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ABSTRACT

Touch biometric is one of the promising modalities to realise continuous authentication
(CA) on mobile devices by distinguishing between touch strokes performed by legitimate
and illegitimate users. While the benefit of the scheme is promising, the effectiveness of
different classification methods is not thoroughly understood. Particularly, little consideration
has been given to dynamic selection of classifiers. In this paper, we proposed a dynamic
selection method to deal with the security and usability needs of touch-based CA. Instead
of classifying all touch samples using the same classifier, our method dynamically selects
the most promising classifiers from a pool based on a competence measure. The classifiers
that achieved the highest level of competence will be selected to perform the classification
task for a particular test sample. We used four publicly accessible touch biometric datasets
(Frank, Serwadda, Antal, and Mahbub) consisting of swipe gesture data collected from various
environments and tasks. We conducted a comparative analysis of the proposed method against
nine other DS methods, six well-known single classifiers (K-Nearest Neighbour, Support
Vector Machine, Decision Tree , Naive Bayes, Logistic Regression and Neural Network), as
well as four static ensemble methods. We evaluated the methods using equal error rate (EER)
as the primary evaluation metric. The experimental results demonstrated the potential and
feasibility of the proposed method, showing that it can improve the authentication performance
of touch-based CA with a relatively low EER in many scenarios across multiple datasets,
exhibiting relatively high consistency.

Keywords: continuous authentication, dynamic classifier selection, mobile device security,
multiple classifier system, touch biometric

1 INTRODUCTION

In recent years, mobile devices have evolved into mainstream devices for most people. Besides
phone calls and text messages, mobile devices (particularly smartphones) are essential for personal
and professional uses. However, the device is easily lost or stolen due to its portability, which could
result in information leakage and financial loss. Therefore, some security mechanism is required to
guarantee that the data stored on the devices is secure.

Conventional password-based authentication schemes are still widely used (e.g. PIN and swipe
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pattern code). These schemes, however, have several disadvantages, including shoulder surfing,
[1], easily-guessed password [2], and smudge attack [3]. Biometrics authentication schemes like
fingerprint and facial recognition are also used nowadays to overcome the drawbacks of password-
based authentication schemes. However, since these schemes need specialised hardware, the
implementation costs for these biometrics-based authentication schemes could be higher (e.g.
fingerprint scanner and front-facing camera) [4]. On top of that, only initial-login authentication is
possible with the authentication schemes mentioned earlier. If an illegitimate user bypassed the
initial-login authentication, the device would lose its ability to remain to recognise unauthorised
access. As a result, to complement the existing authentication schemes, an additional authentication
layer is necessary.

An authentication method known as continuous authentication (CA) allows for continuous device
usage monitoring [5]. As one of the potential authentication methods, studies on CA based on
touch biometrics are growing. [6]. Touch-based CA makes it possible for the user to use the
device while the authentication process runs silently in the background [7]. Furthermore, it is
an authentication scheme that is non-intrusive and does not involve installing any specialised
hardware [8]. It is, therefore, a promising authentication method to support the initial-login
authentication. Furthermore, numerous studies [7–14] have demonstrated the discriminative power
of touch biometric in distinguishing legitimate and illegitimate users. The legitimacy of users can
be recognised using a classification algorithm, which can distinguish the behavioural traits obtained
from touch operations.

1.1 Motivation

Various classification methods have been utilised for user classification in touch-based CA on
mobile devices [7–9, 11, 13–16]. While a particular classification method can outperform other
methods in various studies, the study on classification methods in touch-based CA is still open for
discussion. Generally, existing studies have yet to agree on which classification method is preferable.
Few studies in the domain (especially early ones) used more than one dataset [7–9, 11, 13–21].
These studies either employed their private datasets [8, 11, 13, 15] or publicly accessible datasets
[7, 9, 14, 16–21]. This finding demonstrates that the classification methods were not benchmarked
across multiple datasets. To better understand the classification methods, it is vital to use public
datasets, particularly those with various feature sets, as benchmark datasets. Besides, even though
certain studies [10, 22, 23] used many datasets (at least two datasets), these studies only tested a
few classification algorithms (less than five). On the other hand, one study [9] investigated a wide
range of classification techniques (10 methods). However, the study only utilised one dataset.

According to the ”no free lunch” theorem [24], no single classifier can solve all classification problems.
Consequently, depending on a single classifier to perform authentication decisions may result in the
inconsistent performance of the authentication scheme. Studies comparing different classification
methods based on Multiple Classifier Systems in the area of touch-based CA are still lacking.
Multiple Classifier Systems (MCS) (also known as ensemble learning technique) have the advantage
of smoothing out the weaknesses of single classifiers. Since not all classification problems can be
solved by a single classifier and a specific algorithm uses a particular approach to approximate the
feature vectors and the respective class labels, several classifiers can complement one another [25].
In touch CA, studies [8, 14] have demonstrated that Random Forest (RF), an ensemble learning
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technique based on multiple decision trees, yielded promising outcomes. However, RF employs a
homogeneous pool of decision trees. It builds a diverse tree to generate the classifiers pool rather
than integrating them from pre-defined base classifiers. [26]. The classification of test samples will
likewise be performed using the same ensemble model (similar to a single classifier).

It is crucial to improve the classification performance of the CA scheme because a classification
method is one of the factors that influence the overall performance of the CA scheme [27]. In this
study, we employed Dynamic Selection (DS) technique to enhance the classification performance of
touch-based CA. Instead of classifying all test samples with the same classifier, a method in MCS
known as DS performs classifiers selection for each test sample. This method involves three steps:
(1) generating a pool of classifiers, (2) defining the region of competence for each test sample, and
(3) selecting and aggregating the most competent classifiers for the final classification decision..

In the classifiers generation phase (Phase 1), we generated the pool of classifiers using some of
the classifiers that have been widely used in the literature, which include K-Nearest Neighbour,
Support Vector Machine, Decision Tree , Naive Bayes, Logistic Regression and Neural Network. In
the definition of competence region phase (Phase 2), the region of competence was defined based on
the K-nearest neighbours of the test sample to be classified. Lastly, in the selection and aggregation
phase (Phase 3), the base classifiers in the pool were selected based on the proposed measure of
competence in order to keep the most promising classifiers and prune the less promising ones, and
aggregating them using simple or weighted majority voting.

A classification framework for touch-based CA utilising the DS method has also been proposed
by Zaidi et al. [28]. However, to the best of our knowledge, no studies have specifically examined
the measure of competence in DS for touch-based CA. Numerous measures of competence have
been presented in the literature in other domains, especially in the application of DS in various
domains [29–32]. Since touch-based CA is a specific area of research, it is essential to propose a
measure of competence appropriate in the context of the domain. Furthermore, the primary goal of
a touch-based CA scheme is to prevent illegitimate users from accessing the device in case of an
intrusion while ensuring that the legitimate user can continue using it normally without interruption.
Therefore, it is essential to determine a measure of competence to accomplish this goal.

1.2 Objective and Contribution

This paper proposes Dynamic Ensemble Selection for Touch-based CA (DESTOUCH), a DS method
for user classification in touch-based CA. To the best of our knowledge, very little study has
explored DS in touch-based CA [28]. While other biometrics modalities have explored DS as a
classification method [33, 34], we believe it is worth exploring such a method in touch-based CA as
well. Therefore, the research objectives (RO) of this study are:

• RO1: To propose a measure of competence for a DS method in touch-based CA.

Developing an effective measure of competence is crucial for the effectiveness of the DS method.
This measure will determine how well each classifier can distinguish between the touch strokes
performed by legitimate and illegitimate users. By proposing a new measure, this study aims
to enhance the security and usability of touch-based CA. This will assist the improvement of
mobile device security by ensuring that the authentication system can adapt to varying user
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behaviours.

• RO2: To employ various selection and aggregation approaches for the generalisa-
tion phase of the DS method.

The selection and aggregation of classifiers are key steps in the DS method. By employing and
comparing different approaches, this study aims to identify the most effective strategies for
selecting and combining classifiers. Achieving optimal selection and aggregation approaches
will enhance the overall performance of the CA system, making it more robust.

• RO3: To evaluate the proposed scheme against single classifiers, static ensemble
methods, and other DS methods.

Evaluating the proposed DS method against existing methods is essential to demonstrate its
effectiveness and potential advantages. By conducting comprehensive evaluations, this study
aims to provide empirical evidence that DESTOUCH outperforms traditional single classifiers,
static ensembles, and other DS methods.

The measure of competence is designed to estimate the competence level of base classifiers based on
the probability of true acceptance of legitimate users and the true rejection of illegitimate users.
Our idea is based on the main aim of a touch-based CA, which is to detect unauthorised access by
illegitimate users and to detect the usage of the device by a legitimate user. The former prevents
illegitimate users from accessing the device, while the latter ensures the legitimate user can use
the device normally without interruption. Therefore, a base classifier has to be able to detect the
touch strokes of both legitimate and illegitimate users at a high detection rate. In this case, the
probability of correct classification of legitimate and illegitimate samples, respectively, represents
true acceptance and true rejection.

Furthermore, the outstanding outcomes of DS methods in other domains, such as keystroke dynamics
recognition [34], lip-based biometric verification [33], signature verification [35], face recognition [31],
hand-digit recognition [36], remote sensing [37], credit scoring [32, 38, 39], and process monitoring
[40] served as inspiration for this work. The following is the summary of the main contributions of
this paper:

1. A proposal of a measure of competence for dynamic selection of classifiers in touch-based CA..

2. Comparisons of selection approaches based on ranking and threshold as well as aggregation
approaches based on simple and weighted majority voting rules.

3. Comparisons of the proposed methods against other static and dynamic selection methods.

It is worth noting that, the proposed DS method has the potential use in various scenarios to
enhance mobile device security. For instance, it can be integrated into the existing mobile operating
systems to provide an supplementary layer of security, ensuring that illegitimate users are detected
and locked out in real-time without requiring additional hardware. This method can be valuable in
personal and business scenarios, where sensitive data can be well-protected. Furthermore, it can
also be applied in mobile banking and payment systems to prevent unauthorized transactions, to
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reduce the risk of financial fraud.

The rest of this paper is structured as follows. First, the background on touch-based CA is presented,
along with related works, in section 2. Next, we present the proposed classification method in
Section 3. Then, the experimental setup utilised in this study is described in section 4. Next, the
findings of the experiments are discussed in section 5. Finally, we conclude our findings and explore
some potential future works in Section 6.

