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ABSTRACT 

Statistical distributions are important and useful to determine the appropriate distributions for 
rainfall data and predict the return levels of rainfall data. The objectives of this study are to apply 

the length–biased Weibull–Rayleigh (LBWR) distribution for fitting the rainy season rainfall data 

and to predict the return levels of the rainy season rainfall data. The LBWR distribution is 

compared with the Rayleigh, Weibull, and Weibull–Rayleigh distributions to determine the best -

fit for the rainy season rainfall data from 1957 to 2020 of Samoeng (Chiang Mai) and Mae Tha 
(Lamphun) stations in Thailand. From the Kolmogorov–Smirnov test, Anderson–Darling test and 

Akaike information criteria, the results show that the LBWR distribution is the best–fit 

distribution of the rainy season rainfall data for both stations. Based on the prediction of the 

return levels of the rainy season rainfall data, it shows that the rainy season rainfall at Samoeng 
station had higher return level than the rainy season rainfall at Mae Tha station. This could 

conclude that Samoeng district having a higher risk of flood compared to Mae Tha district. 
Therefore, the results from this study could be useful to formulate guidelines and strategies for 
flood irrigation and water management in Samoeng district. 

Keywords: Length–biased distribution, Rainfall data, Ping River, Return level, Profile 

likelihood. 

1 INTRODUCTION 

Nowadays, the world is facing with climate change, including flood and drought. The flood could give 

damage of life, habitat and economy, and they are expected to become more severe in the future [1]. 
Intergovernmental Panel on Climate Change [2] reported that in the 21st century, heavy rainfall will 
occur more frequently in many areas of the world cause the increasing risk of flooding that 
contributes damaging infrastructure and economy. In many areas of Thailand, there were several 

extreme floods occurred. For example, the northern and central regions that had heavily flooded in 

2011. These floods resulted in damage of agricultural, industry and economy sectors [3]. Upper Ping 
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River basin consists of Chiang Mai and Lamphun provinces. Both areas are still experiencing 

continuous flooding, which severely affects the agricultural and industry in the areas. The major 

factor causing of flood is extreme rainfall. Therefore, an approach that will prevent or reduce the 

severity of flood is to monitor the areas using flood irrigation [4] or to introduce suitable models for 
determining the return levels of the highest rainfall during the return period [5].  

Rainfall data is often right–skewed and in some situations, outlier or extreme values can occur 

because of heavy rain events [6]. Thus, various researchers have tried to fit several models for rainfall 

data [7, 8, 9]. Common statistical distributions that have been applied to model rainfall data are 

Gumbel, Weibull, gamma, lognormal, Pearson type III, Frechet, and generalized extreme value 
distributions, among others  [8]. Several authors [7, 9] claimed that the Weibull distribution could be 

a best choice for fitting rainfall data because it is a heavy–tailed distribution. However, the Weibull 

distribution has been developed in order to fit hydrological data. For example, Ganji et al. [10] 
developed the Weibull–Rayleigh distribution, which is mixed distribution, and suggested that it could 

provide a better fitting for flood data compared with the beta–Pareto, generalized exponential, 

Weibull, three–parameter Weibull, and Pareto distributions. In their work, they did not apply the 

Weibull–Rayleigh distribution to fit rainfall data. Thus, we would like to investigate whether the 

Weibull–Rayleigh distribution could be further developed to fit rainfall data. 

Rainfall data is categorised as environment data that are usually non–random and non–replicated 

which can lead to bias recorded observations [11]. A weighted distribution is a common method using 

when the probabilities of observations recorded from a random process are not equal. The weighted 

distribution was first proposed by Fisher [12] and further extended by Rao [13] as the length–biased 

distribution. Various researchers have used the length–biased distribution to improve the fitting of a 

distribution such as the length–biased weighted generalized Rayleigh distribution [14], the length–
biased weighted Weibull distribution [15] and the length–biased beta distribution [16] were 

generalized from the length–biased distribution. These improved distributions were widely applied 

to fit data in a variety of fields, such as reliability, lifetime, and engineering [14, 16]. However, as far 

as we know, the length–biased distribution is rarely used to hydrological data. There are a few studies 

on applying the length–biased distribution to hydrological data e.g., the length–biased weighted 

Weibull and the length–biased Weibull–Rayleigh (LBWR) distributions [17]. In our previous study 

[17], we modified the Weibull–Rayleigh distribution using the length–biased distribution and 

suggested that the LBWR distribution could provide more efficiency of fitting to flood datasets than 
the Rayleigh, Weibull, Pareto, and Weibull–Rayleigh distributions. Therefore, it might be potential to 

apply the LBWR distribution to fit rainfall data. 

