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ABSTRACT 

In this paper, a mathematical model of dynamics of diabetes and its complications was 
presented to explore the parameters with the greatest impact on the model. The model 
allows for the individuals to move from the susceptible class to the treated class. The model 
exhibit one equilibrum state, namely, the disease prevalent equilibrium state. The local and 
global asymptotic stability of the disease prevalent equilibrium state was determined using 
quadratic Lyapunov method for linear system. Eigenvalue elasticity and sensitivity analysis 
was carried out on the model parameters to determine the parameter that has the highest 
positive eigenvalue. The analysis revealed that parameter denoted by  (mortality rate due 

to complications) has the highest positive eigenvalue elasticity value. Also, using the 

eigenvalue sensitivity analysis, the parameter denoted by  has the highest positive value. 

The overall results showed that parameter  has the greatest impact on the formulated 

mathematical model of disease dynamics which must be put into consideration by the health 
care policy makers in order to reduce the rate of mortality due to the disease. 

Keywords: Complications, Diabetes, Eigenvalue Elasticity, Eigenvalue Sensitivity, 
Quadratic Lyapunov Method.  

1 INTRODUCTION 

Eigenvalue Elasticity Analysis (EEA) is a method for measuring performance response in a 
dynamic system. It measures the elastic strength of eigenvalue with respect to different 
parameters in a dynamic model. The method was first introduced by [1]. Several researchers have 
discussed the EEA method and applied it in both linear and linearized models [2] - [4].  Eigenvalue 
elasticity analysis (EEA) is a set of methods to study the effect of structure on behavior in dynamic 
models. It works by taking into consideration observed model behavior as a mixture of 
characteristic behavior modes and by examining the relative significance of particular rudiments 
of system formation in influencing these behavior modes. Elements involved in the formation that 
have a great impact on model behaviors can offer useful clues to the modeler to identify areas for 
further testing and study, as well as for policy analysis. The method involves a high level of 
mathematical effort compared to the previous experimental simulation method applied in the 
field. The method uses linear systems assumption to divide the observed behavior into its 
component behavior modes, such as oscillation, growth, and exponential modification, and list 
how a particular behavior mode and its occurrence in a particular system variable depends upon 
particular parameters and structural rudiments (links and loops) in the system. In this manner, 
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the method gives a very accurate description of the interaction involving structure and behavior 
[5]. 

The EEA method allows large-scale models to be studied analytically in a way that is not feasible 
or realistic using trial and error simulation. Given the tedious and relative superiority of the 
method, it may also provide legitimacy to dynamic model analysis in fields that are formerly 
dominated by analytical mathematics, such as economics and econometrics. The fundamental 
nature of the elasticity analysis is to look at the relative importance of structural elements, not to 
calculate approximately the strength of system elements or values of system parameters. 
Consequently, the method works very greatly from a given model structure and parameter set 
and then discloses what would happen if you changed the structure and/or parameters. It is 
useful in the interpretation and policy analysis stages of model construction. It can also prove 
helpful in the model building and testing stage, to the point that it can help to identify structures 
that give unnecessary or confusing behavior. Eigenvalue elasticity is dimensionless and assists us 
to compare elasticities of the eigenvalue with respect to different parameters in a mathematical 
model [6].  

Eigenvalue Sensitivity Analysis (ESA) helps to identify the relative importance of each parameter 
to disease dynamics. Sensitivity analysis is generally applied to predict the robustness of model 
performance relative to parameter value, since there are usually errors in supposed parameter 
value and data collection. Indices of sensitivity analysis allow us to determine the relative 
difference in a variable when changes occur in parameters [6]. Various researchers have applied 
the knowledge of mathematical models to provide insight into the study of dynamics of 
transmission and control of diseases. Boutayeb et al [7] formulated a model to analyze the 
dynamics of diabetes mellitus and its complications in a population. Their model assumption is 
the constant rate of diabetes person developing complications. Diabetics population were splitted 
into two groups: Diabetics without complications and Diabetics with complications. The solution 
of the model was obtained using numerical method. The results show that the incidence of 
diabetes and occurrence of complications can be controlled with efficient and effective control 
strategies.  

