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ABSTRACT 

Achieving optimal machine learning model performance is often hindered by the limited 
availability of diverse datasets, a challenge exacerbated by small sample sizes in real-world 
scenarios. In this study, we address this critical issue in classification tasks by integrating the 
Dropout technique into the Extreme Learning Machine (ELM) classifier. Our research 
underscores the effectiveness of Dropout-ELM in mitigating overfitting, especially when data is 
scarce, leading to enhanced generalization capabilities. Through extensive experiments on 
synthetic and real-world datasets, our findings consistently demonstrate that Dropout-ELM 
outperforms traditional ELM, yielding significant accuracy improvements ranging from 0.19% 
to 16.20%. By strategically implementing dropout during training, we promote the development 
of robust models that reduce reliance on specific features or neurons, resulting in increased 
adaptability and resilience across diverse datasets. Ultimately, Dropout-ELM emerges as a 
potent tool to counter overfitting and bolster the performance of ELM-based classifiers, 
particularly in scenarios with limited data. Its established efficacy positions it as a valuable asset 
for enhancing the reliability and generalization of machine learning models, providing a robust 
solution to the challenges posed by constrained training data.  

Keywords: Artificial datasets, Classification, Dropout, Machine Learning, Real-world 
datasets, small sample-sized, Test Accuracy 

1 INTRODUCTION 

Classification Machine learning has made significant strides in solving complex problems across 
diverse domains [1]. However, the efficacy of machine learning models is highly contingent on the 
availability of ample and diverse datasets. In practical scenarios, researchers often encounter limited 
data availability, posing challenges that necessitate innovative solutions for building accurate and 
robust models [2]. This paper addresses the application of Dropout, a regularization technique, to 
enhance the Extreme Learning Machine (ELM) classifier's performance under the constraints of 
small sample size data. The realm of machine learning has traditionally thrived on vast datasets, 
enabling models to learn intricate patterns and representations effectively. In a classification of 
information, people will deal with two types of data, either huge or small samples. However, small 
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sample-sized (SSS) data are the most dealt with, especially in the medical and healthcare field. When 
confronted with a notably restricted sample size, particularly in the context of Single Sample Size 
(SSS) data and employing a solitary classifier, the tendency is for machine-learning algorithms to 
undergo undertraining, resulting in their ineffectiveness. In certain instances, within SSS problems, 
particularly extreme ones, a scenario may arise where a substantial ratio exists between the number 
of features and the number of instances. In such situations, the sheer volume of features in 
comparison to the limited instances can lead to overfitting of the classification algorithm. 

The utilization of small sample size data introduces a series of significant challenges, each posing 
considerable obstacles: 

i) Sample Representativeness: Small datasets may inadequately capture the full complexity and 
heterogeneity of the underlying data distribution, limiting the model's ability to generalize 
effectively [3]. 

ii) Overfitting and Variance: In the presence of limited samples, models tend to overfit and 
capture noise, leading to increased variance and poor generalization to unseen data [4]. 

iii) High Dimensionality: High-dimensional feature spaces aggravate the curse of 
dimensionality in small datasets, exacerbating sparsity issues and hindering the model's 
ability to discern salient features [5]. 

2 INTRODUCTION TO DROPOUT AS A REGULARIZATION TECHNIQUE FOR THE ELM 
CLASSIFIER 

Dropout, initially introduced as a regularization method for neural networks, has since gained 
widespread adoption across various machine learning architectures. The ELM classifier, renowned 
for its simplicity and computational efficiency, stands to benefit from the Dropout technique, 
especially when confronted with limited training samples. Dropout operates by randomly 
deactivating neurons during training, effectively encouraging the model to learn redundant 
representations and reducing interdependencies among neurons. This regularization process 
enhances the model's robustness and resilience to overfitting, making it a compelling choice for 
addressing the challenges posed by small sample size data [6]. By exploring the intersection of 
Dropout regularization and the ELM classifier in the context of small sample size data, this paper aims 
to provide valuable insights into the practical efficacy of this approach. Subsequent sections will 
delve into the theoretical underpinnings, experimental setup, and empirical results, contributing to 
a comprehensive understanding of the presented regularization technique's applicability and impact 
on the ELM classifier's performance. 

