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ABSTRACT 

This paper presents an approach for the optimal integration of multiple distributed generation 
(DG) sources in a radial distribution system. The integration of DG sources poses various 
challenges such as can lead to higher power losses caused by reverse power flow, voltage 
exceeding secure limits, voltage stability, power quality, and economic operation. To address 
these challenges, a hybrid algorithm is proposed which combines the benefits of both 
Evolutionary Programming and Firefly Algorithm. The proposed hybrid Evolutionary - Firefly 
Algorithm is employed for the determination of the optimal size of the DG sources. The objective 
of the proposed algorithm is to minimize the total system power losses and improve the voltage 
profile. The algorithm considers various constraints including the DG capacity limits and voltage 
limits. A comprehensive case study is conducted on a radial distribution system to demonstrate 
the effectiveness of the proposed approach. The simulation results show that the hybrid 
algorithm can find the optimal size and location of DG sources while achieving the desired system 
performance. The integration of multiple DG sources leads to a significant reduction in power 
losses and improved voltage profile. Furthermore, the proposed approach provides a flexible 
framework for the optimal integration of DG sources in radial distribution systems, allowing for 
the accommodation of different types and capacities of DG sources. The proposed technique is 
tested on the IEEE Reliability Test systems, specifically the IEEE 69-bus. The combination of DG 
at bus 61 and bus 27 yields a loss reduction index of 94%. 

Keywords: Distributed generation, Evolutionary Programming, Firefly Algorithm, Hybrid 
Evolutionary - Firefly Algorithm, loss reduction index 
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1 INTRODUCTION 

Distributed generation (DG) in power systems is gaining attention because the technology can benefit 
both utilities and utilities user. The use of DG technology is increasing and demand as it brings profits 
from both technical, economic, and environmental aspects. DG is used to meet the increasing 
demands of power in the time peak because its output power is easily controlled through the 
management of module units. Additionally, distributed generators can benefit utilities by providing 
voltage support, improving safety, and reducing power loss. Meanwhile, from the user's perspective, 
distributed generators can benefit by providing backup power during power outages and by 
providing financial benefits for additional power produced. There are numerous distributed 
generation technologies on the market today [1]. 

Basically, DG technology is divided into two types, that is, technology based on renewable energy 
sources and technology based on fossil energy sources. Generators distributed energy-based novelty 
is like photovoltaic, wind turbine and biomass while fossil-distributed generators are diesel engines, 
microturbines, and heat power combined generator. Use distributed generators play an important 
role and can be beneficial and aspects of reliability, stability, safety, and efficiency of the electrical 
power system Despite the benefits, connecting a distributed generator into an existing power system 
may result in changes to the network's technical characteristics that could cause problems. To ensure 
the connection of distributed generator units produces expected benefits, determination of location 
and optimal capacity for distributed generators is important. Optimal size of distributed generation 
and suitable location can provide technical and economic benefit to utilities by minimizing loss of 
power, increase stability, increase reliability, and reduce operating and maintenance costs [2]–[4]. 

DG is a concept that aims to decentralize electricity generation by installing small generators on or 
near customer sites or load centers. Conventionally, electric power is generated at centralized 
facilities and distributed to loads through transmission and distribution systems. The primary 
purpose of these distributed generation plants is to meet the increasing demand for electricity in 
specific regions and to enable certain activities to be self-sufficient in terms of power generation, 
resulting in cost reductions compared to conventional or centralized power generation stations. It 
has been observed that conventional or centralized power plants pose challenges in the electricity 
generation process due to their emission of environmentally hazardous gases, which contribute to 
ozone depletion in the environment. The size of DG is defined as the total power supplied by all the 
DG connected to the system to the total load of the system.  The DG can be placed at any possible 
location in the distribution network. There are various feeder nodes in the distribution system, and 
the conceivable placement of the DG can be determined by the selected feeder node. The benefits of 
DG can only be realized by selecting the correct DG dimension and connecting it at the proper location 
in the system. DG has a substantial effect on the system's voltage profile [5].  