2 BACKGROUND AND RELATED WORK

This section presents a general review of touch-based continuous authentication on mobile devices,
followed by user classification in this domain and related studies. An overview of Multiple Classifier
Systems is also provided.

2.1 Touch-based Continuous Authentication on Mobile Devices

A user authentication scheme called continuous authentication (CA) enables continuous monitoring
while a user is using the device. After the user completed the initial login session, the CA scheme is
initiated. The main goal of the CA scheme is to prevent illegitimate users from accessing the device
once it has been recognised that the user is not legitimate. Touch actions on the touch screen of a
mobile device are behavioural biometrics, where biometric data can be obtained while a user is
using the device. Unlike physiological biometrics like the face and fingerprint, which require the user
to pay attention during the data acquisition phase, touch biometric data can be collected silently in
the background. Due to the ability for transparent data acquisition, this biometric modality makes
it more appropriate for CA.

There are two phases in touch-based CA: enrolment and authentication. Raw touch data acquisition
marks the beginning of the enrolment phase. The touchscreen sensor of the mobile device is used
to collect raw touch data such as touch coordinates, touch pressure, touch area, and timestamp.
After preprocessing, a user profile will be generated from the raw data by extracting features
corresponding to a user’s behaviour. The user model is then stored in a database once the user’s
behaviour has been modelled using a classification algorithm. In the authentication stage, the
features are extracted with the raw touch data from new touch samples. Then, these features will
be compared to the user model using a classifier that has been previously stored to identify whether
the captured touch sample comes from legitimate or illegitimate users. The primary area of interest
of our study is the classification system of the CA scheme. The following section provides a detailed
overview of user classification in touch-based CA.

2.2 User Classification in Touch-based CA

A touch-based CA scheme performs classification tasks to evaluate whether a specific touch stroke
belongs to the legitimate user. The CA scheme will lock out the user if it detects the feature
vectors belong to an illegitimate user. If not, it will let the user keep using the device. For every
touch stroke performed, a vector of raw data is generated. This vector contains the touch position,
pressure, area, timestamp, and finger orientation [7]. A touch stroke (touch sample) x ∈ X of a user
ωl, l ∈ {L, I} is represented by a vector of N features F = {f1, f2, ...fN} that were extracted from
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the raw data. The features F of the touch sample xj can be classified as belonging to a legitimate
user ωL or an illegitimate user ωI using a binary classifier ci, where L and I are the class labels for
the classification problem. For the touch sample xj , classifier ci makes the classification decision
for touch sample xj based on a threshold θ. The touch sample xj is classified as belonging to a
legitimate user ωL if the classification score is higher than the threshold θ, or an illegitimate user
ωI if it is below (as shown in Equation 1).

γ(xj) =

{
ωL if λ(xj , ci) ≥ τ

ωI otherwise
(1)

where λ(xj , ci) is the classification score for a touch sample xj using classifier ci and τ is the
threshold.

This domain has made use of numerous classification methods. Work by Frank et al. [7] was among
the earliest examples of touch-based CA. The study presented a framework for classifying mobile
device users based on their interaction with touchscreens. Thirty behavioural features derived
from vertical and horizontal strokes were presented. The authors used Support Vector Machine
(SVM) and K-Nearest Neighbor (KNN) classifiers to differentiate between the behavioural features
of legitimate and illegitimate users. The classifiers achieved an equal error rate (EER) ranging from
0.00% to 4.00%.

Li et al. [15] proposed a CA scheme using both tap and swipe gestures. Several features were
presented for each type of gesture from 75 users of mobile phones. There were no predefined tasks
for the users to perform when using the device. The swipe and tap gestures, respectively, yielded
13 and three features. SVM was the only classifier used in the study. For the sliding-up gesture, it
achieved a minimum accuracy of 95.78%.

In contrast to the study by Frank et al., [7] and Li et al. [15], Serwadda et al. [9] conducted
a benchmark evaluation on a touch dataset employing 28 features with ten classifiers. SVM,
Naive Bayes, Random Forest, KNN, Bayesian Network, Neural Network, Decision Tree, Logistic
Regression, Scaled Manhattan, and Euclidean Verifier was used by the authors to evaluate data
from 190 subjects. They discovered that LR performed the best when they evaluated horizontal
strokes in landscape screen orientation, which produced an EER of 10.50%.

Shen et al. [8] investigated touch-based CA by taking into account various touch operations (i.e. up,
down, left, and right) across various application tasks (i.e. document reading, picture browsing, web
browsing, and free task), as well as on various application scenarios (i.e. short, middle, relative-long,
and long periods of authentication). The authors built four classifiers: KNN, SVM, Backward
Propagation Neural Network (BPNN), and RF, based on 58 behavioural features. According to
their findings, RF achieved an EER of about 1.80% on the left and right touch operations.

Three primary mobile device sensors — the front camera, touchscreen, and location sensors —
were used by Mahbub et al. [16] to gather raw data. On the data collected from each sensor,
they performed the experiments separately. The authors gathered swipe actions from users for
the touchscreen sensor without any predefined task. Each touch stroke yielded 24 features. Seven
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classifiers were used: KNN, SVM, NB, Linear Regression, Random Tree with Linear Regression,
RF, and Gradient Boosting Model. With an EER of 22.10%, the results demonstrate that RF
performed better than other classifiers.

By considering various touch operations, Fierrez et al. [10] looked into the effectiveness of touch-
based CA by evaluating the performance of three different scenarios. These scenarios include an
intra-session, inter-session, and a combination of the two. A session here is when a user begins
using the device and lasts until the user stops using it for a predetermined time. When a classifier
is trained and tested during the same session, this is referred to as an intra-session scenario. On the
other hand, a scenario where a classifier is trained and tested across different sessions is referred to
as an inter-session scenario. The authors used 28 features from Serwadda et al. [9] and another five
features from Martinez-Diaz et al. [41]. In their studies, SVM, Gaussian Mixture Model (GMM),
and the combination of these two classifiers were used. The performance of the fusion method was
generally superior to single classifiers. For a single classifier, GMM outperformed SVM with an
EER of 3.60% for right swipe touch operations in an intra-session scenario using one of the selected
datasets.

Meng et al. [11] studied the performance of a touch-based CA in two scenarios. First, based on
users’ free device usage and second, web browsing. They conducted a comparative analysis utilising
five classifiers — DT, NB, Kstar, Radial Basis Function Network (RBFN), and BPNN — using the
21 touch features that were extracted from 48 participants. Their study also used Particle Swarm
Optimisation with RBFN (PSO-RBFN). The authors discovered that compared to free usage, web
browsing exhibits less variance in behaviour, with PSO-RBFN doing the best with an EER of 2.38

Syed et al. [14] investigated the effect of user posture, device size, and device configuration on
the performance of touch-based CA. The authors used five classifiers: SVM, LR, NB, RF, and
Multilayer Perception Neural Network (MLP). They presented 14 features. They discovered that
RF yields the best outcomes. Furthermore, when the model was trained and tested using the same
posture, which is when the device was held in landscape orientation, the best EER was recorded at
3.80%.

Incel et al. [42] presented DAKOTA, a mobile banking application-based CA that can collect
behavioural biometric data through touchscreen and motion sensors. The authors tested the
proposed scheme using nine classifiers, including binary SVM, one-class SVM, KNN, MLP, DT, RF,
NB, an ensemble of SVM and MLP, and an ensemble of SVM Polynomial kernel and SVM RBF
kernel, with 126 features combined from both touchscreen and motion sensors. According to the
authors, a binary SVM with an RBF kernel has an EER of 3.50%.

Aaby et al. [43] introduced an omnidirectional approach to touch-based CA. Unlike traditional
methods that depend on touch direction, this study focussed on an omnidirectional approach. where
the model processed touch data without categorising it by direction. The study evaluated various
behavioural feature sets using SVM, KNN, RF, Extra-Trees and Gradient Boosting classifiers. The
results demonstrated that Extra-Trees classifier outperformed the traditional methods with an EER
of 0.179 when combining five strokes.

Shen et al. [44] introduced IncreAuth, an incremental learning-based CA framework that can
perform authentication over long-term device usage. It leveraged a context-aware feature set to
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characterise touch patterns under complex usage contexts and integrated a Gradient Boosting
Decision Tree with a Neural Network (GBDTNN) for efficient online updates. Experimental results
demonstrated that the framework achieved a stable authentication performance with low system
overheads in a long-term device usage scenario, achieving an EER of 8.77%.

Table 1 summarises the performance of the classifiers used in several studies based on equal error
rate (EER), average error rate (AER) or classification accuracy (ACC) (� indicates that the
classifier has been employed in the study and 2� indicates the classifier was the best in that study).
In general, single classifiers were used to perform user classification in the literature reviewed above.
These include:

• k-Nearest Neighbour (kNN) [45]: An instance-based classification method that assumes
the new sample of touch stroke from the test set is similar to the data in training set. The
algorithm finds the touch strokes in the training samples that are close to the touch strokes
from test set based on a Euclidean distance measure.

• Support Vector Machine (SVM) [46]: A discriminative classification method that
separates the features of a legitimate user and illegitimate users using maximised hyperplane
[47]. A new touch sample will be mapped into the separated space and classified to belong as
the sample from a legitimate or an illegitimate user.

• Decision Tree (DT) [48]: A non-parametric classification method that creates a tree model.
The tree is created by choosing features as the decision nodes. A touch sample is classified
based on these nodes.

• Naive Bayes (NB) [49]: A probabilistic method based on Bayes theorem [50]. It classifies
a touch stroke based on the probability that it belongs to a particular class.

• Logistic Regression (LR) [51]: A statistical method based on linear regression where the
prediction of the legitimate user is transformed using the logistic function. Touch samples from
the training data estimate the coefficients of the model using maximum-likelihood estimation.

• Artificial Neural Network (ANN) [49]: This method was inspired by the neural network
of the human brain. It consists of an input, hidden layers, and an output [52]. The neurons
in the input layer receive touch features of each user where the algorithm assigns each neuron
with a weight based on a particular function. This information is transferred within the
hidden layers. The algorithm produces an output at the output layer after several iterations..

