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ABSTRACT 

Lung diseases are a leading cause of global mortality. Timely and accurate diagnosis is essential, 
yet manual interpretation of chest X-rays by radiologists can be time-consuming and prone to 
errors. This study presents an automated system for lung disease classification using the YOLOv8 
deep learning model. The proposed approach utilizes a diverse dataset of 21,165 chest X-ray 
images categorized into four classes: COVID-19, viral pneumonia, lung opacity, and normal. Fine-
tuning of the YOLOv8-cls model using transfer learning and advanced data augmentation 
techniques resulted in a high classification accuracy of approximately 95% across all disease 
classes, while maintaining real-time performance. Confusion matrix analysis demonstrated 
robust performance in identifying each condition, with COVID-19, normal, viral pneumonia, and 
lung opacity cases correctly identified 97%, 97%, 99%, and 93% of the time, respectively. The 
results validate the YOLOv8 model’s adaptability and reliability for automated lung disease 
detection, offering potential improvements to clinical workflows and patient care through 
efficient screening tools. Future work should focus on further optimizations and extending 
datasets to under-represented patient groups to enhance model inclusiveness and robustness. 

Keywords: Automated Diagnosis, Chest X-Ray, Deep Learning, Lung Disease Classification, 
YOLOv8. 

1 INTRODUCTION 

Lung diseases are significant causes of illness and death worldwide. According to studies, lung cancer, 
chronic obstructive pulmonary disease, pneumonia, and tuberculosis rank among the leading causes 
of death related to the lungs [1], [2]. Early and accurate diagnosis of lung diseases is crucial for 
enhancing patient outcomes and survival rates [3], [4]. However, their diagnosis typically involves 
complex visual interpretation of medical images like X-rays or CT scans by radiologists, which can be 
a time-intensive, highly subjective process that is susceptible to errors [5]. 

Recent advances in artificial intelligence, especially deep learning techniques, have paved the way for 
automated analysis of medical images to assist diagnosis. This project utilizes YOLOv8 [6], the latest 
version of the YOLO (You Only Look Once) framework, for real-time object detection. YOLOv8 
features an anchor-free architecture to simplify processing and features extraction [6]. It employs 
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robust data augmentation, including mosaic augmentation, to enhance model generalization [6]. 
YOLOv8 will be leveraged to develop an automated system for classifying lung diseases from chest 
X-ray images. The images will be categorized into four classes – COVID-19 infection, lung opacity, 
viral pneumonia, and normal. The model will be implemented in PyTorch and evaluated on metrics 
like classification accuracy, precision and recall [6]. 

2 RELATED WORKS 

There is a substantial body of literature on the utilization of deep learning techniques in medical 
imaging for the classification of lung diseases. This section reviews key related works, focusing on 
the datasets, models, and outcomes, as well as limitations that this study aims to address. 

2.1 Explainable AI for Lung Disease Detection 

[7] proposed an explainable artificial intelligence (XAI) model that identifies local signs and 
diagnoses respiratory conditions using radiographic chest imagery. They used a dataset of 4,237 
images, with 2,896 COVID-19 images and 1,341 normal images. The authors developed a three-phase 
approach: (i) training a CNN model for classification, (ii) generating local features using the LIME XAI 
method, and (iii) training another CNN model using the local discriminant features. The fusion of 
local and global features resulted in improved accuracy of 99.6% with fewer epochs compared to the 
base model. 

2.2 Multimodal Approach for COVID-19 Classification 

[8] presented a multimodal, automated approach for the categorization of COVID-19 conditions into 
three clinical types: normal, pathogenic, and COVID-19, utilizing real-time reverse transcriptase 
polymerase chain reaction (RT-PCR) test data and online chest X-ray datasets. The authors used 
machine learning and convolutional neural networks (CNN) to process the RT-PCR and chest X-ray 
image datasets, respectively. The suggested techniques provided dependable categorization of 
COVID-19 conditions for clinical judgments, with a global precision of 91.58% on the RT-PCR dataset 
using the random forest classifier, and an accuracy of 95.46% on enhanced sharpened images using 
the CNN model. 