Traditional optimization techniques, such as gradient methods, quadratic programming, linear 
programming, and dynamic programming have been used to solve optimization problems in power 
systems studies, particularly for DG allocation and sizing. However, due to the complexity of these 
problems, it may be difficult for these methods to identify optimal global solutions. In contrast, 
evolutionary computing techniques have proven to be highly effective in addressing a variety of 
search, classification, and optimization problems [6]. A hybrid evolutionary programming (HEP) 
optimization technique has been developed as a means of determining the optimal scale of DG [7]. 
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In this study, a comparative analysis is conducted to evaluate the performance of a multi-DG 
installation with different combinations of DG types and determine the optimal sizing of DG using the 
hybrid Evolutionary Programming-Firefly Algorithm. The proposed technique is tested on the IEEE 
Reliability Test systems, specifically the IEEE 69-bus. The program is implemented using the 
MATLAB programming software. 

2 DG ALLOCATION 

Recently, Distributed Generators (DGs) have been rapidly expanding their presence in distribution 
networks all over the globe. The advantages of incorporating DG into an already established utility 
system include: 

i. Reduced environmental consequences. 

ii. Enhanced global energy effectiveness. 

iii. Transmission and distribution congestion has been alleviated. 

iv. Voltage support 

v. Utilization of renewable resources, including wind, solar, hydro, biomass, geothermal, and 
ocean energy. 

vi. Line loss decrease. 

Additionally, it has been shown that inappropriate distribution or the size of DG can have a negative 
impact on the system. Researchers have utilized cutting-edge methodologies such as the BEE Colony 
Algorithm, Mixed Integer Non-Linear Programming, Exhaustive Load Flow (ELF) Method, Particle 
Swarm Optimization, Fuzzy-Genetic Algorithm, Hereford Ranch Algorithm, Ant colony search, 
Differential Evolution Approach, and Heuristic Curve-Fitted Technique in this loss-reduction strategy 
based on DG allocation. According to the literature, this promising method of Loss Minimization is 
gaining widespread attention due to its critical benefit of minimizing network loss while also 
providing electrical energy supply to meet demand crises and attempting to investigate new 
techniques to maximize benefit [8]. 

3 METHODOLOGY 

The purpose of this study is to determine the optimal size, location, and type of DG by minimizing 
total losses as well as the cost of system losses from the distribution utility's perspective, rather than 
simply reducing system loss. The optimal sizing of DG is obtained using proposed HEPFA. To evaluate 
total losses, a load flow program is simulated in the base case. The resulting load flow values are 
recorded and used to compare the results obtained using the proposal method. In each instance, the 
fitness value was calculated based on the objective function specified. The optimal installation bus 
size is optimized by minimizing the objective function based on different cases. The proposed 
methods were evaluated utilizing the IEEE 69-bus Reliability Test system, and the MATLAB 
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programming tools were utilized during the development of the program. The schematic diagram for 
the test system is shown in Figure 1. 

 

 

Figure 1: IEEE 69-Bus Distribution System 

3.1 Problem Formulation 

The details of problem formulation are discussed in this section. Equation (1) computes the CL and 
equation (2) computes the loss factor in terms of load factor (Lf).  

CL = (Tloss) ∗ (Kp + Ke ∗ Lsf ∗ 8760) ( 1 ) 

Lsf = k ∗ Lf + (1 − k) + Lf  ( 2 ) 

Where K=0.2, Lf=0.47, Ke=0.00961538, Kp=57.6923. 

Total loss (TLoss) is the total real power losses in megawatts, Kp is the yearly demand cost of power 
loss in dollars per kilowatt, Ke is the CL in dollars per kilowatt hour, and Lsf stands for loss factor.  
VPI indicates the difference in voltage profile between a bus. It functions as a metric to evaluate the 
efficacy of voltage enhancements in the system while DG is optimally positioned. The VPI index is 
defined by equation (3) and it should preferably be less than 0.05 given that the minimum voltage is 
limited to the range 0.95≤ Vm≤ 1.05. 

VPI =
𝑉𝑖 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − 𝑉𝐷𝐺

𝑉𝑖 𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 ( 3 ) 

Modifications must be made to the selected networks to enable DG installation. In the following 
stages, voltage deviation is considered for objective function evaluation to determine the impact of 
DG utilization on the network. According to the assumptions, the slack bus remains constant and is 
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excluded from the calculation of voltage deviation. The voltage deviation is calculated as shown in 

(4). Vdev is the total voltage deviation of network buses. 