3 BACKGROUND AND RELATED WORK 

3.1 Overview of Extreme Learning Machine (ELM) 

The extreme learning machine (ELM) is a quick and effective training procedure for single hidden 
layer feed-forward neural networks (SLFNs). It has been effectively used in a variety of fields, such 
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as pattern recognition, machine vision, and the processing of biological data. The ELM algorithm's 
structure has a strong impact on how well it performs. In the Extreme Learning Machine (ELM), the 
number of neurons in the hidden layer and the input neuron matrix are specified before a random 
pattern is used to generate the input weight matrix. The sample matrix's size affects how many input 
neurons are needed, whereas the number of hidden layer neurons is selected manually. As a result, 
the size of the sample matrix may affect how well ELM works. The number of hidden layer neurons 
needs to be carefully tuned for ELM to function optimally without affecting the sample size. When the 
training sample closely resembles the input weight matrix created by a random pattern, ELM's 
accuracy in both regression and classification tasks can be significantly increased. The ELM classifier 
has garnered significant attention due to its inherent advantages in handling small sample-size data. 
Lixin Zheng et al. [7] elucidated the unique characteristics of ELM, emphasizing its computational 
efficiency and non-iterative learning process. They demonstrated the superior generalization 
performance of ELM on small datasets, making it a promising candidate for applications with limited 
training samples. 

Studying neurons’ numbers in hidden layers also fine-tuning the parameters of the input weight 
matrix are important steps in boosting the effectiveness of the Extreme Learning Machine (ELM) 
algorithm [8]. Although ELM has good generalization and fast performance, there is still room for 
improvement for example, when randomly assigning parameters. To address this issue and improve 
performance with more efficient networks, the concept of E-ELM (Enhanced Extreme Learning 
Machine) was introduced. E-ELM aims to eliminate redundancy among hidden nodes and create 
more compact networks, leading to improved performance [9, 10]. ELM has shown superiority over 
support vector machines in classifying microarray data[11]. However, neural network classifiers are 
prone to over-training, which can lead to a decrease in generalization performance. To tackle this 
challenge, Lan et al. [12] proposed an approach to overcome it by integrating multiple neural 
networks, specifically extending the ELM algorithm through the averaging of outputs from individual 
classifiers in small sample-sized classification problems, such as those in the medical and healthcare 
fields, a single classifier may overfit the data resulting in a complex model, so using multiple 
classifiers can be beneficial.  

4 DROPOUT METHOD 

4.1 Dropout and Its Application to the ELM Classifier 

Dropout is a powerful regularization technique originally developed for neural networks, but its 
versatility has been demonstrated across various machine learning models, including the (ELM 
classifier). Dropout operates by randomly deactivating neurons during the training process. In the 
context of the ELM classifier, Dropout is integrated into the hidden layer neurons. During each 
forward pass of training, individual neurons are stochastically dropped out with a certain probability, 
while during the backward pass, only active neurons receive gradients [6]. 

The application of Dropout to the ELM classifier is particularly beneficial in scenarios with small 
sample size data. By introducing random dropout during training, the model is encouraged to learn 
more robust and independent representations. The dropout process acts as a form of model 
averaging, effectively preventing co-adaptation of neurons and promoting better generalization on 
unseen data. This regularization technique enables the ELM classifier to become less reliant on 
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specific neurons, thereby mitigating the risk of overfitting and improving its performance on limited 
training samples. 

The Dropout algorithm is conceptually straightforward. During the forward pass of training, each 
neuron in the hidden layer is retained with a probability (dropout rate) p and deactivated (set to 
zero) with a probability of (1 - p). This dropout process is independently applied to each neuron, 
ensuring that the activations are stochastically masked during training. In the backward pass, only 
the active neurons receive gradients, while the deactivated neurons remain unaffected. The Dropout 
technique effectively simulates an ensemble of exponentially many thinned networks during 
training. Consequently, the model learns to adapt to various sub-networks, effectively averaging out 
their predictions during inference. This ensemble effect fosters improved generalization, particularly 
crucial in small sample-size data settings. The ability of Dropout to address overfitting in small 
sample size data stems from its capacity to reduce co-dependencies among neurons [13]. In 
conventional deep learning settings, neurons can become strongly interdependent, leading to 
overfitting and limited generalization. By randomly dropping neurons during training, Dropout 
prevents the model from relying too heavily on specific connections, encouraging the exploration of 
alternative pathways. This exploration aids in discovering more diverse and robust features, better 
capturing the underlying data distribution, and mitigating the risk of overfitting. 