While some classification methods have demonstrated superior performance in certain studies, the
discussion over the most effective classification methods for touch-based CA remains unresolved. In
general, there is no consensus in existing literature on the most preferable classification method.
Notably, only a few studies, especially the earlier ones, utilised more than one dataset [7–9, 11, 13–
21]. These studies typically relied on either private datasets [8, 11, 13, 15] or publicly available
datasets [7, 9, 14, 16–21], indicating that classification methods were not consistently benchmarked
across multiple datasets. For a more comprehensive understanding of classification methods, it is
essential to employ public datasets with diverse feature sets as benchmarks. Furthermore, although
some studies [10, 22, 23] used many datasets (at least two datasets), these studies only tested a few
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Table 1 : Performance of classifiers in the chosen literature

Author Dataset Feature Classifiers SVM KNN DT NB LR NN RF Performance (%)

Frank et al. [7] 1 27 2 � � - - - - - EER = 0.00-4.00
Li et al. [15] 1 16 1 � - - - - - ACC = 95.78
Serwadda et al. [9] 1 28 10 � � � � 2� � � EER = 10.50
Shen et al. [8] 1 58 4 � � - - - � 2� EER = 1.80
Mahbub et al. [16] 1 24 7 � � - � � - 2� EER = 22.10
Fierrez et al. [10] 4 33 2 � - - - - - - EER = 3.60
Meng et al. [11] 1 21 6 - - � � - 2� - AER = 2.38
Meng et al. [13] 1 9 5 2� - � � - � - AER = 4.66
Syed et al. [14] 1 14 5 � - - � � � 2� EER = 3.80
Incel et al. [42] 1 126 9 2� � � � - � � EER = 3.50
Aaby et al. [43] 1 76 5 � � - - - - � EER = 17.90
Shen et al. [44] 1 17 5 � - - - - � � EER = 8.77

classification methods (less than five). On the other hand, one study [9] explored a broad range
of classification techniques (10 methods), but only applied them to a single dataset. It is worth
noting that there are several datasets have been made publicly available by some studies, which
include Frank Dataset [7], Serwadda Dataset [9], Antal Dataset [53], and Mahbub Dataset [16]. The
description of these datasets can be found in Appendix A and can also be obtained from Fierrez et
al. [10].

The related studies above have explored various classification methods for touch-based CA. Each
study shows effectiveness of different classifiers and the challenges associated with touch data.
However, a common limitation among these studies is their reliance on static classification methods,
which do not adapt to the dynamic and variable nature of touch interactions. Specifically, the
performance of a particular classifier differed from a study to another. Variations in the experimental
design, feature extraction, and data collection procedure might cause this problem. In addition, the
performance of the classifiers may be affected by intra-class variability of touch data. As a result,
using the same classifier in various scenarios could cause the CA scheme to operate inconsistently.

Using Multiple Classifier Systems (MCS), also known as the ensemble learning technique, could
be one potential approach for overcoming the limitation of single classifiers. Some studies in
touch-based CA [8, 9, 14, 16] have attempted to apply RF, an ensemble learning technique based
on decision tree. However, research on MCS in the area of touch-based CA is still lacking. The
importance of MCS in this area lies in its ability to address the limitations of single classifiers
by leveraging the strengths of diverse classifiers. MCS allows the integration of various classifiers
to improve overall classification performance. In particular, Dynamic Selection (DS) technique
enhances this approach by dynamically selecting the most promising classifiers based on their
competence, thereby adapting to the varying characteristics of the touch data. This adaptability is
crucial for touch-based CA, where user behaviour can be highly variable. By employing DS, the
proposed method in our study aims to achieve better authentication performance, making them
significant advancements in the area of touch-based CA. Therefore, this paper employed DS method,
which is a method under MCS, to enhance the classification performance in touch-based CA. An
overview of MCS and DS is provided in the following section.
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2.3 Multiple Classifier Systems (MCS)

In order to overcome the limitations of single classifiers, Multiple Classifier Systems (MCS), also
known as ensemble learning technique, produces classification decisions based on the combination
of more than one classifiers [54–56]. In the literature, numerous classification methods have been
proposed. However, it is well acknowledged that no single classification algorithm can handle all
classification problems effectively and efficiently [57]. It is worth noting that satisfactory results
of MCS can be achieved if the base classifiers (comprised of multiple single classifiers) are of high
classification capability and diverse. The scheme will produce several models, and a decision will be
made based either on classifier fusion or classifier selection [58].

In classifier fusion, each classifier in the pool contributes towards the final decision [59]. There
are various ways to accomplish the fusion, which include minimum, maximum, average, median,
and majority vote strategies. This method will perform less effectively if the pool contains some
redundant and inaccurate classifiers [58]. On the other hand, classifier selection makes the final
classification decision based on the selection of a single classifier or a subset of classifiers [58].
Classifier selection can perform better than classifier fusion because it selects the single classifiers
from the pool that show the most promising ones rather than smoothing out the differences between
individual classifiers [40]. Static selection and dynamic selection (DS) are the two main methods
for selecting classifiers [57, 60].

Static classifier selection selects the classifier(s) during training phase by using the same classifier(s)
to classify all test samples. On the other hand, DS selects the most promising classifier(s) for each
test sample during the test phase. Additionally, promising classifiers are selected based on the
competence level of a test sample in each competence region. It is worth noting that test samples
typically exhibit varying levels of classification difficulty. As a result, using the appropriate classifier
for each test sample is advantageous compared to using the same classifiers for all test samples
because each classifier has distinct expertise with each classification task [61]. DS typically involves
the following components:

1. Pool Generation: A pool of multiple classifiers can be generated based on different methods
such as homogeneous or heterogeneous classifiers. A pool of homogeneous classifiers can
be generated based on algorithm initialisations, parameter settings, algorithm architectures,
training sets, and feature sets [60]. On the other hand, pool of heterogeneous classifiers can be
generated based on different types of classification algorithms (eg. SVM, kNN and etc.) [60].

2. Region of Competence Definition: The region of competence of a base classifier is first
defined based on different parts of the feature spaces. The region of competence of a test
sample is the data points in the validation set. The feature space of the validation set is
divided into different regions where the most competent classifier is determined based on
these partitions.

3. Competence Estimation: In each region of competence, the most competent classifier will
be determined based on a certain measure of competence. During the test phase, the scheme
will determine which local region where a test sample belongs to and perform classification
based on the most competent classifier for that region.
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4. Classifiers Selection: In the selection phase, one or more classifiers will be selected to
perform the classification task based the competency of the classifiers in the pool. The
selection can be performed using different approaches, such as as ranking [36], accuracy
[37, 59], accuracy and diversity [62], probabilistic [26, 58, 63, 64], classifier behaviour [65, 66],
Oracle [67], and meta-learning [68].

5. Classifiers Aggregation: In the aggregation phase, if more than one classifier were selected,
a fusion method is used to make the final decision [57]. Combination rules such as majority
voting, maximum, minimum, or trainable fusers (e.g., stacking) are usually used. In the case
where only one classifier is selected , no aggregation is needed [57].

The advantages of DS methods can be observed in various biometrics studies. For example, in
keystroke dynamics recognition, DS methods have shown superior performance in terms of accuracy
and reliability compared to single classifier [34]. In lip-based biometric verification, DS methods
have demonstrated a better verification rates by dynamically selecting the most competent classifiers
[33]. Similarly, in signature-based verification, DS methods have been effective in handling the
variability in samples and improving the overall recognition rates [35]. The application of DS in
various domains has also been notable such as face recognition [31], hand-digit recognition [36],
remote sensing [37], credit scoring [32, 38, 39], and process monitoring [40]. These studies highlight
the potential use of DS methods across various biometrics and non-biometrics domains.

Inspired by the outstanding results of DS methods in enhancing classification performance in other
domains, it is worth to explore DS methods in touch-based CA as well. In touch-based CA, Zaidi et
al. [28] have proposed a classification framework for touch-based CA using DS methods. The author
benchmarked existing DS methods and applied them in touch-based CA. It was found that DS
methods are more consistent compared to single classifiers. However, to the best of our knowledge,
no studies have specifically examined the measure of competence in DS for touch-based CA. Given
that touch-based CA is a specialized research area, it is crucial to develop a competence measure
tailored to this domain.

3 PROPOSED METHOD

In this section, we present our proposed method, Dynamic Ensemble Selection for Touch-based
CA (DESTOUCH). First, we provide an overview of a probabilistic method for measuring the
competence level of classifiers. Then, we describe our proposed method consisting of three key
components: measure of competence, selection approach, and aggregation approach. Finally, we
present the algorithms for the methods based on the proposed measure of competence, selection
approach, and aggregation approach.

Our proposed method aims to improve the classification performance of touch-based CA by leveraging
the strengths of multiple classifiers. Dynamic selection of classifiers ensures that the most competent
classifier(s) are selected for each touch sample, addressing the inherent variability in user behaviour
and the limitations of relying on a single classifier. This approach aims enhances both the security
and usability of the CA scheme.

36



Zaidi et al./A Dynamic Selection Method for Touch-Based CA On Mobile Devices

3.1 Preliminaries

A DS method selects a subset of classifiers C ′ from a pool C = {c1, ..., cM} of M classifiers in
order to classify a test sample xj . The method estimates the competence level δij of each base
classifier ci ∈ C for the test sample xj [60]. The competence level δij is estimated using a measure
of competence in the region of competence θj of the test sample xj . During the test phase, the
method will define to which local region the test sample xj belongs and then classify the sample
using the most competent classifiers for that region.

First, the region of competence θj around test sample xj is defined. The region of competence θj is
defined as the K samples in the validation set Dval closest to xj . To obtain the K-nearest neighbour
of xj , the distance between xj and every data point in Dval was calculated. Determining the value
of K is a difficult task because the number chosen can affect the efficacy of the DS algorithm [65].
The region of competence can be defined as in Equation 2.

θj = {x1, x2, . . . , xK} (2)

where K is the number of nearest neighbours of test sample xj in a validation set Dval. Based
on the accuracy of correct classification of any test sample xj in the region of competence θj by a
classifier ci, the competence measure can be estimated by Equation 3 [59].

ACC(correcti) =
Ni

K
, i = 1, ...,M (3)

where Ni is the number of samples in local region θj that are correctly classified by each classifier
ci ∈ C of M base classifiers. Since the base classifiers can generate the probability of correct
classification (prediction confidence) as the output, we can reformulate Equation 3 as in Equation 4
[63]:

P (correcti) =
1

K

K∑
k=1

P (ωl|xk) (4)

where ωl is the class label of xk. In our case, the class labels are l ∈ {L, I}, where L and I denote the
class labels for legitimate user and illegitimate user, respectively. Also, P (ωl|xk) is the probability
of correct classification of sample xk ∈ θj , which is generated by the classifier ci.