𝑉𝑑𝑒𝑣 =
∑ 1 − 𝑉𝑖𝐵𝑢𝑠 𝑖𝑁𝑜

𝑖=2

𝐵𝑢𝑠 𝑖𝑁𝑜 − 1
 ( 4 ) 

To display the top ten places for DG installation, the voltage profile has been sorted in ascending 
order. Calculating power losses typically lead to calculating the difference between injected power 
and consumed power at various system nodes or branches. The loss reduction index (LRI) is 
calculated using (5). 

Loss Reduction Index (LRI) =
Tlosswithout DG − Tloss𝑤𝑖𝑡ℎ 𝐷𝐺

Tlosswithout DC
   ( 5 ) 

 

3.2 Proposed HEPFA Optimization Technique 

The HEPFA technique was created to minimize total losses and meet the voltage limitation set 
in the system. It employs several of the Firefly Algorithm's (FA) features in conjunction with the 
traditional EP method. Lawrence J. Fogel is credited with being the one who initially thought up the 
stochastic optimization approach known as the EP [9]. The initialization procedure in EP is what's 
responsible for generating random numbers at the initial stage. To produce new individuals, often 
referred to as offspring, the mutation process is applied to each individual value that is based on the 
population.  The process of producing children whose behavior influences the search for the optimum 
ideal value requires mutation, which is a key step in the process. After that, the offspring population 
is combined with the parent population while the process of combination is taking place, this results 
in an increase in the total number of individuals.  

The results of previous studies imply that combining a variety of optimization strategies can 
result in increased efficiency as well as resilience. To lessen the load of computational work and 
cut down on the amount of time lost due to inaccurate location, the convergence criterion in this 
investigation has been set to 200 iterations. The rand function in MATLAB, which produces 
random values that are uniformly distributed between 0 and 1, is used to create a random 
variable to initialize DG size. These random numbers fall somewhere between 0 and 1. These 
arbitrary numbers stand in for the variable xi, which oversees directing the optimization 
procedure. After population has been generated, the objective function is calculated to 
determine the level of fitness it possesses before it is analyzed. During the firefly attraction 
operation, the initial location of each solution is compared with the initial location of its 
neighboring solution, and the firefly attractiveness is assessed as a result. The process of 
mutation involves the random modification of individual values, with only a remote possibility 
of the offspring being passed on. New values are calculated by combining data from parents or 
the original data with mutations by using the formula in equation (6). The combined dataset is 
then sorted, with the lowest power losses determined.  

Ai + mj = Aij + N(0, β(Aj max –  Aj min )(
fi

fmax
) ( 6 ) 
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𝐴𝑖 + 𝑚𝑗 = Mutated clones  

Aij = Clones  

N = Gaussian random number  

β = Mutation scale, 0 < β > 1 

Aj max = Highest random number  

Aj min = Lowest random number   

ƒi = Fitness for ith random number 

ƒmax = Maximum fitness 

The HEPFA case study is described in Table 1. Various scenarios with and without DG installation are 
assessed. The table outlines the categories and quantities of DG utilized in each case. Case 0 will run 
the power flow program for the base case to compare the performance with DG installation. The 
location will be determined based on the lowest voltage value recorded during simulation for the 
base case. For case 1, only one unit of DG type 3 is considered. Only ten buses will be selected to the 
location based on the simulation's lowest recorded voltage profile value for the base case. Case 2 will 
optimize the 2 units of DG, with the first unit being DG type 3 installed on bus 61 and the second unit 
being DG type 1. DG1 will be set as DG type 3 and DG2 will be set as DG type 2 for case 3. Case 4 will 
optimize DG type 3. 

Figure 2 illustrates the flowchart for the proposed HEPFA technique. The mutation process in 
this case utilizes the Gaussian mutation method. The analysis includes evaluating DG sizing, 
active power losses (Ploss), reactive power losses (Qloss), cost of energy losses (CL), minimum 
voltage (Vmin), maximum voltage (Vmax), Voltage profile index (VPI), and the number of 
iterations. 
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Figure 2: The Flowchart for implementation of proposed HEPFA 
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Table 1 : The case study associated with the proposal hybrid-HEPFA technique. 