5 MODEL DESCRIPTION 

This section elucidates the concept of the dropout neural network model. Consider a neural network 
comprising L hidden layers. In this context, the notation Let 𝑙 ∈{1,…, L} designates the hidden layers 
within the network. The vector of inputs into layer 𝑙 is represented as𝑧(𝑙), while the vector of outputs 

from layer l is denoted as 𝑦(𝑙) (where 𝑦(0) = 𝑥, representing the input layer). The weights and biases 

at layer l are respectively denoted as 𝑊(𝑙) and 𝑏(𝑙). 

The forward propagation process of a neural network can be succinctly expressed as follows: for any 
layer index 𝑙 (where 𝑙 lies in the range of {0,…,𝐿 – 1}), and for each hidden unit 𝑖 the corresponding 
operations are carried out. 

𝑧𝑖
(𝑙+1) = 𝑊(𝑙+1)𝑦𝑙 +  𝑏𝑖

(𝑙+1)  ( 1 ) 

 

𝑦
𝑖
(𝑙+1) = 𝑓(𝑧𝑖

(𝑙+1)) ( 2 ) 

 

𝑟𝑗
𝑙   ~  Bernoulli(p), ( 3 ) 

 

�̃�(𝑙) =  𝑟(𝑙) ∗ 𝑦(𝑙) ( 4 ) 
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In this context, 𝑟(𝑙) represents a vector consisting of Bernoulli random variables. Each of these 
variables carries a probability 𝑝 of being equal to 1. This vector is sampled individually for each layer. 
It is then element-wise multiplied with the corresponding outputs of that layer, denoted as 𝑦(𝑙), 
resulting in the creation of thinned outputs 𝑦(𝑙). Subsequently, these thinned outputs serve as inputs 
for the subsequent layer in the network. During the learning process, the derivatives of the loss 
function are backpropagated through this thinned network structure. At the point of testing, a scaling 

operation is applied to the weights: 𝑊(𝑙) =  𝑝𝑊(𝑙). This modified neural network, which incorporates 
the scaled weights, is then executed without the dropout mechanism in place. 

 

 

6    EXPERIMENTAL SETUP: DESCRIPTION OF THE GENERATED DATASET FOR EVALUATION 

All evaluations were carried out in Python / Anaconda 2.2.0, running on a desktop with a 2.40 GHz 
CPU, 16 GB RAM, and 500 GB hard disk. following experiments were d-signed to evaluate the 
performance of Dropout-ELM (it is noted that all the results in this paper are averages of 10 repeated 
independent experiments. 

Experiment 1: Using ELM and ELM-Dropout method for real-world datasets, which have been chosen 
based on a small sample-sized classification problem for multiclass attributes. 

Experiment 2: Using ELM and ELM-Dropout method for Artificial dataset, which has been generated 
based on a small sample-sized classification problem for multiclass attributes. To comprehensively 
evaluate the efficacy of the Dropout regularization technique when applied to the Extreme Learning 
Machine (ELM) classifier, particularly within the constraints of small sample size data, a two-fold 
approach was adopted. This involved the utilization of both synthetic and real-world datasets. For 
the synthetic dataset, the Weka application was employed on a laptop to generate controlled data 
instances. The primary objective behind generating synthetic data was to exercise precise control 
over the dataset's characteristics. This approach allows for a meticulous examination of the influence 
of varying feature numbers and instance sizes on the performance of the model under investigation. 
Furthermore, the inclusion of real-world datasets is a crucial aspect of this evaluation process. By 

  

Figure 1: Standard neural network Figure 2: After applying dropout 
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incorporating genuine datasets into the analysis, the applicability and effectiveness of the Dropout 
regularization technique on the ELM classifier can be assessed in scenarios that more closely mimic 
real-world conditions. This juxtaposition of synthetic and real data enhances the robustness and 
relevance of the study's findings. In essence, this hybrid methodology provides a comprehensive 
evaluation framework, offering insights into how the Dropout regularization technique impacts the 
performance of the ELM classifier in the context of both controlled synthetic data and authentic real-
world data. This approach ensures a balanced and insightful analysis that can contribute significantly 
to our understanding of the technique's utility in handling small sample size data. 

