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Abstract: One of the problems in iterations is to determine the best initial value and to ensure the 

convergence of the iterations. So, the objective is to evaluate the effectiveness of higher order 

approximated solutions of Homotopy Taylor-perturbation using start-system (ss) to overcome the 

problems. Successive approximation procedures using start-system technique are applied to the 

Classical Newton-Raphson, the Newton-perturbation, the Higher Order Taylor-perturbation and 

the new higher order Homotopy Taylor-perturbation (HHTP). The results are compared and 

evaluated. Numerical examples are given to illustrate and support the suggested algorithms. 

Results show that HHTPss offers as an alternative and effective way in solving nonlinear 

equations. 
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1 Introduction 

The classical Newton method is a well-known method for solving non-linear equation due to its 

high efficient in the convergence speed. However, the need to guess the initial value in the iteration 

process is a disadvantage. Good initial guess value can solve the equation quickly, or vice versa. 

Homotopy continuation method can guarantee the answer by a certain path if the suitable auxiliary 

homotopy function ( λ ), or a start-system function, )(xp  is used [1, 2]. Some useful rules for the 

choice of the adjustable auxiliary homotopy and start-system functions are discussed and 

evaluated.Later, the homotopy perturbation method (HPM) was introduced by He [9, 11,12]. The 

concepts of higher order correctional terms in perturbation techniques are also introduced and 

applied, and almost all are based on an assumption that a small parameter must exist in the equation 
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[1,2]. Commonly in perturbation methods, the correction terms are calculated once and no 

iterations are made. Here, iterations are made and numerically evaluated using Maple version 14. 

 

2 Project Design 

Definition 1  A polynomial )(xf of degree n is defined as [3-5], 
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where, ia  are any  real values for 0=i to n.  

 

Definition 2 We define the nth Taylor polynomial )(xPn about 0xx = as [3-5], 
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Definition 3Perturbation expansion is defined as, [1] 
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where, iε  are any real values for 0=i to n.  

 

 

Definition 4  The following non-linear algebraic equation is considered, 0)( =xf  and we 

construct a convex homotopy for the function [ ] ℜ→×ℜλ 1,0:),(xH as,[1] 

    

;0)()()-1(),( =λ+λ=λ xqxpxH                                            (4) 

 

where,  λ is an embedded parameter and [ ];1,0∈λ  
 

)()()1,(&)()0,( xfxqxHxpxH === . 

 

There are several ways to identify a start-system of a linear homotopy as mentioned by Nor 

Hanimet. al. [1,2] and Palancz et. al. [6]. However, here the start-system of the Taylor-homotopy is 

defined as, 

 

Collorary 1  We defined the convex homotopy for the function [ ] ℜ→×ℜλ∗ 1,0:),(xH is defined as, 

 

);()()-1(),( xqxpxH λ+λ=λ∗                                                                                      (5) 

 

where, C-)()0,(
* n

xxpxH ==  is the start-system function; )()()1,(* xfxqxH == is the target-
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system function; n is preferably the highest power of x of a nonlinear function );(xf  C is any real 

number in ).(xf   

 

Substituting Eq.(3) into Eq.(2), apply it to nonlinear as defined by Eq.(1), and later adding 

another step, where we convert the nonlinear )(xf  into ),( λxH as in Eq. (4) and Eq. (5), thus we 

are creating a n
th

 order HPM.   

 

Hereafter, our discussion will only proceed with the above method, Eq. (5), for its flexibility 

to choose the values of n and C.  Various perturbation methods have been widely introduced and 

applied, and almost all are based on an assumption that a small parameter must exist in the equation 

[7]. Commonly in perturbation methods, the correction terms are calculated once and no iterations 

are made. 

