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Abstract: In this study a numerical scheme was developed in order to overcome the problem of 

shock wave for the test case of dam break. The numerical scheme was based on Godunov approach 

of finite volume method to solve the shallow water equation. In order to expedite and improve the 

solution an approximate Roe’s Riemann solver associated with Monotone Upstream-centred 

Scheme for Conservation Laws (MUSCL) was applied. The results were presented in one and two 

dimensional and verifications were made with analytical solution. The results are comparable and 

a good agreement is achieved between numerical and analytical. 
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PACS: 47.11.Bc, 47.11.Df 

1 Introduction 

A wide variety of physical phenomena are governed by mathematical models of the so-called 

shallow water type. An important class of problems of practical interest involves water flows with 

the free surface under the influence of gravity. This class includes tides in oceans, breaking of waves 

on shallow beaches, roll waves in open in channels, flood waves in rivers, surges and dam-break 

wave modeling. Shallow water equations have been widely used to model waves in the atmosphere, 

rivers, lakes and oceans as well as gravity waves in a smaller domain, e.g. surface waves in a bath. 

In order for shallow water equations to be valid, the wave length of the phenomenon they are 

supposed to model has to be much higher than the depth of the basin where the phenomenon takes 

place. Shallow water equations are especially suitable to model tides which have very large length 

scales (over hundreds of kilometer). For tidal motion, even a very deep ocean may be considered as 

shallow as its depth will always be much smaller than the tidal wave length [1]. 
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The most challenging feature of the shallow water wave equations is that they admit 

discontinuities and smooth solutions. Even the case in which the initial data is smooth can lead to 

discontinuous solutions in finite time. The non-linear character of the equations also means that 

analytical solutions to these equations are limited to only very special cases. Their non-linear 

character often yields discontinuous solutions. Such discontinuous often called ‘shock’ or ‘shock 

waves’, trigger the failure of a number of classical numerical methods.  So, therefore the numerical 

methods are needed to approximate these equations. Their non-linear character often yields 

discontinuous solutions. 

In order to overcome the discontinuities problem due to shock, many numerical schemes were 

developed. One of them is numerical scheme based on the Gudanov approach which is aiming the 

best solution around the discontinuities.  

In this paper the explicit conservative schemes was examined for the solution of the one and two- 

dimensional homogeneous shallow water wave equations using the finite volume method associated 

with approximate Roe’s Riemann solver. Then a well known analytical solution to the dam-break 

problem was used to assess the performance [2]. 

 

2 Shallow Water Equations 

The two-dimensional shallow water equations with source terms may be written in vector 

form, 
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where U is the vector of conserved variables, F and G are the flux vectors in the x- and y-directions 

and S represents a source term vector. The vectors U, F and G can be expressed in terms of the 

primary variables u, v and h as 
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where g is the acceleration due to gravity, h the water depth, u and v are the flow velocity in the x- 

and y-directions, respectively. While
x

S
0

and
y

S
0

 are the bed slopes in the two-Cartesian directions. 

The friction slopes
fx

S and 
fy

S  have been estimated using the Manning resistance law  
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in which η  is the Manning resistance coefficient. But in this paper, the bed was taken as constant 

in depth and friction was ignored, thus the source term is zero. 

3 Numerical Method 

There are a variety of numerical techniques for approximating, e.g. finite difference methods, 

finite element methods, finite volume methods, etc. In this paper, we will discuss the finite volume 

method associated with Roe’s approximate Riemann solver [3, 4, 5]. Finite volume methods have 

several advantages over finite difference and finite element approaches. Finite volume methods 

combine the simplicity of finite difference methods with the geometric flexibility of finite element 

methods. Finite volume methods are based on the integral form of the conservation equations, thus 

a scheme in conservation form can easily be constructed to capture shock waves [6]. A finite 

difference scheme that is not conservative may propagate discontinuities at the wrong wave speed, 

if at all, giving inaccurate numerical results. Dissipation occurs when the travelling wave’s 

amplitude decreases resulting in the numerical solution being smeared. Dispersion occurs when 

waves travel at different wave speeds and results in oscillations being present in the numerical 

results. Both dissipation and dispersion can cause very significant errors in the numerical results 

and sometimes give completely inaccurate numerical results [7]. 

