

ii. if 𝐱 ≤𝑏 𝐲 and 𝜆 ≤ 𝜇, then 𝜆𝐱 ≤𝑏 𝜇𝐲. 
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Remark 2. From previous remark, the majorization can be defined as following [5]: 

For any 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ 𝑆
𝑛−1, 

𝐱[↓] = (𝑥[1], 𝑥[2], … , 𝑥[𝑛]), 

where 𝑥[1] ≥ 𝑥[2] ≥ ⋯ ≥ 𝑥[𝑛] is non-increasing rearrangement of  𝐱. Let 𝐱, 𝐲 ∈ 𝑆𝑛−1, then 𝐱 is majorized 

by 𝐲 (or 𝐲 majorates 𝐱) which denote as 𝐱 ≺ 𝒚 (or 𝐲 ≺ 𝐱) if 𝐱[↓] ≤
𝑏 𝐲[↓]. Note that b-order does not 

require non-increasing rearrangement of 𝐱 or in other words, 𝐱 preserves the order. 

Hence, b-order is a generalization of the concept majorization. Moreover, not all elements in the 

simplex are somparable in terms of b-order, for instance, take 𝑥 = (
1

4
,
3

4
, 0) and 𝑦 = (

1

3
,
1

3
,
1

3
), we get 

1

4
≤

1

3
 but 

1

4
+
3

4
≥

1

3
+
1

3
. 

Example 1. Let 𝑥 = (
1

3
,
2

3
, 0) and 𝑦 = (0,0,1). From the terms of majorization mentioned, we have  

𝑥[↓] = (
2

3
,
1

3
, 0) ≺ 𝑦[↓] = (1,0,0). 

Whereas by definition of b-order, we obtain  

𝑦 = (0,0,1) ≤𝑏 𝑥 = (
1

3
,
2

3
, 0). 

Definition 2. [5] Let 𝑉 be a QSO defined on 𝑆𝑛−1, then 𝑉 is called a b-bistochastic if  

  
𝑉(𝐱) ≤𝑏 𝐱,        𝑓𝑜𝑟 𝑎𝑙𝑙    𝐱 ∈ 𝑆𝑛−1, 

 where 𝑆 is simplex and 𝑛 ∈ ℕ∗.  

The properties and dynamics of 𝑏-bistochastic QSOs were intensively studied in ( [5], [22], [23], [24], 
[25]). The most common and well known class of QSO is Volterra QSO. A QSO, 𝑉: 𝑆𝑛−1 → 𝑆𝑛−1 is called 
Volterra QSO if  

𝑃𝑖𝑗,𝑘 = 0    for    𝑘 ∉ {𝑖, 𝑗},  (3) 

where 𝑃𝑖𝑗,𝑘 is heredity coefficient, and for all 𝑖, 𝑗, 𝑘 ∈ ℕ∗. Let 𝑉(𝐱)𝑘 and 𝑉: 𝑆𝑛−1 → 𝑆𝑛−1 be a Volterra 

QSO, and 𝑉(𝐱)𝑘 = 𝐱𝑘
′ , taking into account equation (3), we can write Volterra in the following form:  

𝑥𝑘
′ = 𝑥𝑘 (1 +∑

𝑛

𝑖=1

𝑎𝑘𝑖𝑥𝑖) ,    𝑘 ∈ 𝐼, 

 where 𝑎𝑘𝑖 = 2𝑃𝑖𝑘,𝑘 − 1, for 𝑖 ≠ 𝑘, 𝑎𝑘𝑖 = −𝑎𝑖𝑘, and |𝑎𝑘𝑖| ≤ 1. 
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Now, define an operator 𝑉 that maps from 𝑆𝑛−1 × 𝑆𝑣−1 where 𝑃𝑖𝑗,𝑘

