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ABSTRACT 

This paper explores the application of deep learning models in waste material classification, 
motivated by the need for efficient waste management practices to address environmental 
sustainability concerns. Drawing parallels with the success of deep learning in healthcare 
domains, the study investigates the effectiveness of various deep learning architectures for waste 
material classification. The DenseNet201 model is proposed and compared with various deep 
learning models such as ResNet, MobileNetV2, AlexNet, and GoogleNet. Experimental results 
demonstrate that DenseNet201 achieves superior accuracy, average recall, and average 
precision, making it the most effective model for waste material classification. The dense 
connectivity and feature aggregation capabilities of DenseNet201 contribute to its outstanding 
performance, showcasing its potential for enhancing waste management processes. 

Keywords: waste material classification, deep learning, computer vision, convolutional 
neural networks, image processing. 

1 INTRODUCTION 

In recent years, the utilization of deep learning models has witnessed widespread adoption across 
various fields, marking a significant shift in how complex problems are approached and solved. 
Among these domains, waste material classification has emerged as a focal point, driven by escalating 
concerns surrounding environmental sustainability and waste management. With the imperative 
need for efficient methods to classify and segregate waste materials, deep learning models have been 
increasingly relied upon. 

Deep learning’s application in waste material classification mirrors its success in critical healthcare 
domains, such as brain tumor detection [1] and diabetic retinopathy detection [2]–[5]. In medical 
imaging, deep learning algorithms have been shown to achieve remarkable accuracy in analyzing 
complex patterns within images, facilitating early disease diagnosis and treatment planning by 
clinicians. Analogously, in waste material classification, these models leverage their capacity to 
discern intricate features from diverse waste compositions, thereby enabling automated sorting 
processes with unprecedented accuracy and efficiency. 
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Drawing insights from the successes of deep learning models in healthcare applications illuminates 
the immense potential they hold in waste material classification. This introductory perspective lays 
the groundwork for further exploration into the methodologies, challenges, and prospects of 
employing deep learning in the sustainable management of waste materials. 

Until now, the search for an accurate deep learning model for waste material classification remains 
a challenge. To date, the best model for waste material classification remains unknown. This paper 
aims to address this research gap by analyzing various deep learning models to assess their 
effectiveness in categorizing waste materials. 

The remainder of this paper is divided into several subsections. Section 2 presents the related works 
of this study. Section 3 discusses the methodology of this study. Section 4 presents the results 
obtained from the experiment. Finally, Section 5 concludes this paper. 

2 RELATED WORKS 

Several studies have explored the use of deep learning models to classify waste materials, addressing 
global environmental concerns and the need for efficient waste management practices. For example, 
Faria et al. [6] developed a method to automatically categorize waste into four main types (organic, 
glass, metal, and plastic) using the OrgalidWaste dataset, comprising approximately 5600 images 
from various sources. They trained several convolutional neural network (CNN) architectures, 
including VGG16, Inception-V3, and ResNet50, with VGG16 achieving the highest accuracy of 88.42%. 
This automated classification system offers significant benefits for waste management. 

Lin et al. [7] focused on sorting recyclable waste using deep learning techniques to support the 
transition towards a circular economy. They tested several ResNet architectures, including ResNet18 
and ResNet34. Moreover, they introduced RWNet models based on ResNet structures, achieving an 
overall accuracy of around 88%, with RWNet-152 performing the best at 88.8%. Their approach, 
utilizing evaluation metrics such as precision, recall, and F1 score, demonstrates the effectiveness of 
deep learning in improving waste sorting processes. 

Noh et al. [8] proposed a recycled clothing classification system leveraging IoT devices and deep 
learning technology to address challenges in clothing recycling. By integrating IoT devices with AI, 
specifically using transfer learned AlexNet, they developed a system capable of accurately classifying 
recycled clothing types, thus streamlining the recycling process and reducing manual labor. 

Yong et al. [9] tackled waste separation using deep learning techniques, particularly focusing on 
domestic waste classification. They trained a garbage classification model using MobileNetV2, 
achieving an accuracy of 82.92% and surpassing traditional CNN models by 15.42%. The lightweight 
nature of their model makes it suitable for mobile applications, promising cost and time savings in 
waste classification. 

Al-Mashhadani et al. [10] emphasized the importance of waste classification for efficient waste 
management and highlighted various deep learning models’ performance in this domain. They tested 
several models including GoogleNet, InceptionV3, and ResNet50. Their results showed that the 
ResNet50 model exhibited impressive results with 95% accuracy, while InceptionV3 achieved 
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perfect accuracy across all classes. Their study underscores the significance of deep learning in 
improving waste sorting and recycling practices for a more sustainable future. 