Akinsola and Oluyo [8] developed a model on the dynamics and control of diabetes mellitus and 
its complications. Their model is an improvement on the work of Boutayeb et al [7] and it was 
based on the size of diabetics without complications and diabetics with complications. The 
stability analysis of the model was carried out and it was stable. Their study revealed that 
diabetes persists but its complications can be controlled. They investigated the sensitivity of each 
parameter to the model and the results obtained established that the size of diabetics with 
complications can be curtailed with adequate control measures. Adamu et al [9] formulated a 
model for the dynamics of diabetics population. They improved on Boutayeb et al [7] by 
incorporating the impact of treatment and birth rate on the disease dynamics. The model 
compartments are diabetics with complications, diabetics with controlled sugar and diabetics 
without complications. The model equations were solved and disease free equilibrum state 
obtained. The stability of equilibrum state of the model were carried out using Bellman and Coke 
method. The result obtained showed that diabetic with complications and birth rate determined 
the stability of the equilibrum solution of the model. The model established that lifestyle and 
genetic factor determined the dynamics of diabetics population. Enagi et al [10] proposed the 
method of Homotopy Perturbation to solve a system of equations of model of diabetes mellitus 
disease. An analytical solution was obtained and graphical profile of the solution was shown using 
Mapple software. The results showed that model parameters have an effect in determining the 
number of people living with diabetes, Permatasari et al [11] proposed method of quadratic 
Lyapunov function for determining stability of linear system. The method was applied to linear 
system of dynamics of diabetics population. The model was compartmentalized into healthy class, 
prediabetic class, diabetics without complications class, diabetics with complications class and 
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disability class. The method was used to examine the global stability of the model. The results 
obtained established the asymptotic stability of the model globally.  

Aye et al [12] developed a mathematical model for the dynamics of diabetes mellitus and its 
complications and carried out analysis of the model. The analytical solution of the model 
equations was obtained using Homotopy Perturbation Method. Numerical simulation of the 
model solution was done using Maple 18 Mathematical software. The parameters are varied and 
their effects on the model dynamics are presented graphically. The results showed that the deaths 
due to diabetes complications can be reduced drastically if the rate at which complications are 
treated is high and the rate of developing a complication is slow. The work of Aye [13] improved 
the existing mathematical models of dynamics of diabetes and its complications by incorporating 
control measures into the system. The proposed model is compartmentalized into five classes 
namely, susceptible, healthy, diabetics without complications, diabetics with complications and 
diabetics with complications undergoing treatment. The equations describing the system were 
derived and analytic solutions of the system of equations were obtained using Homotopy 
pertubation method. The numerical simulation of the solution was carried out and the graphical 
profile of the system responses were presented. The result showed that if the control parameters 
rate is increased, the number of deaths attributable to diabetes and its complications in a 
population would be reduced drastically. 

In this study, it is intended to carry out the analysis of eigenvalue elasticity and eigenvalue 
sensitivity of the model parameters in [13] to determine the parameter that has the greatest 
impact on the formulated mathematical model. 

2 MODEL FORMULATION 

The model equations are formulated using first-order differential equations. Improving on the 
work of Enagi et al [10] we proposed a mathematical model of diabetes and its complications 
incorporating a positive lifestyle and effective management of diabetes condition as control. 
Based on their health status, the model population is classified into five classes. They are healthy 
class H(t), susceptible class S(t), diabetic without complications class D(t), diabetic with 
complications class C(t) and diabetic with complications that undergo treatment class T(t). We 
assume that diabetes disease infections can either be acute or chronic. In this model, we assume 
that a healthy individual will give birth to a healthy child that will be born into the healthy 
compartment while parent who is diabetic or has a history of diabetes will give birth to children 
with genetic factors that will be born into the susceptible compartment. The proportion of 
children born into the healthy compartment is denoted by 𝜃 while proportion of children who are 
born into the susceptible compartment is 1- 𝜃. 
 
To form this model, two control parameters 𝜙1 and 𝜙2 are introduced. 𝜙1 is a measure of a 
positive lifestyle in the susceptible class, such that 0 ≤ 𝜙1 ≤ 1.  𝜙1 = 0 indicate negative lifestyle 
and 𝜙1 = 1 indicate positive lifestyle. 𝜙2 is a measure of effective management of diabetes 
condition in the compartment of diabetics without complications, such that 0 ≤ 𝜙2 ≤ 1.  𝜙2 =
0 indicate ineffective management of diabetes condition and 𝜙2 = 1 indicate effective 
management of diabetes condition. 