7 DATASET 

7.1 Artificial dataset 

This experiment starts with the generation of artificial data using WEKA software [14]. Data sets are 
generated with a built-in data generator in WEKA using the properties shown in Table 1. 

Data sets will be generated with a number of features ranging from 50 and 100. Furthermore, for 
each feature number, 3 data sets will be produced, each with a different number of instances ranging 
from 100,200, 300, and 400 with an interval of 100, yielding a total of 8 data sets. Finally, the number 
of Classes is set as 3. The naming, number of instances, number of features, and instance-to-feature 
ratio (N/M) for data sets were listed in Table 1 as well. By varying the number of features and 
instances, the generated datasets encompass different levels of data sparsity and complexity. This 
diversity allows for a comprehensive evaluation of the Dropout-ELM classifier's performance under 
various conditions and provides valuable insights into its behavior with small sample size data. For 
clarification, the naming of data sets with 50 features will be prefixed with the alphabet ‘A’, and 100 
features will be prefixed with the alphabet ‘B’. The class number will be after the name of the data set 
with an ‘_’ separator. For example, a data set with the name ‘B4_3’ will have 3 classes.   For both types 
of datasets used in this research, the number of instances in a data set is N, and the number of features 
is M. According to Vapnik [15], a data set was considered small when the ratio N/M is less than 20 
[16].         

 

Table 1: Naming and properties of c data sets. 

Data set Instance Feature Class N/M 

A1_2 100 50 2 2 
A2_2 200 50 2 4 
A3_2 300 50 2 6 
A4_2 400 50 2 8 
B1_3 100 100 3 1 

B2_3 200 100 3 2 
B3_3 300 100 3 3 
B4_3 400 100 3 4 
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7.2 Real-world dataset 

In the first stage of this experiment, the real data will be chosen based on a small sample-sized 
classification problem for multiclass attributes and it will be used to evaluate the new ensemble 
classifier. For this stage, the real data will be randomly from the Kaggle website [17]. 

Five data sets will be used for features 4,28,34,64 and 10. Each with a different number of instances 
which are 150,325,337,768 and 100. The number of classes was 2,4 and 10 classes. Table 2 presents 
the names, instance counts, feature counts, and the instance-to-feature ratio (N/M) for the datasets. 

 

Table 2: Naming and properties of Real-Word data sets. 

NO Data Set INSTANCE FEATURE CLASS N/M 

1 Iris 150 4 2 18.7 

2 Forest 325 28 4 11.60 

3 Ionosphere 337 34 2 9.9 

4 Pima 768 64 10 12 

5 Fertility 100 10 2 10 

 

For the next steps, the generated datasets with their respective characteristics will serve as the 
foundation for conducting the experimental evaluation of the Dropout-ELM classifier's performance. 
The model will be trained and tested on these synthetic datasets, and the results will be analysed and 
compared to determine the effectiveness of Dropout regularization in handling small sample size 
data in the context of the ELM classifier. 

8 EXPERIMENTAL RESULTS AND ANALYSIS 

As mentioned in the previous section, there are 2 experiments, the first using artificial data sets, and 
the other involving real-world data sets. To verify the effectiveness of the proposed algorithm 
denoted by Dropout-ELM for convenience, experimentally compare the proposed algorithm 
Dropout-ELM with the original ELM on 13 small data sets. In the 13 data sets, there are 8 artificial 
data set and 5 real-world data set from the Kaggle website. Our primary objective was to validate the 
effectiveness of the Dropout-ELM algorithm through comprehensive comparisons. In the 
experiments, each data set is randomly partitioned into training and testing sets, with 80% of 
instances used for training and 20% for testing. 