P (ωl|xk) can be utilised to formulate the measure of competence of a base classifier cj for a test
sample xj in the region of competence θj . It represents the degree of confidence of xk belongs
to ωl. Besides, a probabilistic-based measure of competence can overcome the limitation of local
accuracy-based measure of competence that gives equal weight in generating the classification output
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that solely based on class labels [69]. This advantage is helpful when the region of competence θj
contains noisy samples. Therefore, this measure can be assigned by weight to each sample xk ∈ θj .
The purpose of assigning the weight is to handle the uncertainty in defining the size of the region of
competence θj [63]. Equation 5 shows the measure of competence of correct classification in the
region of competence θj .

δij =

∑K
k=1 P (ωl|xk) ·Wk∑K

k=1Wk

(5)

where Wk = 1
dk
, and dk is the distance from a test sample xj ∈ Dtest to the sample xk ∈ θj . By

introducing this weight, the sample xk ∈ θj has an influence on a test sample xj in the region of
competence θj , where the closer ones have more influence on the estimation of competence level.

Figure 1 : Framework of DESTOUCH

It is worth noting that our study focuses on the selection criteria based on probabilistic competence
measures of classifiers because the recent study in touch-based CA demonstrates promising results
[28]. On top of that, Figure 1 shows the framework of our proposed method. During the training
phase, the method generates a pool of heterogeneous classifiers C = {C1, ..., CM}. During the test
phase, the method defines the region of competence θj for a test sample xj using KNN algorithm.
Based on this region, the method will estimate the level of competence δij of each classifier ci ∈ C
based on the proposed measure of competence (will be described in Section 3.2). Then, the subset
of the most competent classifiers C ′ ⊂ C will be selected and aggregated for the final classification
decision (xj belong to ωL or ωI). We also employed various selection and aggregation approaches,
as described in Section 3.3 and Section 3.4, respectively.

3.2 Level of Competence Estimation

In each region of competence θj , the most competent classifier ci will be selected based on a measure
of competence δij . During the test phase, the scheme will define the local region to which a test
sample belongs and classify the sample using the most competent classifiers for that region. The
validation set Dval is utilised to evaluate each base classifier xj .
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In touch-based CA, the main goal is to lock out illegitimate users from accessing the device and
allow the legitimate user to continue using the device. The scheme should be able to classify
the touch strokes of the legitimate user or illegitimate user with a high probability by utilising
a classification algorithm. Besides, the classification problem is viewed as a binary classification,
where a test sample (touch stroke) xj will be classified as belongs to the legitimate user ωL or
illegitimate ωI . Therefore, to improve the classification performance, we proposed DESTOUCH, a
DS method that aims to achieve this goal. In DESTOUCH, for each test sample xj , it first finds
the K nearest neighbours of xj with the samples in the validation set Dval to define the region of
competence region θj . Based on the samples in θj , the proposed method will separate the samples
according to its original class labels, which are samples of legitimate user ωL and the samples of
illegitimate users ωI .

Let θLj and θIj denote the subsets of the samples of the legitimate user and illegitimate users,

respectively, in the region of competence θj (θLj , θ
I
j ⊂ θj). Based on θLj and θIj , we can compute the

probability of correct classification of each respective subset. The probability of correct classification
in subset θLj (representing the true acceptance) is computed as Equation 6:

PL = P (correcti|xk ∈ θLj ) =

∑
k∈θLj

P (ωL|xk) ·Wk∑
k∈θLj

Wk
(6)

where Wk = 1
dk
, and dk is the distance from a test sample xj ∈ Dtest to the sample xk ∈ θLj . On

the other hand, the probability of correct classification in subset θIj (representing the true rejection)
is computed as in Equation 7.

PI = P (correcti|xk ∈ θIj ) =

∑
k∈θIj

P (ωI |xk) ·Wk∑
k∈θIj

Wk
(7)

where Wk = 1
dk
, and dk is the distance from a test sample xj ∈ Dtest to the sample xk ∈ θIj .

We then combined the the probability of correct classification in subset θLj and θIj to compute the
measure of competence δij of a classifier ci for a test sample xj in the region of competence θj as
Equation 8.

δij =
KL · P (correcti|xk ∈ θLj ) +KI · P (correcti|xk ∈ θIj )

K
(8)

where KL and KI are the number of samples in subsets θLj and θIj , respectively, and K is the size

of the region of competence θj . The role of KL and KI here is as the weight of the measure from
both subsets. The role of the weight is to ensure the scheme can handle the situation where the

39



Applied Mathematics and Computational Intelligence
Volume 13, No. 3, 2024 [26 – 65]

samples of only one of the classes exist in the region of competence θj . This condition might happen
when the region of competence θj is located in a safe region, where almost all samples in the region
belong to the same class [70].

3.3 Selection Approach

During the selection phase, the level of competence δij of each base classifier ci in the pool of
classifiers C is estimated. Once the level of competence δij has been estimated, the proposed
method will perform the selection of classifiers. To do so, we employed two selection approaches
for DESTOUCH, which are based on the ranking of classifiers and based on a selection threshold.
Therefore, for the rest of this paper, we refer to our proposed methods as DESTOUCH-R and
DESTOUCH-T, respectively:

• DESTOUCH-R (Ranking-based): In this selection approach, the base classifiers in the
pool of classifiers C are ranked according to its level of competence δij . The classifier ci that
has the highest level of competence δij will be ranked first, followed by the classifier with the
second highest level of competence and so on. Based on a pre-defined selection percentage
ρ, the method will select the top N number of classifiers. In this case, the most competent
classifiers are those classifiers that have a higher rank amongst the others.

• DESTOUCH-T (Threshold-based): In this selection approach, a selection threshold
τ is set. The classifier ci that has level of competence δij larger than the threshold τ (i.e.
δij ≥ τ) is considered as competent and selected to form a subset of selected classifiers C ′ ⊂ C.
Therefore, the most competent classifiers are selected based on the classifiers that reach this
minimum requirement, while the less competent classifiers will be pruned from the original
pool of classifiers C.

Based on the selected classifiers C ′ ⊂ C, the proposed method will aggregate the output of the
selected classifiers to perform the final classification decision.

3.4 Aggregation Approach

The aggregation phase consists of combining the selected subset of classifiers C ′ ⊂ C using a
particular fusion approach. We used an aggregation approaches based on majority voting rule
to combine the selected classifiers. We chose this type of fusion approach due to its simplicity.
Therefore, once the subset of the most competent classifiers C ′ ⊂ C for test sample xj have been
selected, the scheme will aggregate the output of each selected classifiers for the final classification
decision. We employed two different aggregation approaches in this study. For each selection
approach (DESTOUCH-R and DESTOUCH-T), the proposed scheme will perform aggregation
based on simple majority voting (simple MV) or weighted majority voting (weighted MV):

• Simple MV: In this approach, the scheme will first select the subset of the most competent
classifiers C ′ from the pool of classifiers C for a test sample xj . Based on selected classifiers
C ′, the scheme aggregates the output of each selected classifier ci ∈ C ′ using simple majority
voting rule [71]. The output of the simple majority voting rule is then used for the classification
decision for test sample xj (i.e. which user a touch stroke xj belongs to).
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• Weighted MV: In this approach, the scheme will first select the subset of most competent
classifiers C ′ from the pool of classifiers C for a test sample xi. Based on selected classifiers C,
the scheme aggregates the output of each selected classifier cj ∈ C ′ using weighted majority
voting rule [72], which weighted by the competence level δij of a classifier ci. Using this
approach, the classification decision obtained by the selected classifiers with a higher level of
competence δij will have a greater influence on the final classification decision. The output of
weighted majority voting is then used for the classification decision for the test sample xj (i.e.
which user touch stroke xj belongs to).

It is worth to note that the main difference between the aggregation approach based on simple MV
and weighted MV is that the former simply combines the output of the selected classifiers C ′, while
the latter includes the level of competence δij as a weight during the aggregation phase.

Algorithm 1: DESTOUCH-R

Input: Training set Dtrain, validation set Dval, test set Dtest, a pool of classifiers C,
neighborhood size K.

Output: A subset of the most competent classifiers C ′ ⊂ C for each test sample xj ∈ Dtest.
1 Train M base classifiers C = {c1, ..., cM} using training set Dtrain ;
2 for each test sample xj ∈ Dtest do
3 Find θj as the K nearest neighbuors of xj in Dval ;
4 Divide θj into two subsets: Samples of the legitimate user θLj and illetitimate users θIj ;

5 Compute the classification proability as in Equation 6 and Equation 7, for θLj and θIj ,

respectively ;
6 Compute the level of comptence δij for classfier ci ∈ C using Equation 8 ;
7 Rank ci ∈ C according the the level of competence δij ;
8 Select a subset of the top N most competent classifiers C ′ from the pool of classfiers C ;
9 Combine C ′ using one of the methods in Section 3.4 to classify xj ;

3.5 The Algorithm

In this summarise, the proposed methods are applied to a pool of M heterogeneous classifiers
C = {c1, .., cM}. These classifiers are trained on the training set Dtrain. Using the validation set
Dval, the competence level δij of these M classifiers are estimated using the measure of competence
proposed in Section 3.2. Then, for each test sample xj ∈ Dtest, the subset of most competent
classifiers C ′ ⊂ C will be selected based on ranking (Algorithm 1) or threshold (Algorithm 2), as
described in Section 3.3. Finally, the selected classifiers will be aggregated using simple MV or
weighted MV to perform the classification decision (see Section 3.4).

4 EXPERIMENTAL SETUP

This section describes how we set up the experiments to evaluate our proposed method. Several
components are involved in the experimental setup, including datasets, DS methods setup, model
training and evaluation procedures, and evaluation metrics. At the end of this section, we describe the
statistical significance test employed in our study. It is worth noting that the ensemble learning
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Algorithm 2: DESTOUCH-T

Input: Training set Dtrain, validation set Dval, test set Dtest, a pool of classifiers C,
neighborhood size K.