(𝑓)

 and 𝑃𝑖𝑗,𝑙

(𝑚)

 are its coefficients of 

inheritance. In biological point of view, these coefficients respresent as the probability of a female 
offspring being type 𝑘 and, respectively a male offspring being type 𝑙, when the parental pair is 𝑖, 𝑗 
(𝑖, 𝑘 = 1,2, . . . , 𝑛; and 𝑗, 𝑙 = 1,2, . . . , 𝑣). We have  

𝑃𝑖𝑗,𝑘
(𝑓)
≥ 0,    ∑

𝑛

𝑘=1

𝑃𝑖𝑗,𝑘
(𝑓)

= 1,    𝑃𝑖𝑗,𝑘
(𝑚)

≥ 0,    ∑

𝑛

𝑘=1

𝑃𝑖𝑗,𝑘
(𝑚)

= 1.  (4) 

Using these coefficients, we can define the operator 𝑉 as follows: Let 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ 𝑆
𝑛−1 and 𝐲 =

(𝑦1, … , 𝑦𝑛) ∈ 𝑆
𝑣−1  

𝑉(𝐱, 𝐲) =

{
 
 
 

 
 
 
𝑉𝐱 = (∑

𝑛,𝑣

𝑖,𝑗=1

𝑃𝑖𝑗,𝑘
(𝑓)
𝑥𝑖𝑦𝑗)

𝑘=1

𝑛

𝑉𝐲 = (∑

𝑛,𝑣

𝑖,𝑗=1

𝑃𝑖𝑗,𝑙
(𝑚)
𝑥𝑖𝑦𝑗)

𝑙=1

𝑣

.

  (5) 

One may check that 𝑉𝐱 and 𝑉𝐲 is stochastic, i.e., 𝑉 maps from 𝑆𝑛−1 × 𝑆𝑣−1 into itself. In this paper, we 

limited ourselves to 𝑛 = 2, 𝑣 = 2. Hence, in addition to (4), without the loss of generality, we may 
assume symmetrical property of heredity coefficients. If not then, we may define  

𝑃̃𝑖𝑗,𝑘 =
𝑃𝑖𝑗,𝑘 + 𝑃𝑗𝑖,𝑘

2
, 

in which symmetriness of 𝑃̃ is satisfied. 

Definition 3  A QSO 𝑉 is called bV-QSO if  

  
𝑉𝐱 ≤

𝑏 𝐱, 

 and the heredity coefficients for 𝑉𝐲 satisfy 𝑃𝑖𝑗,𝑘
(𝑚)

= 0 for any 𝑘 ∉ {𝑖, 𝑗}.  

3 DESCRIPTION OF BV-QSO ON 1D SIMPLEX 

This section aims to give a full description bV-QSOs on 𝑆1 × 𝑆1. One can see that if 𝑛 = 2, then the 
simplex is reduced to: 

𝑆1 = {𝑥 = (𝑥1, 𝑥2) ∈ ℝ
2|𝑥1, 𝑥2 ≥ 0, 𝑥1 + 𝑥2 = 1}.  

(6) 
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Theorem 1  Let 𝑉 be a QSO defined on 𝑆1 × 𝑆1. The operator 𝑉 is a bV-QSO if and only if  

𝑉(𝐱, 𝐲) = {
𝑥′ = 𝑎𝑥𝑦

𝑦′ = 𝑥𝑦 + 𝑏(𝑥 − 2𝑥𝑦 + 𝑦),
 

 

 
(7) 

where 𝑎 = 𝑃11,1

(𝑓)

, 𝑏 = 𝑃12,1

(𝑚)

= 𝑃21,1

(𝑚)

, and 𝑃11,1

(𝑚)

= 1.  