 

Besides the ease of Newton-homotopy, it does not guarantee to converge [10].  Hereafter, our 

discussion will only proceed with the above method, Eq. (5), for its flexibility to choose the values 

of n and c. Below are some of the Maple14 algorithms used to create the Newton-perturbation 

(NP), Homotopy Taylor-perturbation (HTP) and Higher Order Homotopy Taylor-perturbation 

(HHTP) using start-system. Most of the algorithms have been simplified to a simpler form. The 

iterations will follow the following procedures: 

 

i) Identify 0)()( == xfxq  

ii) Identify )(xp , such as cxxp n -)( = where c is a any real number, and n be the highest  

power of x or, )(xp be a part of )(xf  with trivial  solution(s), 

 

iii) Find the initial value by setting 0→0-)( xcxxp n == . 

 

));((;));((;15:;:;:)(; xpfsolvexqfsolveDigitsxxpxexxqrestart x =−→=−→= −
 

 

iv) Simplify )(.)).(-1(),( xqcxxH n λ+−λ=λ
 ;

 

 

));,(();()()1(: λλλ xHsimplifyxqxpxH +−→=  

 

v) Substitute Perturbation Expansions into the Taylor’s Series of order n  such as  

n=1, 2, 3, 4 or 5; 

 


































+∑
∑

=

=
3

1

3

1

0
)(

0
!

)())((

)(exp;
i

i

i

i
ii

i

xaxfD

xfandrestart  

 

vi) Sort the expansion of degree 1 and equate it to zero, in order to calculate Newton- 

perturbation (Single Correctional Terms); 

 

0))(()(( 100 =+ axxfDxfsolve  

 

vii) Sort the expansion of degree 2 and equate it to zero, in order to calculate Taylor- 
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perturbation (Double Correctional Terms); 
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)2(2
20 =+ axxfDaxxfDsolve  

  
 

viii) Sort the expansion of degree n and equate it to zero, in order to calculate Taylor- 

Perturbation (Triple Correctional Terms) such as n=3; 
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ix) Iterate ( ) )()-1(),( xqcxxH n λ+−λ=λ , where [ ]1,0∈λ  e.g. 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 by  

using the Higher Order Homotopy Taylor-perturbation; can change the step size ,
n

1
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Or,  
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Or, 
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where,     
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3 Numerical Examples and Analysis 

Table 1 shows the list of nonlinear equations used in applying the higher order Homotopy Taylor-

Perturbation. The actual roots and the Homotopy functions are calculated and compared.  

 

Table 1: Nonlinear equations 

 

No. Nonlinear 

 
),(*→ λλ xH , 

where [ ]10 ,∈λ ; Actual roots 

Previously 

used by 

a 

 
40-64 xx +  xx λ+− 6404  

2.66728462,-2.66728462, 

[1, 2] and [6]. 

b xexx −+− 232  xexx λ−+−λ 232  

0.2575302854 

[2] and [8]. 

c xx −)cos(  xx λ−)cos(  

0.7390837332 

[2] and [8]. 

d 2)sin( 4 −++ xex x  2)sin( 4 −+λ+λ xex x  

0.4342159162 

- 

e )ln()2( 2 xx −−  )ln()2( 2 xx −−  

3.057103550, 1.412391172 

 

[7] 

f 

 
)406.()2( 42 −+− xxx  

 

-2.514866859, 2.514866859 

 

- 

g 

 
)).(sin()2( 2 xx −  

 

1.259921050 

 

- 

 

h 

 
))).(cos(23( 2 xxex x +−−  

 

0.0, 3.000000000
 

 

- 

 

 Meanwhile, The dashed-green line, )(xp , is the start-system line where we freely choose a 

new equation from )(xf represented by the solid-red line, where  ).()( xfxp ⊂  Figure 1 and 

Figure 2 illustrate the closeness of the startsystem values suggested to the real roots for Eq. (b) and 

Eq. (c), respectively. The advantage of this procedure, it eliminates the time needed to decide on 
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the initial value, .0x  

 

 
 

Figure 1: Eq. (b)  

 

 

 
 