2.3 Chest Imaging Classification in Mycoplasma Pneumoniae Pneumonia 

[9] prospectively investigated if the classification of chest imagery in Mycoplasma pneumoniae 
pneumonia (MPP) has a correlation with its clinical characteristics and results. The research included 
1,401 children with MPP who were admitted to the hospital between January 2019 and December 
2021. The results of the imaging were classified as bronchopneumonia and consolidation/atelectasis 
based on X-ray interpretations, and as bronchopneumonia, consolidation/atelectasis, bronchiolitis, 
and mosaic pattern based on the analysis of computed tomography (CT) scans. The 
consolidation/atelectasis group had the most intense clinical symptoms and outcomes, followed by 
the bronchiolitis group. The study demonstrated that diverse categorizations of imaging correspond 
to varying clinical characteristics and results, highlighting the value of an imaging-based 
classification system). 
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2.4 Summary 

The key gaps highlighted in the related works include: (a) lack of large consolidated benchmarking 
datasets encompassing diverse patient populations; (b) limited reporting of computational efficiency 
metrics; and (c) difficulty extending classification complexity without substantially impacting 
accuracy or speed. This research aims to address these limitations by evaluating the optimized 
YOLOv8 model for multi-disease chest X-ray classification using available public datasets. By 
leveraging the state-of-the-art YOLOv8 architecture and advanced training techniques, this study 
seeks to achieve high accuracy while maintaining computational efficiency, contributing to the 
development of clinically viable automated screening tools for lung disease detection. 

3 METHODOLOGY 

This part outlines the suggested approach for categorizing lung diseases utilizing deep learning 
methods. The dataset, preprocessing steps, model architecture, and training process are presented 
in detail. 

3.1 Data Preparation 

The dataset utilized in this research was obtained from an open online repository hosted on Kaggle 
[10]. It contains a total of 21,165 chest X-ray images collected and uploaded by [10] for public access. 
The images were annotated into four different classes: normal (10,192 images), lung opacity (6,012 
images), COVID-19 (3,616 images) and viral pneumonia (1,345 images). This distribution provides a 
comprehensive representation of various lung conditions, with a substantial number of samples for 
each class. Sample images from each class are shown in Figure 1 to provide a visual representation. 

          

Figure 1 : Sample images from the dataset showing from left (a) normal, (b) viral pneumonia, (c) lung opacity, 
and (d) COVID-19 chest X-rays. 

As noted by [11], access to large labelled datasets is extremely valuable for training robust deep 
learning models. However, models can struggle to effectively learn from raw images without 
adequate preprocessing and augmentation. 

The original resolution of the chest X-ray images was 299x299 pixels. While higher resolutions 
contain more detailed visual information, they also increase computational requirements for model 
training. As suggested by [12], resizing the input images can improve efficiency. Specifically, all 
images were resized to 224x224 pixels using bilinear interpolation prior to training. This reduced 
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dimensionality enables faster optimization while retaining the key visual features needed for 
classification [13]. 

3.2 Model Architecture 

The deep learning model utilized for this image classification research is YOLOv8-cls [14]. As 
explained by [12], the YOLO (You Only Look Once) framework has been instrumental in advancing 
real-time object detection through a streamlined model architecture. YOLOv8 represents the current 
state-of-the-art YOLO version, achieving an optimal balance of accuracy and efficiency for diverse 
vision tasks [14]. Specifically, the ‘cls’ variant adapts the core YOLOv8 topology for targeted image 
categorization applications by simplifying unnecessary components [14]. Retaining key attributes 
like the CSPDarknet53 backbone, improved neck, and sophisticated augmentations, YOLOv8-cls 
delivers cutting-edge image classification performance crucial for this research [14]. 

The YOLOv8-cls model was initialized with weights pretrained on the ImageNet dataset [15]. 
ImageNet is a large-scale database containing over 14 million high-resolution images spanning 
thousands of object categories, organized according to the WordNet hierarchy [16]. By pretraining 
on this extensive dataset, the YOLOv8-cls model learns rich feature representations that can be 
effectively transferred to the task of lung disease classification. The pretrained YOLOv8-cls model has 
demonstrated impressive performance on the ImageNet dataset [16]. 

To adapt the pretrained YOLOv8-cls model to the specific task of lung disease classification, the model 
was fine-tuned on the chest X-ray dataset [17]. This transfer learning approach allows the model to 
leverage the knowledge gained from pretraining on ImageNet while tailoring its feature extraction 
and classification capabilities to the unique characteristics of chest X-ray images [17]. During fine-
tuning, the model's weights were updated using the chest X-ray dataset, enabling it to learn disease-
specific patterns and features. Augmentations were applied during the fine-tuning process to 
enhance the capacity of the model to generalize and its resilience to variations in the input data. The 
dataset was split into training, validation, and test partitions, with a ratio of 80%, 10%, and 10%, 
respectively. This split guarantees that the model’s effectiveness can be assessed on data it hasn’t 
encountered before, offering a trustworthy evaluation of its categorization precision and ability to 
generalize. 