Output: A subset of the most competent classifiers C ′ ⊂ C for each test sample xj ∈ Dtest.
1 Train M base classifiers C = {c1, ..., cM} using training set Dtrain ;
2 for each test sample xj ∈ Dtest do
3 Find θj as the K nearest neighbuors of xj in Dval ;
4 Divide θj into two subsets: Samples of the legitimate user θLj and illetitimate users θIj ;

5 Compute the classification proability as in Equation 6 and Equation 7, for θLj and θIj
respectively ;

6 Compute the level of comptence δij for classfier ci ∈ C using Equation 8 ;
7 Select a subset the most competent classifier C ′ from the pool of classfiers C if δij > τ ;
8 if C ′ ̸= ∅ then
9 Combine C ′ using one of the methods in Section 3.4 to classify xj ;

10 else
11 Combine the original pool of classfiers C using one of the methods in Section 3.4 to

classify xj ;

library DESlib [73] was used to implement the DS methods, whereas the Scikitlearn [74] was used
for other classification methods. The experiments were carried out using Microsoft Windows 10
Enterprise with a 2.4 GHz Intel(R) Xeon(R) CPU and 32 GB of RAM.

4.1 Dataset

Four publicly available touch biometric datasets were used in this study: Frank [7], Serwadda [9],
Antal [53], and Mahbub [16]. These datasets, which are summarised in Table 2, consist of swipe
gesture data commonly used in touch-based CA [9]. The datasets vary in terms of the number
of users (subjects), the number of sessions, the duration of data collection, the setting for data
collection, and the number of features. We used the original features that the authors of the
dataset had first presented. Moreover, various features have different value ranges. Therefore, we
transformed the feature data by scaling the values of all features in the [0, 1] range using Min-Max
Scaler to remove any bias from the model-building process. The description of these datasets can
be found in Appendix A.

Table 2 : Summary of the selected datasets

Dataset Subject Session Duration Interval Environment Features

Frank [7] 41 7 25 - 50 minutes Several minutes Controlled 30
Serwadda [9] 190 2 - ≥ 1 day Controlled 28
Antal [53] 71 - 4 weeks - Controlled 15
Mahbub [16] 48 ∼248 1 week - Uncontrolled 24
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4.2 Setup for DESTOUCH

In order to generate the pool of classifiers, we used some of the classifiers that have been widely
used in the literature. There were six base classifiers, which include K-Nearest Neighbour (KNN)
[45], Support Vector Machine (SVM) [46], Decision Tree (DT) [48], Naive Bayes (NB) [49], Logistic
Regression (LR) [51] and Multi-layer Perceptron Neural Network (NN) [49]. We keep the number
of base classifiers small since increasing the pool could make it more likely that an incompetent
classifier will be selected [75]. Furthermore, we used a pool of heterogeneous classifiers to ensure
that the pool was diverse. In contrast to an MCS with homogeneous classifiers, it needs more
advanced training (e.g., various training sets and different feature sets) to produce diversity among
the basic classifiers [33]. The hyper-parameters setting for each classification algorithm are described
in Appendix B. Lastly, we defined the region of competence θj with the K-nearest neighbours
algorithm. We chose K = 7 because it is a common value in the existing DS studies [38, 60, 76].

4.3 Model Training and Evaluation

We addressed the classification problem in this study as a binary classification task, assuming the
possibility of sharing a device (i.e., kids, relatives, or friends could borrow the device) [77]. For each
dataset, we chose the first subject as the legitimate user. Then, we chose some other subjects at
random to be illegitimate users. We repeated this step for other subjects in the dataset, where one
subject was selected as the legitimate user and others as illegitimate users. We aimed to simulate
the situation in which illegitimate users have access to the device and seek to retrieve its stored
data. In other words, we assumed that the device was left unlocked or that illegitimate users could
bypass the initial login process, characterising random attacks as the threat model.

A training set Dtrain was used to train the base classifiers. A legitimate user’s data was used to
select N = 40 samples randomly, and N/10 illegitimate users were randomly selected to form the
data of illegitimate users. As a result, each illegitimate user provided 10 samples in training data,
which were also selected randomly. We used the same amount of training samples for all subjects
to obtain the most consistent results and to exclude any bias that might arise if certain users have
more or fewer samples [9]. The minimum number of samples per user for a particular experiment
has been set at 60. Subjects not meeting this minimum sample in a particular experiment were
excluded. Then, a classification algorithm was trained iteratively for all subjects. Additionally,
the samples used to create a test set Dtest as test samples were used as training samples for both
legitimate and illegitimate users.

There are two main experimental settings for some datasets: intra-session and inter-session. The
same data set was used for the training and evaluation a model in the first case. In the latter case,
a model was trained with one session and tested with a later session. Additionally, we used the
validation set Dval to measure the competence level of a classifier. Due to the small sample size of
each user, the whole training set was used as the validation set [78]. A validation set was also used
to define the region of competence of a test sample.

4.4 Evaluation Metric

The performance of the classification methods evaluated in this study was assessed based on
authentication error rates. False acceptance rate (FAR) is the ratio of touch strokes performed by
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illegitimate users mistakenly identified as touch strokes performed by legitimate users to the total
number of touch strokes performed by illegitimate users. On the other hand, false rejection rate
(FRR) is the ratio of the total number of touch strokes performed by a legitimate user that was
wrongly identified as touch strokes performed by an illegitimate user to the number of touch strokes
performed by a legitimate user. FAR and FRR, respectively, measure the security and usability of
a scheme.

A particular classification method is first evaluated using the metrics mentioned above. Then, a
threshold can be adjusted to make the scheme more usable or secure [14]. The threshold can be
lowered to increase usability with low FRR, but at the cost of high FAR (less restrictive). On the
other hand, the threshold can also be increased to be more restrictive with low FAR but high FRR
(less usable). In this study, we varied the threshold for each user to obtain an equal error rate
(EER). EER measures the trade-off between the security and usability of a scheme. A lower value
of EER suggests a better classification method. We experimented with each classification method
for each user and reported the results for a particular experiment as the average EER of all users.

We evaluated the performance of classification methods based on the average score of several
consecutive strokes rather than a single stroke, similar to other related studies [7–10]. It is worth
noting that setting this value is a complex task. A lower number can be set to allow a faster
authentication process. However, this can lead to the loss of crucial information, making it difficult
for the scheme to learn the characteristics of its users. On the other side, a larger value may include
more information. However, this action can allow more time for authentication, where illegitimate
users can continue operating with the stolen device longer before it is locked out from the device.
We used the mean score of 10 strokes in our study, similar to earlier studies [9, 10].

4.5 Statistical Tests of Significance

The statistical significance of the various classification methods was then assessed. Since each
dataset has various scenarios, the classification method with the lowest average EER was ranked
first for each scenario (more on this in Section 5). The method with the second-lowest EER will be
ranked second, and so on. If there was a tie (i.e. more than one method yielded the same EER),
their ranks were averaged. The last step is to analyse all scenarios across all datasets to determine
the average rank (AR) for each classification method. Therefore, the method with the highest
average rank (lowest value) across all scenarios is the best one.

The Friedman test [79] was used in this study to compare the rankings of several classification
methods statistically. Since our comparisons often violate the assumptions behind parametric
tests (i.e. normal distribution or homogeneity of variance), we choose this non-parametric test. It
evaluates the null hypothesis that the methods under evaluation are equivalent. Various methods
were evaluated using a variety of scenarios and datasets. The Friedman statistic was calculated as
in Equation 9:

χ2
F =

12D

K(K + 1)

∑
j

AR2
j −

K(K + 1)2

4

 , (9)
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where K is the number of classification methods and D is the number of scenarios combined from all
datasets. ARj denotes the average rank of the j-th method over all the scenarios i ∈ D (Equation
10).

ARj =
1

D

D∑
i=1

rji . (10)

It is implied that there is a statistically significant difference in the average ranks of EER among the
evaluated methods if the null hypothesis of Friedman’s test is rejected (at α = 0.05). The pairwise
comparison of the methods across various scenarios was then examined using the Nemenyi post-hoc
test [80]. The test asserts that if the average ranks of two or more methods differ by at least the
critical difference (CD), their performances will differ significantly. Equation 11 shows how the CD
is calculated:

CD = qα,∞,K =

√
K(K + 1)

6D
, (11)

where qα,∞,K is the value based on the Studentized range statistic. We displayed the comparison
results using a CD diagram [81, 82] to visualise the ranking of the performance of the evaluated
classification methods. The diagram also displays the critical difference between each method to
show its significant difference.

We also carried out a pairwise comparison between our proposed DESTOUCH and static classification
methods (i.e. single classifiers and static ensemble methods) using Wilcoxon Signed Rank Test [83]
and Sign Test [84]. We are more interested in this comparison because most work in touch-based
CA concentrates on classification methods using single classifiers and static ensemble methods. The
Wilcoxon Signed Rank Test statistic is given as T = min(R+, R−), where R+ is the total of the
positive rankings and R− is the total of the negative rankings. The null hypothesis is rejected if
the p-value is less than the significance level. The significance level for this test was alpha = 0.05.

Finally, we used the Sign Test, which compares the total number of wins, ties, and losses. If the
total number of wins of a particular method plus half of its total number of ties is higher than or
equal to a threshold value nc, it is considered statistically better. According to the null hypothesis,
there exist variations between the two methods. The former method performs better than the
latter, as the rejected null hypothesis demonstrates. The critical value (at α = 0.05) in our analysis
is 13 because there are 17 scenarios obtained from the four datasets [81]. The following section
summarises our findings from the experiments described in this section.

5 RESULTS AND DISCUSSION

In this section, the experimental results of our proposed method are presented. First, we com-
pare the performance of several DESTOUCH schemes based on their selection and aggregation
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approaches. Then, we evaluate the performance of the proposed method compared to other DS and
static classification methods (i.e. single classifiers and static ensemble methods). We report the
experimental results of our study based on four different touch-based datasets. There are various
scenarios for each dataset [28]. The scenarios vary in various ways, as described in Appendix A.