Among four distributions, Rayleigh, Weibull, Weibull–Rayleigh and LBWR distributions, we are going 

to find the best–fit distribution for the rainy season rainfall data, i.e. collected during June to 

September in every year, from the Hydrology and Water Management Center for the Upper Northern 
Region of Thailand. The data were collected from 1957 to 2020 at Samoeng and Mae Tha stations. 
Moreover, we will predict the return levels of the rainy season rainfall data to identify the risk of 
flooding in particular areas. The article is organized as follow. Section 2 describes the study area and 
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the methodology that we use in studying. Section 3 shows the results and discussion of an appropriate 

distribution to the rainy season rainfall data and the return levels of the rainfall data. Conclusion of 

this study is presented in Section 4. 

2 MATERIAL AND METHODS 

2.1 Study Area 

Samoeng District, Chiang Mai Province, and Mae Tha District, Lamphun Province, (Figure 1) were 
chosen at study cases, since floods were frequently occurred in both areas. Monthly rainfall data of 

Samoeng and Mae Tha stations from January 1957 to December 2020 were obtained from the 
Hydrology and Water Management Center for the Upper Northern Region of Thailand [18]. This study 

handled the missing monthly rainfall data by replacing it with the average of the past five years of 
such month. Then, the monthly rainfall data were classified into seasonal rainfall data using the Thai 

seasonal criterion determined by Meteorological Department of Thailand [19]: the summer season 

(February to May), the rainy season (June to September) and the winter season (October to January 
of the following year). Therefore, this study uses only the rainy season rainfall data to determine 

appropriate distributions for rainfall data and predict the return levels of rainfall data. 

 

Figure 1: Location of two stations on upper Ping River in northern Thailand. 
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2.2 The Length–Biased Weibull–Rayleigh (LBWR) Distribution 

The LBWR distribution was presented by Chaito and Khamkong [17]. This distribution improved 

Weibull–Rayleigh distribution by using the length–biased distribution, which is special case of 

weighted distribution. The probability density function (pdf) and cumulative distribution function 

(cdf) of the LBWR distribution are given by 

𝑓𝐿(𝑥) =  
𝛼𝑥2

𝛽𝛿2√2𝛽𝛿2Γ (1 +
1

2𝛼
)

(
𝑥2

2𝛽𝛿2)

𝛼−1

exp [− (
𝑥2

2𝛽𝛿2)

𝛼

] ,     𝑥 > 0,    𝛼, 𝛽, 𝛿 > 0, ( 1 ) 
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where 𝛼 is a shape parameter,  𝛽 and 𝛿 are scale parameters,  Γ(𝛼) = ∫ 𝑢𝛼−1𝑒−𝑢𝑑𝑢
∞

0
 is a gamma 

function and  γ(𝛼, 𝑥) = ∫ 𝑢𝛼−1𝑒−𝑢𝑑𝑢
𝑥

0
 is the lower incomplete gamma function.  

2.3 Maximum Likelihood Estimation 

This study was conducted by using maximum likelihood estimation for estimating parameters of the 
LBWR distribution. Maximum likelihood estimation considers random sample. Let   𝑋1, 𝑋2, … , 𝑋𝑛  be 

a random sample from the LBWR distribution with parameter vector 𝚯 = (𝛼, 𝛽, 𝛿),  𝑥1, 𝑥2, … , 𝑥𝑛  be 
the sample values. The likelihood and log–likelihood functions are given by 
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( 4 ) 

By differentiating (4) with respect to 𝛼, 𝛽, and 𝛿,  we obtain 

𝜕 log 𝐿(𝚯)
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𝜕 log 𝐿(𝚯)
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where 𝜓(𝑦) =
𝑑

𝑑𝑦
log Γ(𝑦) =

Γ/(𝑦)

Γ(𝑦)
 is a digamma function. The maximum likelihood estimators of 

parameters α, β, and δ can be estimated by setting (5), (6) and (7) equal to zero and solving them 
simultaneously. To obtain the maximum likelihood estimation, we used mle function in stats4 

package in the R statistical software [20]. 