Proof. Using (5), then one gets  

𝑉(𝐱, 𝐲) =

{
 
 
 
 

 
 
 
 𝑥′1 = 𝑃11,1

(𝑓)

𝑥1𝑦1 + 𝑃12,1

(𝑓)

𝑥1𝑦2 + 𝑃21,1

(𝑓)

𝑥2𝑦1 + 𝑃22,1

(𝑓)

𝑥2𝑦2

𝑥′2 = 𝑃11,2

(𝑓)

𝑥1𝑦1 + 𝑃12,2

(𝑓)

𝑥1𝑦2 + 𝑃21,2

(𝑓)

𝑥2𝑦1 + 𝑃22,2

(𝑓)

𝑥2𝑦2

𝑦′1 = 𝑃11,1

(𝑚)

𝑥1𝑦1 + 𝑃12,1

(𝑚)

𝑥1𝑦2 + 𝑃21,1

(𝑚)

𝑥2𝑦1 + 𝑃22,1

(𝑚)

𝑥2𝑦2

𝑦′2 = 𝑃11,2

(𝑚)

𝑥1𝑦1 + 𝑃12,2

(𝑚)

𝑥1𝑦2 + 𝑃21,2

(𝑚)

𝑥2𝑦1 + 𝑃22,2

(𝑚)

𝑥2𝑦2.

 
 

(8) 

First, we assume that 𝑉 is a bV-QSO. From (6) and the properties of symmetrical we have 𝑥1 + 𝑥2 = 1 
and 𝑃12,1 = 𝑃21,1. Therefore, (8) can be simplified as below,  

𝑉(𝐱, 𝐲) =

{
 
 

 
 𝑥′ = 𝑃11,1

(𝑓)

𝑥𝑦 + 𝑃12,1

(𝑓)

(𝑥(1 − 𝑦) + (1 − 𝑥)𝑦) + 𝑃22,1

(𝑓)

((1 − 𝑥)(1 − 𝑦))

𝑦′ = 𝑃11,1

(𝑚)

𝑥𝑦 + 𝑃12,1

(𝑚)

(𝑥(1 − 𝑦) + (1 − 𝑥)𝑦) + 𝑃22,1

(𝑚)

((1 − 𝑥)(1 − 𝑦)).
 

 
(9) 

Consider the equation of 𝑥′ which described by the properties of b-bistochastic QSO. From Definition 
3, we get  

𝑃11,1

(𝑓)

𝑥𝑦 + 𝑃12,1

(𝑓)

(𝑥(1 − 𝑦) + (1 − 𝑥)𝑦) + 𝑃22,1

(𝑓)

((1 − 𝑥)(1 − 𝑦)) ≤ 𝑥

𝑥𝑦(𝑃11,1

(𝑓)

− 2𝑃12,1

(𝑓)

+ 𝑃22,1

(𝑓)

) + 𝑥(𝑃12,1

(𝑓)

− 𝑃22,1

(𝑓)

− 1) + 𝑦(𝑃12,1

(𝑓)

− 𝑃22,1

(𝑓)

) + 𝑃22,1

(𝑓)

≤ 0.

 
 

(10) 

To satisfy the above equation, we know that 𝑃𝑖𝑗,𝑘

(𝑓)

, 𝑥, 𝑦 ∈ [0,1] for 𝑖, 𝑗, 𝑘 = 1,2. Now, let 𝑥 = 0 and 𝑦 =

0, we then have from (10), 𝑃22,1

(𝑓)

≤ 0, which implies 𝑃22,1

(𝑓)

= 0. Next, let 𝑥 = 0 and 𝑦 = 1, then (10) 

becomes 𝑃12,1

(𝑓)

+ 𝑃22,1

(𝑓)

− 𝑃22,1

(𝑓)

≤ 0, which implies 𝑃12,1

(𝑓)

= 0. Then, let 𝑥 = 1 and 𝑦 = 1, 𝑃11,1

(𝑓)

− 1 ≤ 0, 

implies for any 𝑃11,1

(𝑓)

∈ [0,1] satisfy the equation. 
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Therefore, we can conclude that for b-bistochastic part, 𝑥′ = 𝑎𝑥𝑦, where 𝑎 = 𝑃11,1

(𝑓)

. 