3.1 Godunov approach of finite volume method 

The aim of the Godunov approach is to provide the best solution around the discontinuity. Such 

discontinuities, often called ‘shocks’ or ‘shock waves’, trigger the failure of a number of finite 

different numerical methods. In these methods, space is discretised into volumes, more often called 

cells, hence the general term of finite volume method. The numerical solution is not characterised by 

its value at a set of points, but by its average over the cells. The evolution of the solution in a given 

cell is determined by the exchange (via fluxes) at the interfaces with all the neighbouring cells. In 

this approach, the fluxes are computed by solving Riemann problems at the interfaces between the 

cells. 

The solution of the Riemann problem is a key ingredient of Godunov-type schemes. It is 

achieved using what is called a Riemann solver. In applying the finite volume scheme in this work, 

the Roe’s Riemann solver was adopted to solve the Riemann problems. The Roe’s solver [5, 8] may 

be the most widely applied Riemann solver to date. The basic idea of this solver is to change the 

hyperbolic system of conservation laws to be solved to an equivalent of linear systems. 

 

3.2 MUSCL –type high-order method 

In order to achieve high-order of accuracy and avoid spurious oscillation, an approach known as 

Monotone Upstream-centred Scheme for Conservation Laws (MUSCL) was adopted. This approach 

was first applied by Van Leer [9] in the first-order Godunov method. The approach involves 
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reconstructing the piece-wise constant { }n

j

n

i
vu ,  by replacing with piecewise linear functions 

( )xu
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and ( )yv
j

. As for the first order Godunov method, it could be assumed that 
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3.3 Slope limiter method 

The construction of non-linear versions was taken by replacing the slopes 
ji.

∆  in the data 

reconstruction step with limited slope
ji.

∆ . The limited slope is expressed in terms of slope limiter 

as 
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where 
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The ω  = 1 was used in the simulations. Combine the equation (6) and (7) gives 
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The slope limiters 
i

Φ and
j

Φ proposed by Hirsch (1990) were used in the simulations. It is 

defined as 

( ) ( ) ( )[ ],,min,1,min,0max ββ
xxxi

rrr =Φ   (9a) 

( ) ( ) ( )[ ],,min,1,min,0max ββ
yyyj

rrr =Φ  (9b) 

where the limiter parameter 21 ≤≤ β , and the gradient ratio is given by 
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The choice β  is 1.5 used in the slope limiter. 

3.4 Eigenstucture in term of conserved variables 

The Jacobian matrix (A) corresponding to the flux 
'F is given by 
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The eigenvalues of A 
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where  
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where subscript R and L are the right and left states of variable, g = gravity acceleration. 

The wave strengths 
321

~,~,~ ααα in term of the Roe averaged are: 
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Numerical flux has been described by Toro [10] 
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From numerical flux above, the new value of the conserve variable can be determined with the 

equation 
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For the spatial step size, x∆ , is fixed and we use a variable time step 
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( )
ki
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where
k

λ are the eigenvalues of the Jacobian matrix and Ccfl is the required CFL number (Courant, 

Friedrichs and Lewey). The scheme discussed in this paper is stable for 1≤
cfl

C . To ensure the error 

of a numerical scheme does not grow, the variables are non-dimensionalised so that the spatial and 

time step-sizes are less than one, i.e. 1<∆x and 1<∆t  [11]. 

3.5 Boundary condition 

The application of boundary conditions is fundamentally a physical problem. Numerically, we 

can implement the physically derived boundary conditions in such a way that the same scheme will 

be applicable to all cell i, i = 1,…,m. Two fictitious cells are required next to each reflective or 

transmissive boundary condition. To simulate transmissive boundaries, we set 
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For the reflective boundaries are handled by the boundary conditions  
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4 Verification of the Finite Volume Schemes 

To determine the accuracy of the finite volume numerical scheme, we will test the case of one- 

and two-dimensional dam break problem. 

4.1 Test case: the one-dimensional dam break problem 

For analytical solution one-dimensional dam break problem has been tested by Stoker (1957). 