Case Without DG 

DG1 (DG UNIT #1) DG2 (DG UNIT #2) 

Type Type 

1 2 3 1 2 3 

0 √ - - - - - - 

1 - - - √ - - - 

2 - - - √ - - √ 

3 - - - √ √ - - 

4 - - - √ - √ - 

 

4 RESULTS AND DISCUSSION 

This section presents the results obtained using the proposed technique. The data was run without 
DG and then with DG. The proposed techniques were validated using the EEE 69-bus Reliability Test 
system, and the program was written in the MATLAB programming language. 

4.1 Result of Case 0 (without DG) 

The base case results for total losses of the 69-bus system, the result from the simulation shown the 
value and graph to find the suitable location. Observations from simulations conducted led to the 
decision to implement the DG at the lowest voltage profile value. The voltage profile for the base case 
is shown in ascending order in Table 2. According to the voltage profile results listed n ascending 
order, the deal location s bus 65, which has a voltage profile of 0.9299, 64 of 0.9305, 63 of 0.9324, 62 
of 0.9327, 61 of 0.9330, 60 of 0.9403, 59 of 0.9452, 58 of 0.9494, 57 of 0.9602, and 27 of 0.9760. 
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Table 2 : Voltage profile for the base case in ascending  

No Bus No Vm No Bus No Vm No Bus No Vm 

1 65 0.929996 24 56 0.982184 47 48 0.998816 

2 64 0.930557 25 13 0.984778 48 41 0.99895 

3 63 0.932415 26 55 0.986455 49 35 0.999053 

4 62 0.932794 27 69 0.98732 50 34 0.99912 

5 61 0.933077 28 68 0.987321 51 33 0.999456 

6 60 0.940309 29 12 0.987644 52 40 0.999648 

7 59 0.945221 30 67 0.990686 53 39 0.99965 

8 58 0.949404 31 66 0.990687 54 38 0.999696 

9 57 0.960216 32 11 0.990742 55 32 0.999712 

10 27 0.976028 33 54 0.990828 56 31 0.999819 

11 26 0.976047 34 10 0.991822 57 30 0.99984 

12 25 0.976115 35 53 0.993998 58 37 0.999854 

13 24 0.976281 36 50 0.994427 59 29 0.999961 

14 23 0.976434 37 49 0.994972 60 1 1 

15 22 0.976504 38 9 0.996722 61 7 1 

16 21 0.976511 39 52 0.997788 62 2 1.00002 

17 20 0.976984 40 51 0.997798 63 36 1.000026 

18 19 0.977276 41 8 0.997833 64 28 1.000033 

19 18 0.977732 42 46 0.998512 65 3 1.00004 

20 17 0.977741 43 45 0.998513 66 47 1.000061 

21 16 0.978604 44 44 0.998611 67 4 1.00011 

22 15 0.979126 45 43 0.998619 68 6 1.000185 

23 14 0.981938 46 42 0.998658 69 5 1.000628 

 

4.2 Result of Case 1 (DG1 Type 3) 

Table 3 exhibits the results of the proposed HEPFA technique incorporating 2 DG units, both of which 
are DG type 3. The first combination from DG at bus 61 and bus 27 demonstrates a 94% LRI index, 
which is the highest. The second simulation reveals that the percentage, 89%, corresponds to a 
slightly lower proportion of LRI than 94%. DG is located at bus 61 and 46. The third simulation 
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demonstrates that 90% s achieved when DG s installed on buses 61 and 50. The data demonstrate 
varying levels of achievement, with the first percentage being the highest, followed by the third 
percentage, and finally the second percentage. 

 

Table 3 : A summary of the simulation results for ten suggested locations using HEPFA technique. 