Figure 2: Eq. (c) 

 

The list of the higher order correctional terms Homotopy Taylor-perturbation (HHTP) method 

by using start-system can be referred at Table 2. Most of the algorithms have been simplified into 

simpler forms and iterations are done using mathematical software Maple14. The choice of a 

suitable )(xp is not unique and different choices of )(xp work better for different types of 

equations. Here, the step size 5,
1

== Nwhere
N

h . So it is set to 0.2 and the stopping-criteria are 

set to 6101 −× .To determine the initial value ,0x only equate )(xp to zero. 
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Table 2: The iteration scheme of the Higher Order of Homotopy Taylor-perturbation (HHTP) 

Method with start-system 

 

 In Table 3, five (5) nonlinear equations were iterated using 1
st
, 2

nd
 and 3

rd
 order HHTP with 

and without start-system functions. Results indicate the 2
nd

 order produces less numbers of 

iterations needed to converge to its root/s. 

 

 

Table 3: The approximated zeros using Higher Order Homotopy Taylor-perturbation (HHTP) using 

start-system which involve the 1
st
, 2

nd
 and 3

rd
 Order Correctional Terms [1] 

 

Functions 

)()( xfxq =  = target 

system=0 

Start-system =    

)(xp = 0; 

 initial value, 0x  

NHP-1
st
 

Steps (i)-

(ix) ; Eq.(6) 

(woss), (ss) 

HHTP-2
nd

 

Steps (i)-

(ix); Eq.(7) 

(woss),(ss) 

HHTP-3
rd

 

Steps (i)-(ix);  

Eq.(8) 

(woss),(ss) 

40-64 xx +  404 −x ; 

2.514866859 or, 

-2.514866859 

4* 

4          (3) 

4 

3* 

3            (3) 

3* 

3* 

2          (3) 

3* 

xexx −+− 232  23 +− x ; 

0.6666666667 

3* 

3*        (4) 

3* 

3*         (3) 

3* 

2         (4*) 

xx −)cos(  )cos( x ; 

1.570796327 

5 

4          (4) 

2 

3           (3) 

3 

3         (4) 

2)sin( 4 −++ xex x  24 −x ; 

0.4342159162 

3 

4          (4) 

2 
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2 
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)ln()2( 2 xx −−  2−x ; 

2.000000000 

3 

3          (6) 

3 

2           (5) 

2 

3          (C) 

 

 

 In addition, Table 4 (below) shows that the efficiency of the iterative 4
th

 order  and 5
th

 order 

homotopy perturbation method using start-system which gives equal or better results in terms of 

convergence rate as compared to the classical Newton-Raphson. The given test functions (a) - (h) 

are used and the some of the approximated zeros are displayed in Table 3. It seems that the 

computations converge in less than 5 iterations, even for the multiroots functions (e), (f), (g) and 

(h). Also refer to the numbers that are bolded, which show that in some cases, higher order can be a 

better choice compared to the lower orders. 

 

Table 4: The approximated zeros using Higher Taylor-perturbation (HTP) and Higher Order 

Homotopy Taylor-perturbation (HHTP) using startsystem: 4
th

 and 5
th

 Order Correctional Terms on 

single functions and multiple functions 

 

Functions 

)()( xfxq = =  

target system=0 

Start-system 

(ss) =   

0)( =xp ; 

 initial value, 

x0 

HTP-4
th. 