Based on the reviewed papers, most researchers utilized deep learning models for waste material 

detection. They applied transfer learning techniques to detect waste materials. However, one of the 

most powerful deep learning models, DenseNet201, has not been investigated. This has led to a gap 

in knowledge regarding whether DenseNet201 can outperform the deep learning models 

implemented by other researchers. This paper aims to address this concern by filling the gap and 

testing DenseNet201 to evaluate its efficacy in waste material detection. 

3 METHODOLOGY 

This study suggests the DenseNet201 [11] deep learning model for waste material classification. The 
deep learning model is implemented using transfer learning for waste material detection. The 
proposed model consists of 201 weight layers, which are highly complex and robust for accurate 
image classification tasks. Moreover, the proposed model connects each layer to every other layer in 
a feed-forward fashion. This connectivity pattern leads to a dense feature map, reducing the number 
of parameters compared to traditional architectures like VGG [12] or ResNet [13]. Additionally, the 
proposed model encourages feature reuse throughout the network by concatenating feature maps 
from different layers. This helps mitigate the vanishing-gradient problem and enables better flow of 
gradients during training. Therefore, employing the DenseNet201 architecture is advantageous. 
Figure 1 shows the flowchart of this study. 

 

Figure 1: The flowchart of this study. 

The dataset of waste materials was obtained from Kaggle [14]. This dataset contains six classes: 
Cardboard, glass, metal, paper, plastic, and trash. There are 403 images of cardboard, 501 images of 
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glass, 410 images of metal, 594 images of paper, 482 images of plastic, and 137 images of trash. The 
dataset is split into a training set, a validation set, and a testing set. Fifty percent of the images are 
allocated to the training set, 25% to the validation set, and the remaining 25% to the testing set. 
Figure 2 shows some of the images obtained from the dataset. Table 1 shows the summary of the 
number of images present in the dataset. 

 

Figure 2: Several images obtained from the dataset [14]. (a) Cardboard. (b) Glass. (c) Metal. (d) Paper. (e) 
Plastic. (f) Trash. 

Table 1: Summary of number of images in the dataset. 

Portion Number of Images Percentage 

Training 1263 50 

Validation 632 25 

Testing 632 25 

 

Image augmentation is performed on the training set by flipping the images horizontally and 
vertically. The validation set and the testing set images are not augmented because those images need 
to represent the reality of how waste materials will be encountered in real-life situations. 
Subsequently, the training set and the validation set were used to train the model. Stochastic gradient 
descent with momentum was used to update the weights in the model. The gradient of each weight 
is calculated using backpropagation, and the weight is then adjusted to minimize the loss. The loss 
function used is the cross-entropy loss function, which calculates the difference between the actual 
class and the predicted class. This function is chosen because it is widely used for image classification 
in deep learning models [6][7][8]. 
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The batch size used was 32, which is a standard batch size used by many researchers [6][7][8]. The 
learning rate used was 0.001, determining the magnitude of the gradient, or how much the weight 
will be changed during each iteration of training. The learning rate of 0.001 is used because it can 
give better convergence than bigger learning rates, such as 0.1 and 0.01. The patience used was 10, 
meaning that if the validation loss is higher than the previous lowest loss by 10 times, the training is 
automatically stopped since the model is no longer improving. This is done to eliminate unnecessary 
epochs needed to train the model. The best model is chosen by determining which epoch has the 
lowest validation loss, and that model with the lowest validation loss is used for performance 
evaluation on the testing set later. 

After the model has finished training, it is evaluated using the testing set, containing images that the 
model has never seen before during training. These images are fed into the model, and each image is 
classified into the classes of materials. The classified images are then compared to the ground truth 
to see if the model correctly classifies the images. Based on the testing set images, the number of 
correctly classified images is calculated. The number of correctly classified images divided by the 
total number of images is referred to as accuracy. For each class, the number of correctly classified 
images for that specific class is referred to as recall. The average recall is the average of all recall 
values across the classes. For each class, the number of true classes divided by the total number of 
images the model classified as such class is referred to as precision. The average of these precisions 
across the classes is referred to as average precision. 

The calculated accuracy, average recall, and average precision are then used to compare with other 
deep learning models, such as ResNet18 [13], ResNet34 [13], ResNet50 [13], AlexNet [15], GoogleNet 
[16], and MobileNetV2 [17]. These deep learning models were also trained using the dataset used in 
this study, and the same testing set is used to evaluate these models. This ensures a fair performance 
comparison, ensuring all the models are tested using the same testing set and trained using the same 
images. The deep learning models were compared to the proposed model in this study because 
previous researchers had tested those deep learning models for waste material detection. This study 
aims to determine if DenseNet201 can outperform those deep learning models.  