Next, we consider the equation of 𝑦′. From (3), we have, 𝑃11,2

(𝑚)

= 𝑃22,1

(𝑚)

= 0. Then, by applying the 

properties of stochasticity and symmetrical in (2) we obtain 𝑃11,1

(𝑚)

= 1,    𝑎𝑛𝑑    𝑃12,1

(𝑚)

= 𝑃21,1

(𝑚)

. 

Therefore, we can conclude that for Volterra part, 𝑦′ = 𝑥𝑦 + 𝑏(𝑥 − 2𝑥𝑦 + 𝑦).  

Corollary 1 Let 𝑉 be a bV-QSO defined on 𝑆1 × 𝑆1. Then, the following properties hold: 

i. 𝑃12,1

(𝑓)

= 𝑃21,1

(𝑓)

= 𝑃22,1

(𝑓)

= 0.  

ii. 𝑃11,2

(𝑚)

= 𝑃22,1

(𝑚)

= 0.  

iii. 𝑃11,1

(𝑚)

= 1. 

4 FIXED POINT 

Theorem 2  Let 𝑉 be bV-QSO defined on 𝑆1 × 𝑆1, then one has the following statements: 

i. (0,0) is always the fixed point.  

ii. If 𝑎 < 1 and 𝑏 = 1, (0, 𝑦) is the fixed point for any 𝑦 ∈ (0,1].  

iii. If 𝑏 < 1, 𝑎 = 1, then (1,1) is the fixed points.  

iv. If 𝑎 = 1 and 𝑏 = 1, then (0, 𝑦) and (𝑥, 1) are the fixed points.  

Proof. We first prove i., substitute 𝑥 = 0 and 𝑦 = 0 into (7), we obtain  

𝑥′ = 0,
𝑦′ = 0.

 

Next to prove ii., we equate  

𝑎𝑥𝑦 = 𝑥, 
 

(11) 

𝑥𝑦 + 𝑏(𝑥 − 2𝑥𝑦 + 𝑦) = 𝑦.  (12) 

From (11), we have 𝑎𝑥𝑦 − 𝑥 = 0, which implies  

𝑥(𝑎𝑦 − 1) = 0. 
 

(13) 

 This equation can be divided into two cases which are:  

 Case 1:  𝑥 = 0. Let 𝑥 = 0, taking into account Equation (12), we obtain  

𝑏𝑦 = 𝑦,
𝑦(𝑏 − 1) = 0.

 
 

(14) 
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If 𝑏 = 1, then (0, 𝑦) is fixed point for any 𝑦 ∈ (0,1] hence prove ii.. If 𝑏 ≠ 1 then 𝑦 = 0 which implies 
(0,0) is the only fixed point. 

Case 2:  𝑎𝑦 = 1. Since 𝑎, 𝑦 ∈ [0,1], this implies 𝑎 = 1, 𝑦 = 1. Substitute them in to Equation (12), we 
obtain  

𝑥 + 𝑏(𝑥 − 2𝑥 + 1) = 1
𝑥 − 𝑏𝑥 + 𝑏 = 1
𝑥(1 − 𝑏) = 1 − 𝑏
𝑥 = 1.

 

Therefore, the fixed point is (1,1), hence prove iii.. 

Next, to prove iv., let 𝑎 = 1 and 𝑏 = 1, then we have below equations  

𝑥(𝑦 − 1) = 0. 
 

(15) 

𝑥(1 − 𝑦) = 0. 

 
 

(16) 

From (15), there are two cases which are:  

Case 1:  For 𝑥 = 0, taking into account (16), then (0, 𝑦) is the fixed point.  

Case 2:  For 𝑦 = 1, substitute in (16) then (𝑥, 1) is the fixed point.  

The following corollary is obtained as follows:  

Corollary 2 Let 𝑉 be bV-QSO. If 𝑎 < 1 and 𝑏 < 1, then (0,0) is a unique fixed point.  