Bus 

location 
65 64 63 62 61 60 59 58 57 27 

P DG 

(MW) 
1.5419 1.7496 1.9089 1.9458 1.9712 2.0232 2.0668 2.0993 2.1985 0.6558 

Q DG 

(MVAR) 
0.8104 0.9196 1.0033 1.0227 1.0360 1.0633 1.0863 1.1033 1.1555 0.3447 

P loss 

(MW) 
0.0641 0.0436 0.0311 0.0282 0.0263 0.0375 0.0462 0.0542 0.0754 0.1930 

Q loss 

(MVAR) 
0.0350 0.0248 0.0183 0.0167 0.0157 0.0214 0.0239 0.0265 0.0336 0.0859 

Cost of 

energy 

losses 

5.1580 3.5064 2.5032 2.2693 2.1142 3.0189 3.7166 4.3619 6.0685 
15.537

5 

Vmin 

(p.u) 
0.9690 0.9707 0.9720 0.9723 0.9725 0.9728 0.9731 0.9733 0.9728 0.9146 

Vmax 

(p.u) 
1.0030 1.0018 1.0010 1.0009 1.0008 1.0011 1.0013 1.0014 1.0017 1.0007 

VPI 0.0310 0.0293 0.0280 0.0277 0.0275 0.0272 0.0269 0.0267 0.0272 0.0854 

Percentag

e (LRI) 
74% 82% 87% 88% 89% 85% 81% 78% 69% 22% 

 

4.3 Result of Case 2 (DG1 Type 3 and DG2 type 3) 

The proposed HEPFA technique was implemented which integrates two DG units. Both DG units are 
type 3 DG units. Table 4 tabulates the results of the proposed HEPFA technique incorporating 2 DG 
units, both of which are DG type 3. The first combination from DG at bus 61 and bus 27 demonstrates 
a 94% LRI index, which is the highest. The second simulation reveals that the percentage, 89%, 
corresponds to a slightly lower proportion of LRI than 94%. DG is located at bus 61 and 46. The third 
simulation demonstrates that 90% s achieved when DG s installed on buses 61 and 50. The data 
demonstrate varying levels of achievement, with the first percentage being the highest, followed by 
the third percentage, and finally the second percentage. 
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Table 4 : A simulation results of the hybrid HEPFA for case 2 (DG1 Type 3 and DG2 type 3) 

Bus location Bus 27 Bus 46 Bus 50 

P DG1 (MW) at bus 61 1.8960 1.9867 1.970 

Q DG1 (MVAR) at bus 61 0.9965 1.0442 1.035 

P DG2 (MW) 0.4190 1.9713 0.835 

Q DG2 (MVAR) 0.2202 1.0361 0.439 

P loss (MW) 0.0135 0.0263 0.024 

Q loss (MVAR) 0.0107 0.0157 0.010 

Cost of energy losses 1.0894 2.1142 1.934 

Vmin (p.u) 0.9918 0.9725 0.973 

Vmax (p.u) 1.0008 1.0008 1.001 

VPI 0.0082 0.0275 0.027 

Percentage 94% 89% 90% 

 

4.4 Result of Case 3 (DG1 Type 3 and DG2 type 1) 

Table 5 presents the results of the proposed HEPFA technique for Case 3 incorporating two units of 
DG as DG1 type 3 and DG2 type 1. integration DG at 61 and 27 has the greatest LRI percentage, at 
92%. The second percentage, 90%, represents the results of DG installation at bus 61 and bus 50. 
Lastly, the LRI for DG installation at bus 61 and 46 s only 88%. 

 

Table 5 : A simulation result of the hybrid HEPFA case 3 (DG1 Type 3 and DG2 Type 1) 

 Bus 27 Bus 46 Bus 50  

P DG1 (MW) at bus 61 1.9182 1.8023 1.9563 

Q DG1 (MVAR) at bus 61 1.0082 0.9473 1.0282 

P DG2 (MW) 0.3775 0.3293 0.6122 

Q DG2 (MVAR) 0.0000 0.0000 0.0000 

P loss (MW) 0.0180 0.0279 0.0248 

Q loss (MVAR) 0.0126 0.0170 0.0121 

Cost of energy losses 1.451 2.2458 1.9953 
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Vmin (p.u) 0.9891 0.9712 0.9724 

Vmax (p.u) 1.0008 1.0013 1.0002 

VPI 0.0109 0.0288 0.0276 

Percentage  92% 88% 90% 

 

 

4.5 Result of Case 4 (DG1 Type 3 and DG2 type 2) 

In Table 6 are the results of the proposed HEPFA technique that integrates 2 DG, with DG1 being of 
type 3 and DG2 being of type 2. It is evident from these tables that the system's loss reduction rate 
has increased significantly. The LRI percentage for the combination of buses 61 and 27 is the greatest, 
at 91%. 89% is the reduction index for the combination of DG installations at bus 61 and bus 50. The 
LRI percentage for the DG implementation on buses 61 and 46 is 86%. 

