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ABSTRACT 

This paper is interested in solving Volterra integro-differential equation with associated initial 
condition. The Implicit Euler method was used to approximate the derivatives and the Explicit 
Euler method to approximate the integral as the numerical schemes. The result shows that the 
long term qualitative behaviour of the solutions obtained from the schemes with different choices 
of λ and step-sizes of h values are independent of the parameters. Finally, the comparison of the 
exact solution of the original integro-differential equation (1) with the numerical schemes shows 
that the qualitative behaviour of the solutions are all the same. 

Keywords: Volterra, Integro-differential equation, explicit method, implicit method and 
numerical method. 

1 INTRODUCTION 

The work here is to study the use of different numerical methods in  solving Volterra integro-
differential equations. Considering the volterra integro-differential equation and its associated initial 
condition of the form 

( ) ( ) ( ) ( )
0

' , 0

t
t s

y t e y s ds y
− −

= −
                (1) 

And  λ is a constant. 

It also study the different behaviour of solutions. The equation (1) above are use in many applications 
when the behaviour of the system does not depend only on the present state but  completely on its 
entire history. Most of this studies are related to environmental modelling, such as models of 
evolution, population, pollution as well as the physical sciences and  model equation from 
engineering [1]. Volterra studied the hereditary influences when he was examining a Population 
growth models. Hence, Volterra integro-differential equation could be seen as an equation having 
both differential and integral operators [12,15,10]. 

The origins of theory and application of integro-differential equations which could be traced back to 
the work of Volterra (in his first paper on the subject [4,13] he also introduced the name for these 
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functional equations). While his first discoveries  dealt with certain partial integro-differential 
equations arising in the theory of elasticity and hysteresis [5,14]. The solution of systems of integral 
equations occurring in Physics, biology and engineering are based on numerical methods such as the 
Euler-Chebyshev and Runge-Kutta methods. In recent years, the systems of integral and integro-
differential equations have been solved using the homotopy perturbation and efficient algorithm 
methods [6,9], the Modified homotopy perturbation method and the differential transformation 
methods [7,8], the Tau and the variational  iteration methods [8,3].  

The aim of this paper shall be on assessing the long term qualitative behaviour of the solutions for 
different choices of λ and step size of h to demonstrate different types of qualitative behaviour in 
solutions obtained from the methods. These shall be compared with the theoretical solution of (1). 
The equation (1) will be transformed  into an equivalent Volterra integral equation of second kind. 
Some linear equations can best be understood using both analytical and numerical solutions and 
these provide the key to understanding the nonlinear problems [2].  Therefore, it will also be seen 
how the general  Ѳ-method for the integral equation in [1], could be derived and shown how its  
equivalent to an iterative process but that its not dependent upon   [1]. 

2 DIFFERENCE EQUATIONS FOR SOLUTIONS TO A VOLTERRA INTEGRO-DIFFERENTIAL 
EQUATION 

Rewriting equation (1) in the form. 
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and then applying the general θ- method to both the derivative and the integral gives 
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∀tj = jh,yj = y(tj),zj = z(tj). Applying (2) to (1), we have,  
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2.1 Explicit Euler Method  

The derivative and the integral equations can both be approximated using Explicit Euler method.  
When we use θ = 1 and ϑ = 1, the explicit Euler method could be apply to approximate the derivative 
and the integral as follows 
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We have the following difference equation, which employs the explicit Euler method to approximate 
both the derivative and the integral. 

𝑦𝑛+1 = 𝑦𝑛 − ℎ2𝑒−𝜆𝑛ℎ − ∑

𝑛−1

𝑗=1

ℎ2𝑒−𝜆(𝑛−𝑗)ℎ𝑦𝑗. 

If we use this iteration to find yn+2 − yn+1e−λh, we obtain the following result, 

𝑦𝑛+2 − 𝑒−𝜆ℎ𝑦𝑛+1

= 𝑦𝑛+1 − ℎ2𝑒−𝜆ℎ(𝑛+1) − ∑

𝑛

𝑗=1

ℎ2𝑒−𝜆(𝑛+1−𝑗)ℎ𝑦𝑗 − 𝑒−𝜆ℎ𝑦𝑛 + ℎ2𝑒−𝜆ℎ(𝑛+1)

+ ∑

𝑛−1

𝑗=1

ℎ2𝑒−𝜆(𝑛+1−𝑗)𝑦𝑗 

= 𝑦𝑛+1 − ℎ2𝑒−𝜆ℎ(𝑛+1) − ∑

𝑛−1
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ℎ2𝑒−𝜆(𝑛+1−𝑗)𝑦𝑗 − ℎ2𝑒−𝜆ℎ𝑦𝑛 − 𝑒−𝜆ℎ𝑦𝑛 + ℎ2𝑒−𝜆ℎ(𝑛+1)