5.1 Comparison of Selection and Combination Approaches

In this section, we present the results of the comparison of various DESTOUCH schemes (i.e.
DESTOUCH-R and DESTOUCH-T), which differ in terms of selection and aggregation approaches.
Table 3 and Table 4 present various schemes for DESTOUCH-R and DESTOUCH-T, respectively.
For DESTOUCH-R, three selection percentage ρ were evaluated: 25%, 50% and 75%. The scheme
will select N subset of the most competent classifiers C ′ from the pool of classifiers C based on
these percentages. For each selection percentage ρ, DESTOUCH-R will aggregate the selected
classifiers C ′ using either simple MV or weighted MV. On the other hand, for DESTOUCH-T, three
selection thresholds τ were evaluated: 0.4, 0.5 and 0.6. The scheme will select the subset of most
competent classifiers C ′ from the pool of classifiers C that achieve this minimum threshold. For
each selection threshold τ , DESTOUCH-T will also aggregate the selected classifiers C ′ using either
simple MV or weighted MV,

Table 3 : DESTOUCH schemes based on rank

Scheme Selection percentage Aggregation approach

DESTOUCH-R25-S 25 Simple MV
DESTOUCH-R50-S 50 Simple MV
DESTOUCH-R75-S 75 Simple MV

DESTOUCH-R25-W 25 Weighted MV
DESTOUCH-R50-W 50 Weighted MV
DESTOUCH-R75-W 75 Weighted MV

Table 4 : DESTOUCH schemes based on threshold

Scheme Selection threshold Aggregation approach

DESTOUCH-T0.4-S 0.4 Simple MV
DESTOUCH-T0.5-S 0.5 Simple MV
DESTOUCH-T0.6-S 0.6 Simple MV

DESTOUCH-T0.4-W 0.4 Weighted MV
DESTOUCH-T0.5-W 0.5 Weighted MV
DESTOUCH-T0.6-W 0.6 Weighted MV

We evaluated each DESTOUCH scheme over 17 scenarios combined from four touch-based biometric
datasets (with multiple users per scenario). Friedman rank test [79] was carried out to evaluate
the 12 DESTOUCH schemes. We then calculated the Average Rank (AR) across the 17 scenarios.
The best scheme is the one that obtains the lowest AR. Table 5 shows the performance of various
DESTOUCH schemes. Based on this result, Friedman test shows that the p = 3.96× e−11. This
result indicates that there is a significant difference between the DESTOUCH schemes. We then
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carried out the Nemenyi post-hoc test [80]. Figure 2 shows the CD diagram, where the higher the
average rank (lower in the value), the better the scheme. It is worth noting that the significantly
different schemes have a difference in ranking higher than the CD value of CD = 4.04. Therefore,
the line that connects the two methods indicates that the methods are not significantly different
(less than the CD value).

Table 5 : Performance of different DESTOUCH schemes on all datasets according to EER (%)

Frank Serwadda Antal Mahbub

FRK1 FRK2 FRK3 FRK4 FRK5 FRK6 SWD1 SWD2 SWD3 SWD4 SWD5 SWD6 SWD7 SWD8 ANT1 ANT2 MHB AR

DESTOUCH-R
DESTOUCH-R25-S 1.04 0.91 14.60 3.28 11.92 12.22 2.97 2.10 22.66 14.42 3.25 1.47 20.84 9.70 2.76 5.49 24.25 11.62
DESTOUCH-R50-S 0.97 0.55 13.28 2.76 11.51 11.00 2.57 1.69 21.98 13.52 2.97 1.20 19.17 8.79 2.22 4.59 23.21 5.79
DESTOUCH-R75-S 1.03 0.51 13.04 2.74 11.29 10.44 2.54 1.64 21.34 13.55 3.00 1.17 18.53 8.56 2.50 4.80 22.82 4.91
DESTOUCH-R25-W 1.00 0.80 13.73 2.96 11.24 10.31 2.72 1.71 21.70 14.03 3.04 1.27 19.57 8.64 2.35 4.98 23.71 8.38
DESTOUCH-R50-W 0.93 0.65 13.04 2.61 10.90 10.01 2.56 1.59 20.57 13.72 3.08 1.16 19.19 8.27 2.17 4.59 22.92 3.71
DESTOUCH-R75-W 1.01 0.69 13.28 2.69 10.85 10.16 2.64 1.64 20.44 13.69 3.13 1.18 18.86 8.24 2.40 4.80 22.80 4.85

DESTOUCH-T
DESTOUCH-T0.4-S 1.00 0.66 13.46 2.94 11.98 10.46 2.76 1.81 19.39 13.72 3.30 1.33 18.75 8.35 3.40 5.17 22.70 8.21
DESTOUCH-T0.5-S 0.98 0.58 13.49 2.92 11.32 10.43 2.67 1.78 19.71 13.69 3.13 1.26 18.83 8.34 3.01 4.98 22.65 6.65
DESTOUCH-T0.6-S 0.96 0.55 13.29 2.74 11.05 10.70 2.54 1.68 19.83 13.58 3.00 1.16 18.92 8.42 2.43 4.68 23.06 4.85
DESTOUCH-T0.4-W 0.99 0.89 13.57 2.92 11.14 10.44 2.85 1.80 19.08 13.89 3.41 1.38 18.55 8.00 2.76 5.13 22.90 7.97
DESTOUCH-T0.5-W 0.98 0.81 13.58 2.91 11.10 10.36 2.78 1.73 19.33 13.82 3.31 1.33 18.48 7.98 2.37 4.98 22.81 6.59
DESTOUCH-T0.6-W 0.96 0.76 13.29 2.78 10.94 10.23 2.65 1.63 19.32 13.68 3.17 1.23 18.76 8.04 2.21 4.71 22.89 4.47

Figure 2 : Average rank of various DESTOUCH schemes. The higher the rank, the better the scheme.

From Figure 2, we can see that for DESTOUCH-R, the scheme with selection percentage ρ = 50%
and weighted MV as the aggregation approach (DESTOUCH-R50-W) performed the best in terms of
the average rank. This scheme outperformed the scheme based on simple MV (DESTOUCH-R50-S).
In general, the DESTOUCH schemes that use weighted MV as the aggregation approach performed
better than those that use simple MV. We can also see that DESTOUCH-T0.6-W is better than
DESTOUCH-T0.6-S, DESTOUCH-R75-W performs better than DESTOUCH-R75-S, and so forth.
Based on this observation, we can conclude that aggregation approaches have an influence on a
particular scheme.

Besides, we can observe that for each aggregation approach of DESTOUCH-R, a larger selection
percentage ρ generally outperformed the lower selection percentage. We believe a larger number
of selected classifiers could produce better results. Except for DESTOUCH-R50-W, this scheme is
better than DESTOUCH-R75-W. For each aggregation approach of DESTOUCH-T, we can see that
the larger the selection threshold τ , the better the performance of the scheme. Therefore, having a
more restricted threshold can produce better performance. Finally, by comparing the best scheme
for both DESTOUCH-R and DESTOUCH-T, we can see that DESTOUCH-R50-W is better than
DESTOUCH-T0.6-W.

In the next section, we will compare the performance of our proposed DESTOUCH-R and
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DESTOUCH-T with some other DS methods found in the literature. Since DESTOUCH-R50-W and
DESTOUCH-T0.6-W, are the best scheme for DESTOUCH-R and DESTOUCH-T, respectively, we
will compare the results of these two schemes with other methods in the rest parts of this section.
Therefore, we will only refer to these two schemes as simply DESTOUCH-R and DESTOUCH-T,
respectively, hereafter.

5.2 Comparison with Other DS Methods

In this section, we compare the performance of our proposed DS methods (DESTOUCH-R and
DESTOUCH-T) with some other DS methods presented in the literature (originally designed meant
for other domains). This comparison investigates the performance and effectiveness of the proposed
DESTOUCH based on the datasets used in our study. Table 6 shows the nine benchmark DS
methods, which include DCS-OLA [59], DCS-LCA [59], DCS-Priori [63], DCS-Posteriori [63]),
(DES-KNORAE [67], DES-KNORAu [67], DES-RRC [58], DES-P [26], and META-DES [68]). For
these benchmark DS methods, we also generated a pool of classifiers that consists of SVM, NB,
DT, KNN, LR, and NN. We also set the size of the region of competence θj as K = 7. We would
like to note that DES-RRC does not use the KNN to define the region of competence. It originally
defines the region of competence using the whole validation set Dval based on a potential function
model. However, we set the size of the validation samples to be 7 to reduce the computational time
if the whole validation set Dval is used.

Table 6 : DS methods considered as the benchmark methods in the experiments. The methods differ terms
of the region of competence definition, selection criteria, and selection approach.

Method Abbreviation Region of competence definition Selection criteria Selection approach

Overall Local Accuracy [59] DCS-OLA KNN Accuracy DCS
Local class accuracy [59] DCS-LCA KNN Accuracy DCS
A Priori [63] DCS-Priori KNN Probabilistic DCS
A Posteriori [63] DCS-Posteriori KNN Probabilistic DCS

K-Nearest Oracles Eliminate [67] DES-KNORAE KNN Oracle DES
K-Nearest Oracles Union [67] DES-KNORAU KNN Oracle DES
DES Randomized Reference Classifier [58] DES-RRC Potential function Probabilistic DES
DES Performance [26] DES-P KNN Accuracy DES
META-DES [68] META-DES KNN Meta-Learning DES

Table 7 shows the performance of each method. Our proposed methods, DESTOUCH-R and
DESTOUCH-T, performed the best in 12 out of 17 scenarios combined from the four datasets
(where DESTOUCH-R is the best performer in 9 scenarios, and DESTOUCH-T in 3 scenarios).
Next, we analysed the overall performance of the DS methods (in terms of ranking) using the
Friedman test [79]. Since the p-value p = 4.433× e−26 is lower than the significance level α = 0.05,
we can reject the null hypothesis H0 that all these DS methods are the same. We further analyse
the results by carrying out the Nemenyi post-hoc test [80] to analyse the pairwise comparison of the
DS methods. Figure 3 shows a CD diagram with the results of the Nemenyi post-hoc test, where
CD = 3.66. We can see that our proposed methods have the highest average rank of AR = 2.03
and AR = 2.47 for DESTOUCH-R and DESTOUCH-T, respectively, across 17 scenarios combined
from the four datasets. These results show the advantage of our proposed method. We will also
compare these methods with other static classification methods in the next section.
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Table 7 : Performance of DESTOUCH methods compared to other DS methods on all datasets according to
EER (%)