2.4 Model Selection Criteria 

Determine the appropriate distribution for the rainy season rainfall data is difficult because the data 
depend on spatial and temporal factors. For the upper Ping River, the rainy season rainfall data was 

found to be right–skewed with outliers [6]. We consider four different distributions, namely, Rayleigh, 

Weibull, Weibull–Rayleigh and LBWR distributions. To select the appropriate distribution for the 

rainy season rainfall data, we use Kolmogorov–Smirnov (KS) test, Anderson–Darling (AD) test [21] 

and Akaike information criterion (AIC) [22]. The best-fit distribution for the rainy season rainfall data 

can be selected from minimum values of KS test, AD test and AIC. The KS test is defined as 

KS = Sup
𝑥

[𝐺0(𝑥) − 𝐺(𝑥)], ( 8 ) 

where 𝐺0(𝑥) is empirical distribution function of the observed data and 𝐺(𝑥) is the cdf of the 
hypothesized distribution. The AD test is given by 

AD = −𝑛 −  
1

𝑛
∑ (2𝑖 − 1)[ln 𝐺(𝑥𝑖) + ln(1 − 𝐺(𝑥𝑛−𝑖+1))]𝑛

𝑖=1 , ( 9 ) 

where 𝐺(𝑥) is the cdf of the hypothesized distribution, 𝑛 is the sample size and 𝑥𝑖 are the ordered 
data. The AIC is written as 

AIC = 2𝑘 − 2 log 𝐿(𝚯̂), ( 1 0 ) 

where 𝑘 is the number of parameters and 𝐿(𝚯̂) is the maximized value of the likelihood function. 

2.5 Return Level 

Once we find the appropriate distribution for the rainy season rainfall data, we also use it to predict 
the return levels of the data. If the appropriate distributions of the rainy season rainfall data are 

known, then the return levels can be calculated via these cumulative distribution functions [23]. The 

return period  (𝑇) is defined as the value which is exceeded average once every interval of time 𝑇 

with a probability 
1

𝑇
 [23]. The 𝑇 − 𝑦𝑒𝑎𝑟 return level of the LBWR distribution can be calculated as 

follows:  
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𝑥𝑇 = √2𝛽̂𝛿̂2𝐴
1
𝛼̂, ( 1 1 ) 

where 𝐴 =  𝛾−1 [1 +
1

2𝛼̂
, Γ (1 +

1

2𝛼̂
) (

1

𝑇
)], when 𝛾−1 is inverted of the lower incomplete gamma 

function and  Γ  is the gamma function,  𝑇  is return period, 𝛼̂ is a shape parameter, and 𝛽̂ and 𝛿 are 
scale parameters, which were estimated via maximum likelihood estimation method.  

Profile likelihood method is used for calculating the confident interval of return levels in this study. 
The profile likelihood method assumes that let  𝑋1, 𝑋2, … , 𝑋𝑛 are the independent random variables, 
𝜽̂0 is the maximum likelihood estimator of the d-dimensional parameters of model  𝜽0 = (𝜽(1), 𝜽(2)), 

where 𝜽(1) corresponds the interesting component in 𝜽0 and 𝜽(2) corresponds the remaining 
component in 𝜽0 [24]. Then, under suitable regularity conditions and for large 𝑛, the deviance 

function is 

𝐷𝑝(𝜽(1)) = 2{ℓ(𝜽̂0) − ℓ𝑃(𝜽(1))}  ~ 𝜒𝑘
2, ( 1 2 ) 

where ℓ(𝜽̂0) is the maximized value of log–likelihood for the model and  ℓ𝑃(𝜽(1)) is the maximized 

value of log–likelihood for 𝜽(1), ℓ𝑃(𝜽(1)) = max
𝜽(2)

ℓ (𝜽(1), 𝜽(2)) is the profile log–likelihood for 𝜽(1). For 

the profile likelihood confidence interval of return levels of the LBWR distribution, we partition the 

vector 𝜽 = (𝑥𝑇 , 𝛼, 𝛿) into two components (𝜽(1), 𝜽(2)), where 𝜽(1) represents 𝑥𝑇 and 𝜽(2) represents 

𝛼 and 𝛿.  Then, the profile log–likelihood is given by 

ℓ𝑃(𝜽(1)) = max
𝛼,𝛿

ℓ (𝑥𝑇 , 𝛼, 𝛿). ( 1 3 ) 

Therefore, the profile likelihood of  1 −  𝜔 confidence interval of 𝑥𝑇  can be written as  

𝐶𝜔 = {𝑥𝑇: 2 [ℓ(𝛼, 𝛽, 𝛿) −  max
𝛼,𝛿

ℓ (𝑥𝑇 , 𝛼, 𝛿)] ≤ 𝐶1−𝜔} , ( 1 4 ) 

where 𝐶1−𝜔 is 1- ω quantile of the chi–square distribution with one degree of freedom and ω is the 

significance level. 