3.3 Training Workflow 

Histogram equalization was utilized to improve image contrast [18]. Sample images before and after 
the enhancement are shown in Figure 2 to provide visual representation. 

                 

Figure 2 : Sample images before and after enhancement. Left: original, Right: enhanced. 
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Redistributing intensity values expands detail in low-information areas. Key training parameters 
configured include epochs of 200 based on model convergence behaviour analysis, batch size of 64 
for efficiency on available hardware, initial learning rate of 0.01 enabling adequate model update 
from gradients, and final learning rate of 0.001 for refined tuning [13]. 

3.4 Evaluation Approach 

The overall dataset was split into training, validation, and testing sets in an 80/10/10 ratio as 
mentioned earlier. The validation set comprising 10% of images was utilized during training to 
monitor model performance and support selection of the optimal parameters [13]. Model 
checkpoints were saved and the checkpoint with the highest validation accuracy, named best.pt, was 
chosen. The test set was retained solely for final model evaluation. 

Model validation was based on top-1 and top-5 accuracy [19]. Top-1 accuracy measures the 
percentage of test images for which the model's top predicted class matches the ground truth label. 
Top-5 accuracy reports if the true label is among the model's top 5 predicted classes [19]. Using both 
metrics provides insights into the preciseness and generalization capacity of classifications [12]. 

4 RESULT AND DISCUSSION 

This part showcases the experimental outcomes of the proposed lung disease classification method. 
The model's performance is evaluated using various metrics, and the outcomes are benchmarked 
against state-of-the-art techniques. The impact of different factors on the model's performance is also 
discussed, along with the study's limitations and potential future research directions. 

4.1 Model Performance Analysis 

The model achieved very strong classification capabilities as evidenced by the training loss, 
validation loss, top-1 accuracy, and top-5 accuracy over epochs. The train over loss and validation 
over loss graph are shown in Figure 3. 

 

Figure 3 : Visualise the train over loss and validation over loss graphs. 

The loss values decreased rapidly at first then slowed as training progressed, suggesting convergence 
towards optimally classifying the lung image data with four disease categories. 



N. Fared & N. H. Harun / An Experiment on Lung Diseases Classification using YOLOv8 

181 

Figure 4 shows the Top-1 accuracy and Top-5 accuracy graph. The high levels plateaued after initial 
increases indicate the model effectively learned to categorize the image classes with a high level of 
precision. Specifically, the top-5 accuracy curve reveals nearly 100% accuracy early on, reflecting the 
relative ease of correct classification when choosing between four total labels [19].   

 

Figure 4 : Visualise the graph of Top-1 Accuracy and Top-5 accuracy. 

The consistent validation outcomes aligning closely with the training results verify that the model 
has successfully generalized with negligible overfitting [11]. This demonstrates reliable real-world 
deployment readiness for automated classification of normal/diseased lung X-rays on par with state-
of-the-art approaches [12]. 

4.2 Confusion Matrix Analysis 

The model's classification capabilities are further evidenced through the normalized confusion 
matrix visualized in Figure 5. The high values along the main diagonal, representing correct 
predictions, indicate strong performance across all categories. Specifically, COVID-19, normal, viral 
pneumonia and lung opacity cases were correctly identified 97%, 97%, 99% and 93% of the time 
respectively. 



Applied Mathematics and Computational Intelligence 
Volume 13, No. 3, 2024 [176-185] 

 

182 

 

Figure 5 : Visualize the normalized confusion matrix after the validation of the model. 

Conversely, low off-diagonal elements suggest minimal misclassifications overall. The most 
confusion is seen between lung opacity and normal cases, with a 7% error rate. This aligns with 
clinical challenges in distinguishing their subtle visual differences [2]. Remaining mispredictions 
between other classes occurred only 1-2% of the time.  