8.1 Classification results on artificial data sets 

The classification results obtained using the original ELM algorithm and Dropout-ELM on artificial 
data sets are showcased. The outcomes of this experiment are summarized in Table 3. 
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Table 3: Experimental results on artificial data sets using normal ELM and Dropout-ELM 

 Results on Artificial data sets 
using Normal ELM 

Results on Artificial data sets 
using Dropout-ELM 

Datasets Hidden 
nodes 

Average 
Train 
Accuracy 

Average 
Test 
Accuracy 

Different Train 
Accuracy 

Test 
Accuracy 

Different 

A1_2 97 95.50 83.50 12 97.22 87.00 10.22 

A2_2 56 92.31 95.00 2.69 93.9 96.00 2.1 

A3_2 62 96.62 94.66 1.96 96.81 97.00 0.19 
A4_2 74 97.28 94.75 2.53 98.38 99.75 1.37 
B1_3 43 94.20 78.00 16.2 92.85 86.33 6.52 

B2_3 94 98.42 93.33 5.09 98.00 93.50 4.5 
B3_3 79 97.61 94.88 2.73 98.23 96.74 1.49 
B4_3 85 97.17 95.16 2.01 98.71 97.66 1.05 

 

8.2 Classification results on Real-World data sets 

To assess the impact of the proposed Dropout-ELM algorithm, experiments were conducted on 
different (Real-World) datasets, and the outcomes of these experiments are summarized in Table 4. 

Table 4: Experimental results on Real-world data sets using normal ELM and Dropout-ELM 

 Results on Real-world data sets 
using Normal ELM 

Results on Real-world data sets 
using Dropout-ELM 

Data Set Hidden 
nodes 

Train 
Accuracy 

Test 
Accuracy 

Different Train 
Accuracy 

Test 
Accuracy 

Different 

Iris 8 96.51 95.33 1.18 96.50 95.40 1.10 

Forest 40 83.45 82.60 0.85 82.85 83.10 0.25 

Ionosphere 60 93.53 89.09 4.44 92.22 94.14 1.92 
Pima 90 83.51 81.76 1.75 86.63 84.90 1.73 

Fertility 15 85.36 82.67 2.96 89.60 90.02 0.42 

 

From Table 3, which shows the result of artificial datasets in ELM and Dropout-ELM, a notable trend 
emerges. While the Normal ELM algorithm demonstrates impressive train accuracies across various 
datasets, the test accuracies sometimes fall short, indicative of potential overfitting. In contrast, the 
Dropout-ELM algorithm consistently achieves competitive test accuracies that are on par with or 
even surpassing the train accuracies. This alignment suggests that the Dropout-ELM algorithm 
effectively mitigates overfitting tendencies, resulting in more balanced performance on unseen data. 
In addition, from the experimental results presented in the tables above, it is evident that the 
Dropout-ELM algorithm consistently exhibits improvements over the original ELM algorithm. 
Notably, in various instances, the test accuracy of the Dropout-ELM algorithm surpasses that of the 
original ELM, indicating its effectiveness in enhancing generalization performance. The utilization of 
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dropout in the ELM framework appears to alleviate overfitting, leading to more reliable and robust 
results. 

9 CONCLUSION  

The study focused on assessing the effectiveness of the Dropout-ELM algorithm, an augmentation to 
the conventional Extreme Learning Machine (ELM). Extensive experiments were conducted across 
diverse datasets, both artificial and real-world, to investigate the impact of Dropout-ELM on 
classification performance. 

The experiments consistently revealed that Dropout-ELM outperforms the traditional ELM approach 
by addressing overfitting, a prevalent challenge in machine learning. By introducing dropout during 
training, Dropout-ELM enhances model generalization. The algorithm's capacity to prevent excessive 
reliance on specific features or neurons contributes to more adaptable and robust models. The 
outcomes underscore the potential of Dropout-ELM to enhance test accuracies, indicative of better 
generalization across datasets, with an overall percent improvement range observed between 0.19% 
and 16.20%. This improvement aligns with the overarching goal of machine learning deploying 
models that excel with unseen data. Dropout-ELM's efficacy in mitigating overfitting makes it a 
valuable technique for bolstering the reliability of ELM-based classification tasks. 
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