 

Table 1:  Description of variables of the model 

Variables Description 
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H(t) Healthy Class 

S(t) Susceptible Class 

D(t) Diabetics without complications 

D(t) Diabetics with complications 

T(t) Diabetics with complications undergoing treatment class 

N(t) Total population 

 
Table 2: Description of parameters of the model 

Parameters Description 

  Probability rate of incidence of diabetes 

  Birth rate 

  Natural mortality rate 

  Rate at which healthy individual become susceptible 
  Rate at which susceptible individual become healthy 

  Rate at which D(t) develop a complications 

  Rate at which C(t) are treated 

  Rate at which C(t) after treatment return to D(t) 

  Mortality rate due to complications 

  Proportion of children born into the healthy class 


1

 Measure of positive lifestyle in S(t) class 


2

 Measure of effective management of diabetes condition in D(t) class 

−1  Proportion of children born into the susceptible class 

 

 

Figure 1: Schematic diagram of the model  

2.1 The Model Equations 

Based on the model formulation, the model equations are obtained as follows in (1) to (5) 
     

 +−−= )()()(
)(

tHtHtS
dt

tdH

                                     (1) 
 

( ) ( ) )()(1)()(1
)(

1
tStStHtS

dt

tdS
  −−−+−−=

                    (2) 

 

( ) ( ) )()(1)()(1
)(

21
tDtDtTtS

dt

tdD
  −−−+−=

                    (3) 
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( ) ( ) ( ) ( ) ( ) ( )tCtCtCtD

dt

tdC
  −−−−=

2
1

                      (4) 

 

)()()(
)(

tTtTtC
dt

tdT
 −−=

                       (5)
    

 
   

The initial values conditions are 𝐻(𝑜) = 𝐻𝑜, 𝑆(𝑜) = 𝑆𝑜, 𝐷(𝑜) = 𝐷𝑜, 𝐶(𝑜) = 𝐶𝑜 and 𝑇(𝑜) = 𝑇𝑜. 
 
2.2 Disease Prevalence Equilibrium State of the Model  

To obtain the Disease Prevalent Equilibrium (DFE) state of the of the model, the system of 
equation (1) - (5) are rearranged and equated to zero. The new equations are as follows: 
 

( ) ( ) ( ) 0=−+− tHtStH                                     (6) 
 
( ) ( ) ( ) ( ) ( ) ( ) 011

1
=−−−−+− tStStStH                        (7) 

 
( ) ( ) ( ) ( ) ( ) ( ) 011

21
=−−−+− tDtDtTtS  

                     (8) 
 
( ) ( ) ( ) ( ) ( ) 01

2
=−−−− tCtCtCtD                         (9) 

 
( ) ( ) ( ) 0=−− tTtTtC           

                                       (10) 
 
The disease prevalence equilibrium state is 𝐸∗(𝐻∗, 𝑆∗, 𝐷∗, 𝐶∗, 𝑇∗) of the system (1) to (5) is given 

as follows: 

 
( )( ) ( ) 

( )( )( ) 






+−++−

−+−++−
=



1

1

1

11

H
                                  (11) 

 
( ) ( )( ) ( ) 

( )( )( )  












−

+−++−

−+−+++−
=








 


1

1

1

111
S

                                (12) 
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( ) ( )( )( )( )

( ) ( )( ) ( ) 
( )( )( )  













+

+−++−

−+−+++

+++−+−−

+++−
=




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











1

1

22

1

1

11

11

1

D

                                              (13) 
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


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+

+−++−
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+++−+−−

+−−
=




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


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
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1

1
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                                              (14) 
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( ) ( )( )( )( )

( ) ( )( ) ( ) 
( )( )( )  













+

+−++−

−+−+++

+++−+−−

−−
=




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









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1

1

22

21

1

11
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T

                                              (15) 

3 STABILITY ANALYSIS OF THE DISEASE PREVALENCE EQUILIBRUM STATE OF THE 
MODEL 

For the stability analysis of the mathematical model, the method of quadratic Lyapunov for linear 
system by Permatasari  et al [11] was adopted to analyzed the stability of linear system of 
equations (1) to (5). 
 
3.1 Lyapunov Stability of Linear System 

Given that the dynamical system is of linear form: 
 
�̇� = 𝐸𝑥∗

                                                                 (16) 
  
Let 𝑀 > 0 be a symmetric, positive definite matrix, then we define 
 

( ) TV x x Mx=                         (17) 

( )

( )

T T

T T T

T T

T

V x x Mx x Mx

E x Mx x MEx

x E M ME x

E M ME

= +

= +

= +

= +

                                                                                                                            (18) 

 

Let TE M ME Q+ = − , Q is definite positive. The existence of definite positive Q  guaranteed 

stability (global asymptotic) of the linear system. TE M ME Q+ = −  is called the equation of 

Lyapunov. Before solving for M, we established that E is stable, so that given any 0Q , we have 

0M , the normal method  is to solve for M  and set 1=Q [14]. 