+ ∑

𝑛−1

𝑗=1

ℎ2𝑒−𝜆(𝑛+1−𝑗)𝑦𝑗 

= 𝑦𝑛+1 − 𝑒−𝜆ℎ𝑦𝑛 − ℎ2𝑒−𝜆ℎ𝑦𝑛 

 

𝑦𝑛+2 − 𝑦𝑛+1(𝑒−𝜆ℎ + 1) + 𝑦𝑛𝑒−𝜆ℎ(1 + ℎ2) = 0               (4) 
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2.2 Implicit Euler Method  

The use of Implicit Euler method to approximate derivative and explicit Euler method employed to 
approximate the integral.  

When we use θ = 0 and ϑ = 1, the explicit Euler method could be apply to approximate the derivative 
and the integral as follows 

( )( ) hzzyhnf
h

yy
nnn

nn −=+=
−

+++

+

111

1 ,,,1
( ) ( )














+

=

−+−+−
n

j

j

hjnhn yee
1

11 
 

( ) ( )














+−= 

=

−+−+−

+

n

j

j

hjnhn

nn yeehyy
1

112

1



 

We then have the following difference equation that uses the implicit Euler method to approximate 
the derivative and also explicit Euler method to approximate the integral. 

𝑦𝑛+1 = 𝑦𝑛 − ℎ2𝑒−𝜆(𝑛+1)ℎ + ∑

𝑛

𝑗=1

ℎ2𝑒−𝜆(𝑛+1−𝑗)ℎ𝑦𝑗  

If we use this iteration to find 12 +
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  the following result is obtain: 
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2.3 The Implicit Euler method to approximate the derivative and the Trapezium rule to 
approximate the integral.  

When θ = 0 and, 
2

1
=  explicit Euler method can be use to approximate the derivative and the 

integral as seen below: 
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Making  yn+1  the subject formular it becomes 
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If we use this iteration to find yn+2− yn+1e−λh   we obtain the following result: 
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2.4 The derivative and the integral.  

The derivative and the integral equations can be approximated using Implicit Euler method by 
changing the value of  θ = 0 and ϑ = 0, by applying explicit Euler method to approximate both the 
derivative and the integral as follows: 
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Making  yn+1   the subject of the formular, the result is as follows: 
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Then the following difference equation becomes. 
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If we use this iteration to find yn+2−e−λhyn+1 we obtain the following result:  
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3 IMPLEMENTATION OF MATLAB TO ASSESS THE QUALITATIVE BEHAVIOUR OF THE 
SOLUTION OF THE NUMERICAL METHODS 

According to [1], the exact solution of (1) is  
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We will implement the numerical methods in (4) and (6), to observe the qualitative behaviour of the 
numerical solutions as λ and h vary while comparing the results to those of the actual solution 
described above. Matlab will be used to plot the solutions between t = 0 and t = tmax according to the 
parameters L and h representing λ and h. we shall plot numerical solutions for each of the numerical 
schemes for (4) and (6) as seen in 2.1 and 2.2 respectively, as earlier stated, the results will be 
compared with the qualitative behaviours for the exact solutions and that of the numerical. A 
constant value of h = 0.001 will be used for the implementation of the numerical schemes of (4) and 
(6), but a number of values will be chosen for λ to assess the different qualitative behaviours. 

4 RESULTS AND DISCUSSIONS 

Figure 1 shows the qualitative behaviour of the solutions used to determine the derivative and the 
integral equations.  

Figure 1(a) uses the values of λ = 5, h = 0.001 and tmax = 30 for the numerical solution whose 
behaviour shows that there is decay with no oscillations, verifying the output predicted in research 
paper [1] and the actual solution of (8). 

Figure 1(b) uses the values of λ = 1, h = 0.001 and tmax = 15 for the numerical solution whose 
behaviour shows that there is decay with infinitely many oscillations of decreasing magnitude, 
verifying the output predicted in research paper [1] and the actual solution of (8). 
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Figure 1(c) uses the values of λ = −4, h = 0.001 and tmax = 5 for the numerical solution whose 
behaviour shows that the solution grows without any oscillations, verifying the output predicted in 
research paper [1] and the actual solution of (8). 

Figure 1(d) uses the values of λ = −0.5, h = 0.001 and tmax = 30 for the numerical solution whose 
behaviour shows that the solution grows with infinitely many oscillations of increasing magnitude, 
verifying the output predicted in research paper [1] and the actual solution of (8). 