3 RESULTS AND DISCUSSION 

3.1 Model Selection Criteria of Rainy Season Rainfall Data 

The results (in Table 1) on an analysis of the rainy season rainfall data from 1957 to 2020 of two 
stations found that the Samoeng gauge station has an average of the rainy season rainfall at 773.60 
mm. and a minimum and maximum of the rainy season rainfall data are 272.40 and 1920.40 mm., 
respectively. For the Mae Tha gauge station, an average of the rainy season rainfall data is 698.20 mm. 
and a minimum and maximum are 381.50 and 1933.60 mm., respectively. The rainy season rainfall 

data of both stations are right–skewed. Figure 2 presents the outlier of the rainy season rainfall data. 
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Samoeng station has outlier in 1963 (1562.50 mm.) and 1994 (1920.40 mm.) while the Mae Tha 

station has outlier in 1958 (1933.60 mm.). 

 

Table 1 : Descriptive statistics of the rainy season rainfall data for Samoeng and Mae Tha stations. 

Station 
Rainfall (mm.) 

Min. Max. Q1 Q2 Q3 Mean SD Skewness Kurtosis 

Samoeng 272.40 1920.40 608.10 747.60 896.60 773.60 266.47 1.5241 7.7506 

Mae Tha 381.50 1933.60 567.0 674.90 800.00 698.20 221.20 2.6457 16.2500 

mm. denotes millimeter; Qi denotes the ith quartile of data and SD denotes the standard deviation 

 

 

Figure 2: Boxplot of the rainy season rainfall data for Samoeng and Mae Tha stations . 

 

Table 2 and Figure 3 show analysis of the appropriate distributions for the rainy season rainfall data 
of Samoeng and Mae Tha stations. The result shows that the LBWR distribution is the best–fit 
distribution for the rainy season rainfall data of both stations due to minimum values of the KS test, 
AD test and AIC. 

  



T. Chaito et al. / Application of the Length–Biased Weibull–Rayleigh Distribution to Fit… 

295 

Table 2: Summary of selected distributions using the KS test, AD test and AIC for the rainy season rainfall data 

in Samoeng and Mae Tha stations. 

Station Distribution KS AD AIC 

Samoeng 

Rayleigh 0.2392 5.3347 913.6498 

Weibull 0.1203 1.7352 900.4815 

Weibull– Rayleigh 0.1206 1.7364 902.4815 

LBWR 0.1098 1.3798 898.6661 

Mae Tha 

Rayleigh 0.2470 7.3541 896.6363 

Weibull 0.1402 2.8046 880.8026 

Weibull– Rayleigh 0.1403 2.8083 882.8026 

LBWR 0.1284 2.2462 876.8741 

 

Based on the minimum values of the KS test, AD test and AIC in Table 2, the results present that the 
LBWR distribution is the best–fit distribution for this data. In contrast, due to higher values of the KS 

test, AD test and AIC, the three other distributions are not suitable for this data. Moreover, in Figure 

3, the plots for theoretical densities of four distributions also supported the KS test, AD test and AIC 
values in Table 2. Specifically, the theoretical density (green line) of the Rayleigh distribution is the 

least suitable fitting and the theoretical densities of the Weibull distribution (red line) and the 
Weibull–Rayleigh distribution (blue line) which are similar, are also not suitable in fitting this data. 
On the other hand, theoretical density of the LBWR distribution (purple line) is the most suitable in 
fitting this data because the histograms of the rainy season rainfall data from two stations are similar 
to its plots. Overall, the LBWR distribution outperforms the three distributions in fitting rainy season 
rainfall data. Furthermore, estimated parameters of the LBWR distribution using maximum 

likelihood estimation for the rainy season rainfall data are presented in Table 3. All estimated 

parameters will be used to predict the return levels of the rainy season rainfall data. 
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Figure 3: Histograms and theoretical densities (the left column) and empirical and theoretical cdfs (the right 
column) for the rainy season rainfall data. Figure 1(A) represents results for the data collected from Samoeng 

station and Figure 1(b) represents results for the data collected from Mae Tha station. The labels indicate 
different distributions. The horizontal axis presents the rainy season rainfall data (mm.). The vertical axis 

presents densities in the left column while the vertical axis presents cdfs in the right column. 