 

Table 6 : The Data simulation of the hybrid HEPFA (P loss MW) with DG type 3 & DG type 1 (Case 4) 

 Bus 27 Bus 46 Bus 50 

P DG1 (MW) at bus 61 1.9498 1.6151 1.9745 

Q DG1 (MVAR) at bus 61 1.0248 0.8489 1.0378 

P DG2 (MW) 0.0000 0.0000 0.0000 

Q DG2 (MVAR) 0.2851 0.6261 0.3943 

P loss (MW) 0.0214 0.0345 0.0255 

Q loss (MVAR) 0.0137 0.0220 0.0139 

Cost of energy losses 1.7240 2.7789 2.0544 

Vmin (p.u) 0.9775 0.9698 0.9725 

Vmax (p.u) 1.0008 1.0052 1.0009 

VPI 0.0225 0.0302 0.0275 

Percentage  91% 86% 89% 
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4.6 Comparative Study 

A comparative study was conducted between the case studies by analyzing the performance of each 
case. Table 7 lists the optimal output for two DG units with different combinations of DG type, and 
Figure 4.21 compares the Ploss n MW for various cases based on optimal output. The results indicate 
that Case 2 provides the best performance, with the lowest Ploss and the maximum LRI (94%) when 
compared to other cases. 

 

Table 7 : Best optimal output for each case of DG sizing. 

 Case 0 Case 1 Case 2 Case 3 Case 4 

P DG1 (MW) at bus 61 - 1.9712 1.8960 1.9182 1.9498 

Q DG1 (MVAR) at bus 61 - 1.0360 0.9965 1.0082 1.0248 

P DG2 (MW) at bus 27 - - 0.4190 0.3775 - 

Q DG2 (MVAR) at bus 27 - - 0.2202 - 0.2851 

P loss (MW) 0.225 0.0263 0.0135 0.0180 0.0214 

Q loss (MVAR) 0.102 0.0157 0.0107 0.0126 0.0137 

Cost of energy losses  2.1142 1.0894 1.4518 1.7240 

Vmin (p.u) 0 0.9725 0.9918 0.9891 0.9775 

Vmax (p.u) 1.0 1.0008 1.0008 1.0008 1.0008 

VPI - 0.0275 0.0082 0.0109 0.0225 

Percentage  - 89% 94% 92% 91% 

 

5 CONCLUSION 

The proposed HEPFA technique successfully demonstrates its effectiveness in minimizing the total 
losses and CL value and ensuring voltage constraints are met in power systems. By incorporating the 
properties of the Firefly Algorithm into the classical EP technique, the HEPFA provides a more 
efficient and robust optimization approach. The utilization of random variable initialization for DG 
sizing enables the exploration of various parameter combinations. The fitness evaluation based on 
the objective function allows for the assessment of the quality of each solution. The Firefly Attraction 
operation facilitates the comparison of solution attractiveness based on their locations. Additionally, 
the mutation process, implemented using the Gaussian mutation method, introduces randomness 
and diversifies the search process. Through testing on the on the IEEE 69-bus test system, derived 
from a distribution network the HEPFA technique is validated. Comparing Case 0, Case 1, Case 2, Case 
3 and Case 4 in the simulation, the result of Ploss in MW for various cases based on the optimal output 
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indicated that case 2 has a total loss as low as 0.0267 MW. The combination of DG at bus 61 and bus 
27 yields an LRI index of 94%. The second lowest Ploss in MW is 0.018 in case 3. Case 4 loss of 0.0214 
placed Ploss in third position, followed by case 1, Ploss of 0.02563. The results obtained from the 
HEPFA technique offer valuable insights for decision-making in power systems. By minimizing power 
losses and improving voltage profiles, the HEPFA contributes to enhancing the overall system 
performance. It provides a means to optimize the sizing and placement of DG installations, thereby 
facilitating the integration of renewable energy sources into the power grid. The combination of the 
Firefly Algorithm with the EP technique demonstrates its potential in addressing optimization 
challenges encountered in power systems.  The HEPFA presents a promising approach for achieving 
efficient and effective optimization, paving the way for future advancements in power system 
analysis and planning. 
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