      
Theorem 3.1: A linear system x Ex=  is local asymptotically stable if and only if for any 
symmetric, positive definite Q, there exist a corresponding symmetric, positive definite M so that 
 

TE M ME Q+ = −                                                                               (19) 

Theorem 3.2: Let 
*

( ), nx E x x=  .The system (origin) is globally asymptotically stable if and 

only if there exists a positive definite matrix 0TM M=   so that 
TE M ME+  is negative 

definite or 
TE M ME+ . Equivalently if, for a given 0TQ Q=  , it is possible to find a 

0TM M=   so that 
 

TE M ME Q+ = −
 

 

  
 

then the system is globally asymptotically stable [11]. 
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Theorem 3.3: If ( ) 0
K

e E   k , then for given every 0TQ Q=   there exists a unique 

0TM M=   satisfying the Lyapunov equation TE M ME Q+ = −  so that the system is globally 

asymptotically stable [11].  

          

Proof: 

( )

( )( )

( ) ( )( )

( ) ( )

( )

1

1 2

2

0 0 0

1 0 0 0

1 10 0

10 0 0

0 0 0

Jacobianmatrix E

  

  

   

   

  



 



 − +
 
 
 

− + + − 
 
 
 

= − − + − 
 
 
 

− − + + 
 
 
 − + 

          (20)

 

Let 

 +=
1

                         (21) 

( ) 
12

1−++=                        (22) 
( ) 

23
1−+=                        (23) 
 ++=

4                        (24) 
 +=

5                         (25) 
( )

1
1−=                         (26) 
( )

2
1−=

                        (27) 

 

Substituting equations (21) - (27) into equation (20) gives equation (28) below. 

 





































−

−

−

−

−

=





















5

4

3

2

1

000

000

00

000

000

E

                                  (28) 

The Jacobian determinant of equation (28) is given by 

0

000

000

00

000

000

5

4

3

2

1

=





































−−

−−

−−

−−

−−





















                 (29) 
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To show that the disease prevalent equilibrium state (11) - (15) is stable, we first determine the 

eigenvalue of the system of equation (1) to (5).   

        

( ) 0

00

00
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000
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00

0

000

5

4
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5

4
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2

1
=
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
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
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

















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0
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5
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3
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−

−−

−
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−−−− −
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
























         

( )( )( ) 0

0

0

0

5

4

3

21
=

−−

−−

−−

−−−−−















  

0))()()(
543

2

2121
( =−−−−−−−+++                   (30) 

Equating each term of (30) separately to zero, we have  

( ) ( ) ( ) 0,0,0,0
543

2

2121
=−−=−−=−−=





 −+++  

  

The eigenvalues are obtained as follows: 

( ) ( ) ( )
2

4
21 21

2

21

2,1




−−+−
=

+   , 
33

−= , 
44

−=
,


55

−=
 

All the eigenvalues are negative, which implies that the disease prevalent equilibrium states are 

stable. 





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












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
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





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−

−
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
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











5

4

3

2

1

000

000
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00
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E
T

                    (31) 

We choose TQ Q I= =  so from equation 
TE M ME I+ = − , we obtain
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
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Evaluating equation (19), the following system of linear equations in (36) are obtained. 
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 122
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Solving the system of linear equations in (36) we obtain the component of symmetric matrix M. 
 

3.2 Condition for local stability 

To analyse the condition for local stability, Theorem (3.2) was adopted.  The theorem states that 
local asymptotic stability of the equilibrum points of linear system (1) to (5) holds, provided the 
following conditions are met. 
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4
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0

5545352515

4544342414

3534332313

2524232212

1514131211

5
=

MMMMM

MMMMM

MMMMM

MMMMM

MMMMM    

0, 1,...,5r r  = , it means that M is definite positive matrix. The model is locally asymptotically 

stable. 
 
3.3 Condition for global stability 

The analysis for the global stability of the model was done using theorem (3.3).  
 

==

MMMMM

MMMMM

MMMMM

MMMMM

MMMMM

M

5545352515
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3534332313
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1514131211
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==

MMMMM

MMMMM

MMMMM

MMMMM

MMMMM

M
T

 
 

0TM M=   satisfying the Lyapunov equation TE M ME Q+ = − . The model is globally 

asymptotically stable. 

4 EIGENVALUE ELASTICITY AND EIGENVALUE SENSITIVITY ANALYSIS 

Eigenvalue elasticities measures the transient - response sensitivities of the model to parameters 

[15], [1] and since the values of elasticities are dimensionless, they can be compared with each 

other. This can aid us identify the parameter which could greatly influence the system. Eigenvalue 

Elasticity is dimensionless and enables us to compare elasticities of the eigenvalue with respect 

to different parameters in a mathematical model. 