The test problem consists of 1D channel of length 1 m with walls at either end (Fig. 1). The initial 

velocity ( )u  is 0 and a barrier is present at ,5.0=x  which is removed at 0=t s.  The initial 

conditions are 

0)0,( =xu  and 

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Stoker (1957) derived an analytical solution of the dam break problem which can be used to 

check the accuracy of the numerical schemes. 
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The analytical solution with 
L

h = 1 m and 
R

h = 0.5 m is illustrated in Figure 1 where the bore 

speed is approximately 875259579181201.2=S . For a more in depth analysis on how the value of 

S was obtained see [2] and [12]. 

Figures 2 and 3 show the comparison between analytical and numerical for water depth and 

water velocity at 0.04s respectively. 

 

 
Figure 1: Initial conditions for the dam break problem. 
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Figure 2: Roe’s numerical scheme and analytical solution of the dam break test problem for  t = 

0.04s. 
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Figure 3: Roe’s numerical scheme and analytical solution of the dam break test problem for t = 

0.04s. 

4.2 Test case: the two-dimensional dam break problem 

For analytical solution two-dimensional dam break problem there is no reference. We use the 

case 1D dam break problem by stoker, but we made the case became two-dimensional with extend 

domain length along x- and y-directions. We assume the dam break on the whole.  The test problem 

consists of 2D channel of length 1 m along x-direction and 1 m along y-direction. The initial 

velocities ( )u and ( )v  are 0 m/s respectively for x- and y-directions and a barrier is present at x = 0.5 

which is removed at t = 0 s the initial conditions are 
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In this paper, we only tested the case at t = 0.04 s and t = 0.08 s. From the numerical result 

tested, it has represented the numerical scheme overall. For the initial condition, it shows in Figure 

4. 
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Figure 4: Initial dam break problem. 

 

Figure 5: Numerical result of Roe’s scheme for dam break problem at t = 0.04 s in (h). 

 

Figure 6: Numerical result of Roe’s scheme for dam break problem along x-direction  

at t =0.04 s in (u). 
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Figure 7: Numerical result of Roe’s scheme for dam break problem along y-direction  

at t = 0.04 s in (v). 

 

Figure 8: Numerical result of Roe’s scheme for dam break problem at t =0.08 s in (h). 

 

Figure 9: Numerical result of Roe’s scheme for dam break problem along x-direction  

at t = 0.08 s in (u). 
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Figure 10: Numerical result of Roe’s scheme for dam break problem along y-direction  

at t =0.08 s in (v). 

Numerical results of two-dimensional dam break problem have been shown in Fig. 4 until Fig. 

10. For Figures 5-7 show water depth (h), velocity in x-direction (u) and y-direction (v) respectively 

at t = 0.04 s. While Figures 8-10 show water depth (h), velocities in x-direction (u) and y-direction 

(v) respectively at t = 0.08 s. For the time steps, we used Courant Friedrichs-Lewy (CFL) number 

0.9 and 025.0=∆x m. We set transmissive boundary conditions along x- and y-directions. 

5 Discussion and Conclusion 

Finite volume method using Roe’s approximate Riemann solver for the solution of the dam 

break problem in one and two dimensional has been described. The mathematical model used is 

represented by the two-dimensional shallow water equations. The advantages of using Riemann 

solvers to describe rapidly varying shallow water flows became apparent in the early 1990s. The 

shallow-water equations (SWEs) describe the conservation of mass and momentum in shallow 

water bodies, and are particularly amenable to solution by finite volume Godunov-type approaches 

where Roe’s approximate Riemann solver can be used to evaluate in viscid fluxes. 

The comparisons between analytical and numerical results for the 1D dam break problem have 

been shown, where the results could represent to two-dimensional in the same cases. Finite volume 

method provides more accurate results than Finite Difference Method [7]. 

Until recently it was considered that two-dimensional tools could not be applied to large 

domains, for reasons of computer time and memory. Further researches are desirable in order to 

solve some problem with source terms and also modified computing algorithm in order to obtain 

short time computing for the large domains. 

 From the numerical schemes and results discussed above, we can conclude that the Roe’s 

scheme is very powerful to solve dam break problem in one- and two-dimensional. Sometimes 

Roe’s scheme can produce the problems. But in general, Roe’s scheme is quite stable and very non-

viscous. 
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