 

Table 3: Estimated parameters of the LBWR distribution for the rainy season rainfall data in  

Samoeng and Mae Tha stations. 

Station 𝜶̂ 𝜷̂ 𝜹̂ 

Samoeng 1.2298 151.8907 41.9395 

Mae Tha 1.2713 147.1836 38.6006 
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3.2 Return Levels of Rainy Season Rainfall Data 

The predictions for the return levels at 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50 and 100 return periods 
(years) of the rainy season rainfall data in Samoeng and Mae Tha stations are reported in Table 4. 
The return levels can be predicted via estimated parameters using the maximum likelihood 
estimation in Table 3. Let 𝑇 be a return period. The equation to predict the return level (𝑥𝑇) of 

Samoeng station is 

𝑥𝑇 = √2 × 151.8907 × (41.9395)2 × 𝐴
(

1
1.2298

)
, ( 1 5 ) 

where 𝐴 =  𝛾−1 [1 +
1

(2×1.2298)
, Γ (1 +

1

(2×1.2298)
) (

1

𝑇
)]. For Mae Tha, the equation to predict the return 

level (𝑥𝑇) is 

𝑥𝑇 = √2 × 147.1836 × (38.6006)2 × 𝐴
(

1
1.2713

)
, 

( 1 6 ) 

where 𝐴 =  𝛾−1 [1 +
1

(2×1.2713)
, Γ (1 +

1

(2×1.2713)
) (

1

𝑇
)]. 

Based on the results in section 3.1, the estimated parameter values of the LBWR distribution in Table 

3 are used to calculate the return levels of the rainy season rainfall data collected at Samoeng and 
Mae Tha stations. The results on an analysis of the return levels for this data in Table 4 present that 

the return levels of rainy season rainfall collected at Samoeng station are higher than the return levels 
at Mae Tha station in all considered return periods. Furthermore, the result shows that the return 
levels of the rainy season rainfall data from two stations are increasing significantly from periods 1 
to 10 and they are increasing slowly after period 10. Among all the periods that we considered, at 
period 2, the return levels of the rainy season rainfall data from two station are closest to the average 
of the rainy season rainfall data (773.60 mm. and 698.20 mm., respectively). This could suggest that 
this model is a suitable choice for prediction of the rainy season rainfall data at period 2. 
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Table 4: The estimates of return levels and 95% confidence intervals of return levels based on  

the profile likelihood method for the rainy season rainfall data in Samoeng and Mae Tha stations. 

Return 

period 

Samoeng  Mae Tha 

Lower 
confidence 

limit 

Return 
level 

Upper 
confidence 

limit 
 

Lower 
confidence 

limit 

Return 
level 

Upper 
confidence 

limit 

1 306.82 331.01 363.45  283.02 304.56 333.66 

2 701.93 757.28 831.51  633.83 682.07 742.24 

3 818.35 882.88 969.42  735.85 791.86 867.52 

4 885.59 955.42 1049.07  794.56 885.04 936.74 

5 932.11 1005.62 1104.19  835.10 898.67 984.53 

10 1055.82 1139.08 1250.73  942.58 1014.33 1111.25 

15 1118.04 1206.20 1324.43  996.47 1072.33 1174.79 

20 1158.90 1250.28 1372.84  1031.82 1110.36 1216.45 

30 1212.74 1308.37 1436.61  1078.32 1160.41 1271.28 

40 1248.68 1347.15 1479.19  1109.33 1193.78 1307.84 

50 1275.45 1376.02 1510.90  1132.40 1218.60 1335.04 

100 1353.28 1459.10 1603.10  1199.41 1290.71 1414.03 

4 CONCLUSION 

Determine appropriate distributions for rainfall data during the rainy season can predict the return 
levels of the rainy season rainfall data which can be useful for flood irrigation planning and efficient 
water management. This study aims to find an appropriate distribution for the rainy season rainfall 
data. Comparing the LBWR distribution with Rayleigh, Weibull and Weibull–Rayleigh distributions, 

the results showed that the LBWR distribution is outperformed and suitable in fitting the rainy 
season rainfall data. Using the LBWR distribution, the return levels of the rainy season rainfall data 
showed that the levels at Samoeng station might be higher than the levels at Mae Tha station. This 
can imply that Samoeng district may have a higher risk compared to Mae Tha district. Therefore, the 
LBWR distribution can be another choice for modelling of the rainy season rainfall data. 
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