Frank Serwadda Antal Mahbub

FRK1 FRK2 FRK3 FRK4 FRK5 FRK6 SWD1 SWD2 SWD3 SWD4 SWD5 SWD6 SWD7 SWD8 ANT1 ANT2 MHB AR

Benchmark DS method
DCS-OLA 1.81 2.57 16.16 4.77 12.41 14.18 4.26 3.49 24.85 16.32 4.80 2.32 22.10 11.49 3.43 7.09 28.42 9.53
DCS-LCA 3.58 3.98 16.35 6.13 16.73 13.79 6.00 5.36 23.52 16.88 7.04 3.17 20.82 10.90 5.11 10.16 29.85 10.59
DCS-Priori 1.41 1.68 13.95 4.60 12.18 14.53 4.22 3.25 23.31 16.36 4.24 2.13 20.19 10.60 3.82 6.01 27.13 8.29
DCS-Posteriori 1.82 2.51 14.15 5.50 13.75 15.10 4.35 4.06 22.65 16.57 4.64 2.46 20.39 10.88 6.48 7.07 27.86 9.53
DES-KNORAE 1.16 0.92 13.28 2.32 11.55 12.11 2.76 2.05 20.69 14.09 2.96 1.35 19.66 9.22 2.50 4.65 25.06 5.03
DES-KNORAU 1.16 0.68 13.66 2.91 11.77 12.19 2.83 2.01 22.76 14.07 3.33 1.39 19.49 9.24 3.24 5.48 23.31 6.47
DES-RRC 0.97 0.55 13.48 2.87 11.24 10.53 2.67 1.78 19.78 13.68 3.23 1.24 18.83 8.33 3.01 4.97 22.63 3.56
DES-P 0.96 0.58 13.52 2.84 11.48 10.56 2.69 1.78 19.51 13.65 3.26 1.25 18.87 8.27 2.98 4.96 22.76 3.62
META-DES 1.03 0.81 13.34 2.72 12.04 11.28 2.74 1.95 20.78 14.07 3.13 1.24 19.22 8.52 2.31 5.02 24.62 4.88

DESTOUCH method
DESTOUCH-R 0.93 0.65 13.04 2.61 10.90 10.01 2.56 1.59 20.57 13.72 3.08 1.16 19.19 8.27 2.17 4.59 22.92 2.03
DESTOUCH-T 0.96 0.76 13.29 2.78 10.94 10.23 2.65 1.63 19.32 13.68 3.17 1.23 18.76 8.04 2.21 4.71 22.89 2.47

Figure 3 : Average rank of DESTOUCH-R, DESTOUCH-T and other DS methods. The higher the rank,
the better the method.

5.3 Comparison with Other Classification Methods

In this section, we compare the performance of our proposed methods (DESTOUCH-R and
DESTOUCH-T) with other types of classification methods chosen in this study. The first group of
methods are six single classifiers that form the pool of classifiers. The single classifiers include SVM,
NB, DT, KNN, LR, and NN. Second, we employed static ensemble methods, which include Random
Forest (RF), Majority Voting (MV), Static Selection (SS), and Single Best (SB). Table 8 shows
the benchmark methods under the category of static classification methods (i.e. single classifiers
and static ensemble methods). RF is a homogeneous ensemble classifier consisting of multiple
decision trees (in our case, 100 trees). On the other hand, MV, SS and, SB are heterogeneous
ensemble classifiers that consist of the six single classifiers (SVM, NB, DT, KNN, LR and NN).
This analysis investigates whether the proposed methods can achieve a better result compared to
static classification methods found in the literature. This analysis is crucial since most studies in
the domain of touch-based CA are focussing on classification methods using single classifiers and
static ensemble methods (e.g.SVM KNN, RF, and etc.). The experimental results are presented in
Table 9.

Table 9 shows that our proposed DESTOUCH-R and DESTOUCH-T are the best methods in 7 out
of 17 scenarios (where DESTOUCH-R is the best performer in 5 scenarios, and DESTOUCH-T
is the best performer in 2 scenarios). We also carried out the Friedman test [79] amongst these
methods. The p-value p = 1.509 × e−28 of the test is lower than the significance level α = 0.05
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Table 8 : Static classification methods (single classifiers and static ensemble methods) considered as the
benchmark methods in the experiments

Type Method Abbreviation Ensemble

Single classifiers Support Vector Machine [46] SVM -
Naive Bayes [49] NB -
Decision Tree [48] DT -
K-Nearest Neighbour [45] KNN -
Logistic Regression [51] LR -
Neural Network [49] NN -

Static ensemble Random Forest [85] RF Homogeneous
Majority Voting [71] MV Heterogeneous
Static Selection [72] SS Heterogeneous
Single Best Classifier [72] SB Heterogeneous

and hence, we can reject the null hypothesis H0 that these methods are the same. Figure 4 shows
the CD diagram (CD = 4.04) with the results of the Nemenyi post-hoc test. We can observe that
our proposed DESTOUCH-R and DESTOUCH-T have the highest average rank (2.21 and 2.65,
respectively) across 17 scenarios combined the four datasets. These results show the superiority of
our methods compared to not only single classifiers but also static ensemble methods. This better
performance compared to single individual classifiers can be explained by the ability of the methods
to determine experts in different regions of the feature space (defined by the region of competence).
As in DESTOUCH, only the most competent classifiers for a particular test sample are selected
based on the proposed measure of competence to determine to whom a particular touch stroke
belongs. Therefore, the incompetent classifiers that are not the experts in the local region have no
contribution towards the classification decision.

Table 9 : Performance of DESTOUCH methods compared to other classification methods on all datasets
according to EER (%)

Frank Serwadda Antal Mahbub

FRK1 FRK2 FRK3 FRK4 FRK5 FRK6 SWD1 SWD2 SWD3 SWD4 SWD5 SWD6 SWD7 SWD8 ANT1 ANT2 MHB AR

Single classifier
SVM 5.75 4.51 18.19 7.08 15.09 14.47 6.82 8.65 22.83 19.97 8.82 4.04 22.66 11.80 5.40 11.95 35.90 9.56
NB 9.86 10.08 22.42 14.56 24.45 22.70 15.86 8.76 31.39 19.06 14.81 6.19 24.53 13.17 10.42 13.96 37.89 11.41
DT 2.90 3.86 17.56 7.91 17.53 16.80 6.52 4.91 30.21 19.07 6.22 3.83 25.77 13.81 5.43 10.02 28.00 9.71
KNN 1.16 0.94 14.83 3.59 10.08 14.32 3.54 2.80 24.54 16.01 4.39 1.39 20.57 11.36 2.75 6.75 27.84 5.94
LR 4.75 5.35 18.11 7.43 18.59 14.47 11.77 9.69 24.24 21.70 14.00 5.30 20.91 13.45 11.34 17.67 34.45 10.32
NN 1.51 1.51 14.72 5.34 14.00 13.48 4.72 4.39 25.71 18.45 4.66 2.14 21.24 11.20 3.90 7.78 28.49 7.47

Static ensemble method
RF 0.93 0.84 13.38 3.47 11.03 9.58 2.81 1.82 22.25 14.05 2.90 1.77 18.11 8.10 2.16 4.73 19.33 3.15
MV 1.04 0.75 13.79 3.14 10.97 10.86 2.95 1.91 20.90 13.47 3.34 1.24 18.13 8.39 3.42 5.39 22.75 3.88
SS 1.14 0.53 14.49 2.57 12.24 11.69 2.59 1.72 21.18 13.82 2.99 1.14 19.18 9.42 2.23 5.05 22.99 3.59
SB 4.69 2.38 19.16 5.76 13.41 14.20 4.63 4.32 28.13 17.81 5.82 2.40 23.57 13.58 3.31 7.66 27.86 8.12

DESTOUCH method
DESTOUCH-R 0.93 0.65 13.04 2.61 10.90 10.01 2.56 1.59 20.57 13.72 3.08 1.16 19.19 8.27 2.17 4.59 22.92 2.21
DESTOUCH-T 0.96 0.76 13.29 2.78 10.94 10.23 2.65 1.63 19.32 13.68 3.17 1.23 18.76 8.04 2.21 4.71 22.89 2.65

Furthermore, we performed a pairwise comparison between each DESTOUCH methods with the
static classifiers (single classifiers and static ensemble methods) involved in this section. We carried
out two additional statistical analysis: Wilcoxon Signed Rank Test [83] and Sign Test [84]. Table 10
shows the results of Wilcoxon Signed Rank Test. The pairwise comparison tests the null hypothesis
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Figure 4 : Average rank of DESTOUCH-R, DESTOUCH-T and other types of classification methods, The
higher the rank, the better the method.

where two classification methods performed equally. The null hypothesis H0 is rejected if the p-value
is less than the significance level α = 0.05. Based on the results, we can see DESTOUCH-R and
DESTOUCH-T are significantly better than the static classifiers, except RF.

Table 10

Method p-value Null Hypothesis

DESTOUCH-R vs SVM 1.526× e−05 Reject
DESTOUCH-R vs NB 1.526× e−05 Reject
DESTOUCH-R vs DT 1.526× e−05 Reject
DESTOUCH-R vs KNN 0.000 Reject
DESTOUCH-R vs LR 1.526× e−05 Reject
DESTOUCH-R vs NN 1.526× e−05 Reject
DESTOUCH-R vs RF 0.379 Fail to reject
DESTOUCH-R vs SS 0.009 Reject
DESTOUCH-R vs MV 0.023 Reject
DESTOUCH-R vs SB 1.526× e−05 Reject
DESTOUCH-R vs DESTOUCH-T 0.329 Fail to reject
DESTOUCH-T vs SVM 1.526× e−05 Reject
DESTOUCH-T vs NB 1.526× e−05 Reject
DESTOUCH-T vs DT 1.526× e−05 Reject
DESTOUCH-T vs KNN 0.000 Reject
DESTOUCH-T vs LR 1.526× e−05 Reject
DESTOUCH-T vs NN 1.526× e− 05 Reject
DESTOUCH-T vs RF 0.431 Fail to reject
DESTOUCH-T vs MV 0.017 Reject
DESTOUCH-T vs SS 0.031 Reject
DESTOUCH-T vs SB 1.526× e−05 Reject

Figure 5a and 5b respectively show the performance of DESTOUCH-R and DESTOUCH-T compared
with single classifiers and static ensemble methods in terms of wins, ties and losses (Sign Test) over
the 17 scenarios combined from the four datasets. The vertical line each line illustrates the critical
values nc = 13 considering significance levels of α = 0.05. From Figure 5a and 5b , we can see that
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DESTOUCH-R and DESTOUCH-T performed significantly better than all methods, except RF
and SS. It is also worth noting that DESTOUCH-R and DESTOUCH-T do not have any significant
deference according to Wilcoxon Signed Rank Test and Sign Test.