Proof. Let 𝑎 < 1 and 𝑏 < 1. From Equation (13), we have only one case which is  

𝑥 = 0. 

This is because 𝑎𝑦 = 1 implies 𝑦 =
1

𝑎
, since 𝑎 < 1 from assumption, then 𝑦 > 1 which is a 

contradiction. 

Next, substitute 𝑥 = 0 into Equation (12), then we obtain from equation (14) which implies  

𝑦 = 0. 

Another case 𝑏 − 1 = 0 is not true since from assumption 𝑏 < 1. Thus, (0,0) is the only fixed point.  

Next, we want to study the stability of the fixed points. Consider the Jacobian matrix of the operator 
(7) at a fixed point (𝑥, 𝑦):   
 

𝐽𝑉(𝑥, 𝑦) = [
ay 𝑎𝑥

𝑦 + 𝑏 − 2𝑏𝑦 𝑥 − 2𝑏𝑥 + 𝑏]. 
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 Then find the modulus |𝐽 − 𝜆𝐼| = 0,   
 

|𝐽 − 𝜆𝐼| = |[
𝑎𝑦 − 𝜆 𝑎𝑥
𝑦 + 𝑏 − 2𝑏𝑦 (𝑥 − 2𝑏𝑥 + 𝑏) − 𝜆

]|

= |𝜆2 + 𝜆(2𝑏𝑥 − 𝑎𝑦 − 𝑥 − 𝑏) + 𝑎𝑏𝑦 − 𝑎𝑏𝑥|.
 

The following are the lists of the eigenvalues associated to the Jacobian matrix at the fixed points 
stated in Theorem 2. Then, we classify the fixed points into attracting, repelling or saddle.  

i.  For the fixed point (0,0), we have 𝜆1(𝜆2 − 𝑏) = 0. Then, we have two cases. 

a. For 𝑏 < 1 we have 𝜆1 < 1,    𝜆2 < 1 which implies attracting fixed point.  

b. For 𝑏 = 1, we have 𝜆1 < 1,    𝜆2 = 1 which implies repelling.  

ii.  For the fixed point (0, 𝑦) for 𝑦 ∈ [0,1]. Since 𝑏 = 1, we have 𝜆1,2 =
(𝑎𝑦+1)±,(𝑎𝑦−1)

2
. There are also 

two cases. 

a. For 𝑎𝑦 < 1 we have 𝜆1 < 1,    𝜆2 = 1 which implies attracting fixed point.  

b. For 𝑎𝑦 = 1, we have 𝜆1 = 1,    𝜆2 = 1 which implies non-hyperbolic.  

iii. For the fixed point (1,1). Since 𝑎 = 1, we have 𝜆1(𝜆2 + 𝑏 − 2) = 0. There are also two cases. 

a. For 𝑏 < 1 we have 𝜆1 < 1,    𝜆2 > 1 which implies saddle fixed point.  

b. For 𝑏 = 1, we have 𝜆1 < 1,    𝜆2 = 1 which implies repelling.  

iv. For the fixed point (𝑥, 1). Since 𝑎 = 1 and 𝑏 = 1 we have 𝜆1,2 =
(2−𝑥)±(𝑥)

2
, where we obtain 𝜆1 =

1,    𝜆2 < 1 which implies non-hyperbolic fixed point.  

5 CONCLUSION 

The study of non-linear Markov operator specifically quadratic stochastic operators (QSOs) are tricky 
in general setting. Therefore, many classes of QSOs were introduced. This paper introduces a new 
class of QSO namely b-bistochastic-Volterra QSO (bV-QSO) defined on one-dimensional simplex. We 
give full description of the considered class of QSO. By using the canonical form, we are able to list all 
fixed points. Then, we study the stability of all fixed points. We note that, a QSO could have various 
dynamical behavior such as non-ergodic, periodic and regular. A quick example, one can see that 
Lotka-Volterra system has periodic behavior. Thus, our result here is useful to study the dynamical 
behavior in which will be done in another work. 
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