 

4.1 Eigenvalue Sensitivity with Respect to a Parameter 

This is defined as the partial derivative of the eigenvalue with respect to that parameter [16]. The 

eigenvalue sensitivity ( 1,..., )iS i N=  and N is the dimension of the state vector with respect to 

the thj   parameter of the system jp  is given in the form;  

 

( ) r
P

I
PP

PS i

j

T

i

i

i

j

i

ji

J

P j



=




=




=

→


lim

0                     (37) 

 
4.2 Eigenvalue Elasticity with Respect to a Parameter 

This is defined as the partial derivative of the eigenvalue with respect to that parameter 
normalized for the size of the parameter and the size of the eigenvalue.  
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                  (38) 

With these equations, the eigenvalue elasticity and sensitivity with respect to a parameter can be 

computed using the left eigenvectors ( )iI  and the right eigenvectors ( )ir with the partial 

derivatives of the linearized Jacobian matrix ( )J with respect to a parameter ( )ip . Where ( )i  

are the eigenvalues, usually we make use of the dominant eigenvalues for the computations. 
 

Table 3: Value of Parameters 

Parameters Values Source 

  0.05 Adamu et al 

  0.01623 Enagi et al 

  0.02 Permatasari et al 

  0.04 Adamu et al 
  0.08 Permatasari et al 

  0.05 Adamu et al 

  0.08 Permatasari et al 

  0.08 Adamu et al 

  0.05 Permatasari et al 

  0.923 Enagi et al 


1

 0.5 Assumed 


2

 0.5 Assumed 

 
Table 4: Eigenvalue Sensitivity and Eigenvalue Elasticity Analysis Indices of the Model   

Parameters Eigenvalue Sensitivityv Values Eigenvalue Elasticity Values 

  -0.125459728 -0.033533886 

  0 0 

  -0.026376318 -0.001128011983 

  0.000354951228 0.0009487422286 

  -1.000000 -0.010691521 

  0 0 

  0.055641208 0.000120373161 
  0.00177093 0.000757357515 

  0.16014993 0.0428061629 

  -0.13595920 -0.029072217 


1

 
0.125459729 0.033533886  


2

 
-0.035495122 -0.094874221 
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5 CONCLUSION 

This study presented a mathematical model of dynamics of diabetes and its complications in a 
population. The model equations have no disease free equilibrium state; this is consistent with 
the dynamics of the disease as it has no cure and hence the disease remains prevalent in the 
population. The disease prevalence equilibrium state of the model was obtained in (11 - 15). 
Quadratic Lyapunov method for stability of linear system was constructed in (19) and used to 
analyze the condition for local and global stability of Disease Prevalence Equilibrium state of the 
model. The model was found to be locally and globally asymptotically stable. Eigenvalue elasticity 
and sensitivity analysis was carried out on the model parameters to determine the elasticity and 
sensitivity of each parameter of the model and to know the parameter that has the highest impact 
factor on the model. Using the MATLAB software package, the computer program was written for 
the evaluation of the values of eigenvalue elasticity and sensitivity of the mathematical model 
given in equations (1 - 5). The results obtained are shown in Table 4. From the results obtained, 
it was found that the parameter denoted by  which is mortality rate due to complications has 
the highest positive eigenvalue elasticity and sensitivity value. This means that the parameter 
denoted by has the greatest impact value on the formulated mathematical model of diabetes 
mellitus and its complications. This finding established the need for serious attention from 
government, medical and health practitioners to intensify their effort in curbing the menace of 
dearth attributed to the complications of diabetes in a population. 
 
The following management options as revealed by the model are: 
 

(i) The need for members of the public to adopt regular checking of blood sugar level to 
know if they are susceptible (prediabetic) to the disease or affected. 

(ii) Introduction of government policy of free blood sugar checking at the Hospitals. 
(iii) Aggressive awareness campaigns by the government must be introduced from time 

to time to sensitize the people on the need to adopt healthy lifestyle. 
(iv) Government should put in place a medical support program that will help people that 

are suffering from the disease to assess medical facilities for  treatment. 
(v) Public enlightenment campaigns and media sensitization discourage high rate of 

smoking and alcoholism. 
(vi) Introduction of medical drugs and herbs that will helps in attenuating the spread of 

the disease. 
(vii) Promotion of regular physical exercise among the people of old age. 
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