Figure 1(e) uses the values of λ = 0, h = 0.001 and tmax = 250 for the numerical solution whose 
behaviour shows that for λ = 0, the actual solution depicts that the behaviour has a constant 
oscillations between 1 and −1 over a period of 2π, i.e y(t) = cos(t). This is not the case for the 
numerical solution using (4). Choosing a small tmax, the qualitative behaviour of the numerical 
solution is similar to the behaviour of the actual solution, but as tmax increases, it gives us an insight 
into the long term behaviour of the numerical solution [3]. We then observed that the oscillations are 
infinite with increasing magnitude, even though the qualitative behaviour of the numerical solution 
does not match the behaviour of the actual solution in the long term, which has verified that the 
behaviour predicted in the research paper [1] is the same as the behaviour observed in  figure 1(e). 
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Figure 1: Numerical solutions of equation (4) 

Figure 2 shows the qualitative behaviour of the solutions  to approximate the derivative and the 
Trapezium rule to approximate the integral. 

Figure 2(a) uses the values of λ = 7, h = 0.001 and tmax = 20 for the numerical solution whose 
behaviour shows that there is decay with no oscillations, verifying the output predicted in research 
paper [1] and the actual solution of (8). 

Figure 2(b) uses the values of λ = 0.5, h = 0.001 and tmax = 25 for the numerical solution whose 
behaviour shows that there is decay with infinitely many oscillations of decreasing magnitude, 
verifying the output predicted in research paper [1] and the actual solution of (8). 

Figure 2(c) uses the values of λ = −5, h = 0.001 and tmax = 5 for the numerical solution whose 
behaviour shows that the solution grows without any oscillations, verifying the output predicted in 
research paper [1] and the actual solution of (8). 

Figure 2(d) uses the values of λ = −1, h = 0.001 and tmax = 20 for the numerical solution whose 
behaviour shows that the solution grows with infinitely many oscillations of increasing magnitude, 
verifying the output predicted in research paper [1] and the actual solution of (8). 
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Figure 2(e) uses the values of λ = 0, h = 0.001 and tmax = 400 for the numerical solution whose 
behaviour shows that for λ = 0, the actual solution depicts that the behaviour has a constant 
oscillations between 1 and −1 over a period of 2π, i.e y(t) = cos(t). This is not the case for the 
numerical solution using (6). Choosing a small tmax, the qualitative behaviour of the numerical 
solution is similar to the behaviour of the actual solution, but as tmax increases, it gives us an insight 
into the long term behaviour of the numerical solution [3]. We then observed that the oscillations are 
infinite with decreasing magnitude, even though the qualitative behaviour of the numerical solution 
does not match the behaviour of the actual solution in the long term, which has verified that the 
behaviour predicted in the research paper [1] is the same as the behaviour observed in the figure 
2(e). 

 
 
 
 
 
 
 

 
 
 

Figure 2. Numerical solutions of equation (6) 
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(i) λ = 0.5, h = 0.001      (ii) λ  = 1, h = 0.001 
                          

 
 
 
 
 
 
 
 
 
 

 
(iii)  λ = -5, h = 0.001      (iv) λ  = - 1, h = 0.001 

  
         

 
 
 
 
 
 
 
 
 

 
(v) λ = 0, h = 0.001 

Figure 3a: The exact solution of equation (8) 
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(i) λ = 5, h = 0.001      (ii) λ  = 1, h = 0.001 
 

       
(iii)  λ = -4, h = 0.001     (iv)   λ= -0.5, h = 0.001 

 

 
(v) λ  = 0, h = 0.001 

Figure 3b: The exact solution of equation (8) 

 

 
 

 
 
 
 
 

 

Figure 4.general solution of equation (8) 
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5 CONCLUSION  

This paper has analyzed the long term qualitative behaviour of the Volterra integro-differential 
equation using numerical schemes. Figures 1,2 and 3,  shows that, the qualitative behaviour in the 
solution obtained from the numerical schemes of (4) and (6) is the same as the behaviour observed 
in choosing different pairs of λ and step sizes of h values, similarly, the figures 3a and 3b represents 
the exact solution of equation (8) while figure 4 shows the surface of the general solution of equation 
(8). One could notice that the behaviour of their solutions are actually the same with figures 1, 2,3a 
and 3b, but one must understand that in the choice of either λ or step size h, the qualitative behaviour 
is only possible when λ  is between -0.5 to -4 and the value of h must always be from 1 to 35 and h  
must not take the value 0, otherwise there will always be an extinction  on the behaviour of the 
solutions. Finally, a further research can be done using the higher order linear multistep method to 
determine the qualitative behaviour of the solutions.     
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