(a) DESTOUCH-R (b) DESTOUCH-T

Figure 5 : Performance of (a) DESTOUCH-R and (b) DESTOUCH-T compared with single classifiers and
static ensemble methods in terms of wins, ties and losses based on the EER over the 17 scenarios combined
from four datasets. The vertical line represents the critical values nc = 13 at significance levels of α = 0.05

Table 11 : The best classification method in each scenario according to EER (%)

Dataset Scenario Method Category EER

Frank FRK1 RF Static ensemble 0.93
FRK2 SS Static ensemble 0.53
FRK3 DESTOUCH-R DS 13.04
FRK4 SS Static ensemble 2.57
FRK5 KNN Single classifier 10.08
FRK6 RF Static ensemble 9.58

Serwadda SWD1 DESTOUCH-R DS 2.56
SWD2 DESTOUCH-R DS 1.59
SWD3 DESTOUCH-T DS 19.32
SWD4 MV Static ensemble 13.47
SWD5 RF Static ensemble 2.90
SWD6 SS Static ensemble 1.14
SWD7 RF Static ensemble 18.11
SWD8 DESTOUCH-T DS 8.04

Antal ANT1 RF Static ensemble 2.16
ANT2 DESTOUCH-R DS 4.59

Mahbub MHB RF Static ensemble 19.33

We further analyse the best method for each scenario on all datasets. Table 11 shows the best
method for each scenario. We can see that RF was the best method in 6 out of 17 scenarios. However,
it is not the top-ranked method according to the average rank. We believe that this is due to the
inconsistency of RF. Figure 6 shows the box plot for DESTOUCH-R, DESTOUCH-T, RF, and SS
across all scenarios. From the figure, we can see that our proposed methods are more consistent
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compared to RF and SS. We argue that a more consistent classification method is preferable for a
CA scheme as an inconsistent classification method may greatly affect the security and usability
of the scheme. Therefore, the experimental results in this section demonstrated the potential and
feasibility of the proposed method, showing that it can improve the authentication performance of
touch-based CA with a relatively low EER in many scenarios across multiple datasets, exhibiting
relatively high consistency.

Figure 6 : Box plot of the average rank of DESTOUCH-R, DESTOUCH-T and RF

6 CONCLUSIONS AND FUTURE WORK

In this study, we proposed a Dynamic Selection (DS) method for touch-based continuous authen-
tication (CA). We introduced DESTOUCH, a DS method based on a probabilistic measure of
competence. We generated a pool of six heterogeneous classifiers: K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), Logistic Regression (LR),
and Multi-layer Perceptron Neural Network (NN). Our method estimated the competence level of
each classifier by computing the probability of correct classification for legitimate and illegitimate
user samples in the test sample’s region of competence. The method divided the samples in the
region of competence into two subsets: legitimate and illegitimate. It calculates the probabilities
representing true acceptance for legitimate users and true rejection for illegitimate users. These
probabilities are then integrated to define each classifier’s measure of competence. We presented
two variants: DESTOUCH-R and DESTOUCH-T. DESTOUCH-R selects classifiers based on
competence ranking, while DESTOUCH-T selects them based on a competence threshold. Each
variant uses either simple or weighted majority voting (MV) for aggregation.

We conducted experiments using four touch-based biometric datasets (Frank, Serwadda, Antal, and
Mahbub). We compared our method with six single classifiers (KNN, SVM, DT, NNB, LR, and
NN), four static ensemble methods, and nine other DS methods. Based on the average rank in
Equal Error Rate (EER), the proposed method ranked the highest compared to other DS and static
classification methods (single classifiers and static ensemble methods). The experimental results
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also show that the performance of our proposed method is more consistent compared to some of
the other top-performing methods. When the authentication error can be decreased even further,
the results can provide a better security mechanism for mobile devices by assuring a higher level of
security without compromising usability. In other words, a mobile device is able to detect and block
illegitimate users more effectively. In addition, mobile device authentication can prevent legitimate
users from being locked out during their usual usage session, which is more convenient for the user.
Therefore, due to its superior classification capability, we recommend using DESTOUCH for user
classification in touch-based CA.

It is worth noting that DESTOUCH uses the traditional KNN algorithm to define the competence
region of a test sample. Future work could explore other methods to improve this process. Imple-
menting our methods on mobile devices for real-time authentication is another potential direction.
Additionally, using larger datasets to test the long-term validity of our methods is an interesting
area for future research.
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APPENDIX

A. DESCRIPTION OF DATASETS AND SCENARIOS

Four publicly available touch biometric datasets were used in this study. These datasets consist of
swipe gesture data. These gestures are commonly used when users operate a mobile device and,
therefore, are appropriate for touch-based CA [9]. These datasets differ in terms of the number
of users (subjects), the number of sessions, the duration of data collection, the setting for data
collection, and the number of features. We used the original features that the authors of the dataset
had first presented to evaluate how the proposed method performed with various features. These
datasets include:

• Frank Dataset [7]: It consists of swipe data from 41 subjects who were asked to read
texts and compare images, producing vertical and horizontal strokes. Initially, there were
three sessions for reading texts and two for comparing images on the same day. There
were several-minute breaks between sessions on that particular day before moving on to the
following session. Some subjects took part in a second phase of collecting data for the same
tasks after at least a week, but there was only one session for each task. The authors presented
27 touch-based features.

• Serwadda Dataset [9]: It is made up of swipe data from 190 subjects for two sessions
separated by at least one day. The subjects had to respond to multiple-choice questions
during each session. In order to complete the activities, subjects had to swipe back and forth
between the horizontal and vertical directions. All short strokes with four or fewer touchpoints
were considered outliers and eliminated. The data of each stroke direction were collected from
different screen orientations (landscape and portrait). For each swiping action, the authors
presented 28 features.

• Antal Dataset [53]: It was collected from 71 subjects in four weeks. The subjects were
asked to complete tasks that involved document reading and image browsing, which resulted in
vertical and horizontal swipes, respectively. Each subject had to complete the tasks throughout
several sessions. The authors presented 15 features for each swiping action.

• Mahbub Dataset [16]: A multi-modal dataset known as the University of Maryland Active
Authentication Dataset 02 (UMDAA-02) was presented by Mahbub et al. [16]. It was originally
intended as a multi-modal continuous authentication. However, in this study, we only used the
data from the touchscreen sensor since touch-based CA is our primary interest. The data was
provided by 48 subjects who had used smartphones for more than two months. Additionally,
unlike all the other datasets, there are no pre-defined tasks during data collection. In contrast
to the other datasets with many sessions, the Mahbub dataset has no predetermined length
of time. Instead, the session started and stopped when the device was unlocked or locked.
The authors presented a total of 24 features. In our study, swipes with fewer than five data
points were excluded to reduce the occurrence of outliers.

Table 12 illustrates the scenarios for each dataset. The scenarios vary in various ways. The first
element is stroke direction. It is either horizontally (scroll to the left or right) or vertically (scroll
up or down). Second, there are two screen orientations in the Serwadda dataset: portrait and
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landscape. We followed the setup similar to the the original paper for each dataset by building a
model independently for varied stroke directions and screen orientations.

Table 12 : List of scenarios across all datasets

Dataset Scenario Notation

Stroke Direction Screen Orientation Session

Frank Vertical - Intra-session FRK1

Horizontal - Intra-session FRK2

Vertical - Inter-session FRK3

Horizontal - Inter-session FRK4

Vertical - Inter-week FRK5

Horizontal - Inter-week FRK6

Serwadda Vertical Portrait Intra-session SWD1

Horizontal Portrait Intra-session SWD2

Vertical Portrait Inter-session SWD3

Horizontal Portrait Inter-session SWD4

Vertical Landscape Intra-session SWD5

Horizontal Landscape Intra-session SWD6

Vertical Landscape Inter-session SWD7

Horizontal Landscape Inter-session SWD8

Antal Vertical - - ANT1

Horizontal - - ANT2

Mahbub Combined - - MHB

In addition, for the datasets collected throughout multiple sessions, we conducted tests in two
different settings: intra-session and inter-session. A session refers to when a user is instructed to
begin using the device and when they are instructed to stop using it. The duration is dependent
on the specific dataset. For the intra-session scenario, we trained and evaluated a model on the
dataset from the same session using the data partitioning technique described in Section 4.3. For
inter-session, the model was trained with one session and then evaluated with a another session. In
other words, the classifier was trained using the data from the previous session, and the model was
evaluated using the data from the subsequent session. This setting is intended to ensure that the
test samples were generated after the training samples.

For the Frank dataset, there are multiple sessions on a single day and one session the following
week. We conducted the experiments under intra-session, inter-session, and inter-week scenarios.
We conducted both intra-session and inter-session experiments for the Serwadda dataset. It is
important to note that for each dataset, the duration of each session and the time between sessions
varies (see Table 2). Multiple sessions were not used to partition the Antal dataset. Therefore,
we were unable to separate it into distinct sessions. For the Mahbub dataset, the period of each
data collection was not predetermined. Instead, the author defined a session as unlocking and
locking a device. Consequently, a session of one user is not identical to another. We did not do
the inter-session experiment for this dataset because there is no defined timeframe for every user.
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Therefore, all sessions were merged.

B. HYPERPARAMETERS AND OTHER SETTINGS OF BASE CLASSIFIERS

Hyper-parameters in the classification algorithms mentioned above may affect overall performance.
In order to fine-tune the hyper-parameters for each classification algorithm, we used a grid selection
method. The hyper-parameters for each classification algorithm are listed in Table 13 along with
their corresponding values [28]. The hyper-parameters not listed in this table are set to the default
value according to each algorithm implementation.

Table 13 : Summary of parameters and settings associated to each classifier

Model Hyper-parameter Value

SVM Regularization parameter, C [0.001, 0.01, 0.1, 1, 10, 25, 50, 100, 1000]
Kernel RBF
Kernel coefficient, γ 1 / number of features
Tolerance for stopping criterion 1e−3

NB - -

DT Maximum depth of the tree [none, 5, 10, 15,20, 25, 30]
Minimum number of samples to split [2, 4, 6, 8, 10]
Minimum number of samples at a leaf [1, 2, 3, 4, 5]

KNN Number of neighbours [1,. . . ,10]
Algorithm KD tree
Distance metric used for finding neighbours Euclidean

LR - -

NN Number of hidden layers 1
Number of hidden nodes 50
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