4 RESULTS AND DISCUSSIONS 

The tested models include DenseNet201, the proposed model in this study, as well as ResNet50, 
ResNet34, ResNet18, MobileNetV2, AlexNet, and GoogleNet. These models were evaluated using the 
same images from the testing set. Table 2 presents the results obtained from various deep learning 
models for waste material classification. 

Table 2: Results obtained from various deep learning models for waste material classification. 

Model Accuracy Average Recall Average Precision 

Proposed (DenseNet201) 0.9793 0.9781 0.9787 

Faria et al. [6] using ResNet50 0.9555 0.9461 0.9604 

Lin et al. [7] using ResNet34 0.9459 0.9389 0.9456 

Lin et al. [7] using ResNet18 0.9380 0.9316 0.9381 

Yong et al. [9] using MobileNetV2 0.9300 0.9259 0.9177 

Noh et al. [8] using AlexNet 0.9126 0.9095 0.9010 

Al-Mashhadani et al. [10] using GoogleNet 0.9062 0.9039 0.8957 
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Each row of the table corresponds to a different deep learning model. These models are evaluated 
based on three key performance metrics: Accuracy, Average Recall, and Average Precision. 

Accuracy, as indicated in the table, represents the overall effectiveness of each model in correctly 
classifying instances. It is computed as the ratio of the number of correct predictions to the total 
number of predictions made by the model. A higher accuracy score signifies better performance in 
accurately predicting the correct classes for the given dataset. Average Recall, also known as 
sensitivity, measures the ability of each model to correctly identify positive instances from the 
dataset. This metric is particularly crucial in scenarios where the identification of all positive 
instances is vital. The reported values in the table represent the average recall across different classes 
or instances, providing insights into the models’ performance in capturing true positives. Average 
Precision, on the other hand, evaluates the precision of each model’s predictions, focusing on the 
proportion of true positive predictions out of all positive predictions made. A higher average 
precision score implies that the model has a lower rate of false positives and is more precise in its 
classifications. 

Upon analyzing the table, it’s evident that the proposed model based on DenseNet201 achieves the 
highest accuracy of 0.9793, accompanied by impressive average recall and average precision scores 
of 0.9781 and 0.9787, respectively. In comparison, other models such as ResNet50, ResNet34, and 
ResNet18 also demonstrate strong performance across these metrics, albeit with slightly lower 
scores. MobileNetV2, AlexNet, and GoogleNet, while still achieving respectable results, exhibit 
comparatively lower performance in terms of accuracy, average recall, and average precision. 

Overall, DenseNet201 achieved the best results, and therefore, it is the best model for classifying 
waste materials. The remarkable performance of DenseNet201, as observed in the provided table, 
can be attributed to a combination of architectural features and design principles unique to the 
DenseNet framework. DenseNet stands out among the deep learning models due to its dense 
connectivity pattern, where each layer receives direct input from all preceding layers. This 
connectivity scheme fosters extensive information flow throughout the network, facilitating effective 
feature reuse and gradient propagation during training. 

One of the key advantages of DenseNet201 lies in its parameter efficiency, achieved through the 
dense connections between layers. By leveraging feature concatenation across all preceding layers, 
DenseNet reduces redundancy in parameter usage while maximizing information flow. This 
parameter-efficient design not only enables DenseNet201 to effectively learn from limited data but 
also helps mitigate overfitting, leading to improved generalization performance. 

Furthermore, DenseNet201 excels in feature aggregation, leveraging its dense connectivity to 
aggregate features from multiple network depths. This enables the model to capture intricate 
patterns and dependencies across different spatial scales, empowering it to learn rich and 
discriminative representations from input images. Such hierarchical feature learning is crucial for 
tackling complex tasks with diverse datasets, where robust representations are essential for accurate 
classification. 
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5 CONCLUSIONS 

In conclusion, this study highlights the pivotal role of deep learning in revolutionizing waste material 
classification for sustainable waste management practices. Through comprehensive experimentation 
and performance evaluation, DenseNet201 emerges as the optimal choice for accurately categorizing 
waste materials. Its exceptional accuracy, average recall, and average precision underscore its 
superiority over other deep learning models, showcasing its efficacy in handling complex 
classification tasks. The findings of this study contribute to advancing the field of waste management 
by providing a robust framework for automating waste classification processes, thereby promoting 
environmental sustainability and resource conservation. Further research can explore the 
integration of advanced deep learning techniques to address evolving challenges in waste 
management and enhance the efficiency of waste classification systems. 
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