Additionally, perfect isolation of the background category implies correct identification of images not 
depicting key conditions of interest. Together with the high diagonal and low off-diagonal values, 
these outcomes showcase both generalized strength on normal cases and targeted precision on 
prevalent lung diseases [20]. Minor opacity/normal confusion may warrant localized tuning, such as 
targeted augmentation and loss weighting for those subsets. However, the current model already 
significantly elevates automated assessment capabilities to aid time-constrained experts. Ongoing 
optimizations will further enhance deployment readiness at the point-of-care. 

4.3 Comparisons with State-of-the-Arts Methods 

To showcase the efficiency of the suggested YOLOv8-based lung disease classification approach, this 
study compares its performance with state-of-the-art methods reported in recent literature. [7] 
developed an explainable AI model that combined global and local features, achieving an accuracy of 
99.6% on a dataset of 4,237 images (2,896 COVID-19 and 1,341 normal). While their approach 
yielded impressive results, the dataset used was significantly smaller and less diverse compared to 
the one employed in our study. [8] proposed a multimodal approach using both RT-PCR test data and 
chest X-ray images for the categorization of COVID-19 conditions into three types. Their method 
achieved a global precision of 91.58% on the RT-PCR dataset and a CNN accuracy of 95.46% on 
sharpened images. Although their study demonstrates the value of integrating multiple data 
modalities, our focus on optimizing the chest X-ray classification pipeline using YOLOv8 enables 
more efficient and streamlined disease detection. 
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In a prospective study, [9] investigated the association between categorization of chest imagery and 
clinical characteristics in Mycoplasma pneumoniae pneumonia (MPP) While their research 
highlights the importance of imaging-based classification systems, the scope of their work is limited 
to a specific type of pneumonia in a pediatric population. Our approach, in contrast, encompasses a 
broader range of lung diseases and age groups, making it more widely applicable in clinical settings. 
Compared to these state-of-the-art methods, our YOLOv8-based model achieves a high accuracy of 
approximately 95% across four distinct lung disease classes (COVID-19, viral pneumonia, lung 
opacity, and normal) while maintaining real-time performance. The use of a large, diverse dataset 
containing 21,165 chest X-ray images ensures the model's robustness and generalizability. 

4.4 Summary 

The proposed YOLOv8-based approach for lung disease classification surpasses state-of-the-art 
techniques when it comes to accuracy, dataset diversity, and computational efficiency. By leveraging 
advanced deep learning techniques and carefully curated data, our model offers a promising solution 
for automated, real-time detection of multiple lung diseases from chest X-ray images, potentially 
improving clinical decision-making and patient outcomes. 

5 CONCLUSION 

This research demonstrates the effectiveness of the optimized YOLOv8 model for multi-disease chest 
X-ray classification using a large, publicly available dataset. By leveraging the state-of-the-art 
YOLOv8 architecture and advanced training techniques, the proposed approach achieves high 
accuracy with approximately 95% across key lung disease classes, while maintaining real-time 
throughput. The study addresses the limitations identified in previous works by: 

a) Lack of large consolidated benchmarking datasets: This study utilizes a diverse and extensive 
collection of 21,165 chest radiographic images, encompassing a wide range of patient populations. 
By leveraging this large-scale dataset, the model's generalization capabilities are significantly 
enhanced, addressing the lack of consolidated benchmarking datasets in previous works [7], [8], [9]. 

b) Limited reporting of computational efficiency metrics: This research reports comprehensive 
computational efficiency metrics, demonstrating the model's ability to maintain high accuracy while 
achieving real-time performance. This addresses the limited reporting of computational efficiency in 
previous studies, providing valuable insights into the model's practicality and potential for clinical 
deployment [7], [8]. 

c) Difficulty extending classification complexity: The proposed YOLOv8-based approach 
successfully extends the classification complexity to four distinct disease categories (COVID-19, viral 
pneumonia, lung opacity, and normal) without substantially impacting accuracy or speed. This 
achievement tackles the challenge of expanding classification complexity while maintaining 
performance, which was a limitation in prior works [9]. 

The outcomes of this study validate the adaptability and reliability of deep learning techniques, 
specifically YOLOv8, for automated lung disease detection. The proposed approach has the potential 
to improve clinical workflows and patient outcomes by providing accessible and efficient screening 
tools for time-constrained practitioners. Future research should focus on further optimizations, such 
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as enhancing speed, sensitivity, and computational overhead, to ensure deployment readiness in 
clinical settings. Additionally, extending the curated image repositories to include under-represented 
patient groups could further enhance the model's inclusiveness and robustness 
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