Steps 

(i)-(ix) ; 

Eq.(9) 

(woss), 

(ss) 

HTP-5
th

 

Steps (i)-

(ix) ; 

Eq.(9) 

(woss), 

(ss) 

HHTP-4
th
 

Steps (i)-

(ix) ; 

Eq.(10) 

(woss), 

(ss) 

HHTP-5
th
 

Steps (i)-

(ix); 

Eq.(10) 

(woss), 

(ss) 

 

(a) 

40-64 xx +  

404 −x ; 

2.514866859 

or, 

-2.514866859 

-2.5 (3) 

 2.5 (3) 

 2.0 (3), 

ss   (3) 

 

-2.5 (3) 

 2.5 (3) 

 2.0 (3), 

ss   (4) 

 

-2.5 (2) 

 2.5 (3) 

 2.0 (3), 

ss   (3) 

 

-2.5 (3) 

 2.5 (3) 

 2.0 (3), 

ss   (3) 

 

(b) 
xexx −+− 232  

23 +− x ; 

0.6666666667 

0.3  (3) 

0.5  (3), 

ss    (3) 

 

0.3  (2) 

0.5  (3), 

ss    (3) 

 

0.3  (3) 

0.5  (3), 

ss    (3) 

 

0.3  (2) 

0.5  (2), 

ss    (3*) 

 

(c) 
xx −)cos(  

)cos( x ; 

1.570796327 

0.9  (2) 

0.5  (3), 

ss    (3) 

 

0.9  (2) 

0.5  (3), 

ss    (3) 

 

0.9  (2) 

0.5  (2), 

ss    (3) 

 

0.9  (2) 

0.5  (3), 

ss    (3) 

 

(d) 

2)sin( 4 −++ xex x  
24 −x ; 

-1.189 

207115, 

1.189207115 

 

0.8  (3) 

0.5  (2), 

ss    (3) 

 

0.8  (3) 

0.5  (2), 

ss    (3) 

 

0.8  (4) 

0.5  (3), 

ss    (2,3) 

 

0.8  (3) 

0.5  (2), 

ss   (2,3) 

 

(e) 

)ln()2( 2 xx −−  
 

2−x ; 

2.000000000 

1.5  (2) 

2.5  (7) 

3.0(div), 

ss  (div) 

1.5  (2) 

2.5  (7) 

3.0(div), 

ss  (div) 

1.5  (2) 

2.5  (7) 

3.0  (2), 

ss  (div) 

1.5  (2) 

2.5  (7) 

3.0  (2), 

ss  (div) 

(f) 

)406.()2( 42 −+− xxx  
 

 

)40( 4 −x  
2.514866859 

 

 

- 

 

 

- 

 

 

2.5 (3*) 

-3   (3), 

ss   (3*) 

2.5 (3*) 

-3   (3), 

ss   (3*) 
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(g) 

)).(sin()2( 2 xx −  
 

)).(sin()2( 2 xx −

1.259921050 

 

- - 1.5  (3) 

3.0  (3), 

ss    (3) 

 

1.5 (5) 

3.0 (3), 

ss   (3) 

 

(h) 

))).(cos(23( 2 xxex x +−−

 

)3( 2 xx −  

 3.000000000 

- - 1.5  (2) 

0.5  (4), 

ss    (3) 

1.5 (2) 

0.5 (4), 

ss   (4) 

 

Moreover, the systematic convergence of higher order homotopy Taylor-perturbation via start-

system (HHTPss) algorithms, even though it might takes a bit longer in comparison to Newton (1
st
 

order) but all 5 orders of HHTPss seem stable and consistently converge to its roots. This hybrid 

HHTPss method may converge to a root differently, faster or slower, depending on the different 

selection of the start-system function.   

 

The advantages of HHTPss are (i) it’s solvable for a more complex nonlinear single-equations 

(ii)  the existence of the convex homotopy that are bounded from zero to one, guaranteed in most 

complex cases to converge to its root/s in a faster and more steady and stable iterations. Thus, we 

believe that HHTPss is a good enough approximation to .0)( =xf  

 

4 Conclusions 

 

As a conclusion, it is very important to choose an initial point, a proper startsystem and order of 

correctional terms in order to ensure convergence is fast and computing time is reduced. The 

combinations of the startsystem and the higher order homotopy Taylor-perturbation serve as 

reliable and flexible tools that offer convergence at equal or faster than the existing methods in 

solving nonlinear equations. 
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