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Abstract: This paper analyzes the influence of thermal radiation on the problem of unsteady

magneto-convection flow of an electrically conducting fluid past a semi-infinite vertical porous

plate embedded in a porous medium with time dependent suction. Perturbation technique is

applied to transform the non-linear coupled governing partial differential equations in di-

mensionless form into a system of ordinary differential equations. The resulting equations

are solved analytically and the solutions for the velocity and temperature fields are obtained.

For different values of the flow parameters, the values for Nusselt number and skin-friction

co-efficient are calculated. It is observed that the increase in the radiation parameter implies

the decrease in the boundary layer thickness and enhances the rate of heat transfer. The

velocity decreases as the existence of magnetic field becomes stronger.
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1 Introduction

The effect of radiation on MHD flow and heat transfer problems has become industrially more
important. Many engineering processes occur at high temperatures and hence the knowledge
of radiation heat transfer is essential for designing appropriate equipment. Nuclear power
plants, gas turbines and various propulsion devices for aircraft, missiles and satellites are
examples of such processes [1]. When radiative heat transfer takes place, the fluid involved
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can be electrically conducting since it is ionized due to the high operating temperature.
Accordingly, examining the effect of magnetic field on the flow becomes more important. In
view of these, many authors have made contributions to the study of fluid flow with thermal
radiation [2-5], [7]. Radiation effects on unsteady MHD free convection flow of an electrically
conducting gray gas near equilibrium in the optically thin limit along an infinite vertical
porous plate are studied by Seddeek and Aboeldahab [2]. Unsteady natural convection flow
of a viscous and incompressible fluid through a porous medium with high porosity bounded
by a vertical infinite stationary plate in the presence of radiation is analyzed by Raptis and
Perdikis [3]. They found that both velocity and temperature decrease when the radiation
parameter increases. Makinde [4] studied free convection boundary layer flow with thermal
radiation and mass transfer past a moving vertical porous plate.

The combined effect of MHD and thermal radiation on steady, free convection over a
vertical flat plate embedded in a porous medium is studied by Rashad [5]. It is observed
that particle concentration and concentration boundary layer decrease due to increase in
either of Lewis number, radiation parameter and buoyancy ratio. Bararnia et al. [6] have
applied homotopy analysis method to investigate the MHD natural convection flow of the
heat generation fluid driven by a continuously moving permeable surface immersed in a fluid
saturated porous medium. Pal and Mondal [7] studied the radiation effects on the combined
convection flow of an optically dense viscous incompressible fluid over a vertical surface
embedded in a fluid saturated porous medium of variable porosity with heat generation
and absorption. They observed that the momentum and thermal boundary layer thickness
increases with increase in radiation. Behavior of the polar fluid on steady flow through a
vertical infinite plate with the boundary layer has been analyzed by Ferdows et al. [8]. An
analytical study for the problem of unsteady mixed convection with thermal radiation and
chemical reaction on MHD boundary layer flow of a viscous, electrically conducting fluid
past a vertical permeable plate has been presented by Pal and Talukdar[9].

The present work is concerned with the effect of thermal radiation on magnetohydro-
dynamic convection flow of an unsteady viscous incompressible electrically conducting fluid
past a semi-infinite vertical permeable plate embedded in a porous medium. The classical
model for radiation effect introduced by Cogley et al. [10] is used. Perturbation technique
is applied to convert the governing non-linear partial differential equations into a system of
ordinary differential equations, which are solved analytically.

2 Mathematical Analysis

Consider a two-dimensional unsteady flow of a laminar, incompressible, electrically conduct-
ing and heat absorbing fluid past a semi-infinite vertical porous plate embedded in a uniform
porous medium subjected to a thermal radiation field. The physical model and the coordi-
nate system of the problem are shown in Figure 1. The x∗ axis is chosen along the plate and
the y∗ axis is perpendicular to it. A uniform magnetic field of strength B0 in the presence
of radiation is imposed transversely in the direction of y∗ axis. The induced magnetic field
is neglected under the assumption that the magnetic Reynolds number is small. It is as-
sumed that there is no applied voltage which implies the absence of any electrical field. The
radiative heat flux in the x∗ direction is considered negligible in comparison to that in the
y∗ direction. The governing equations for this study are based on the conservation of mass,
linear momentum and energy. Taking into consideration the assumptions made above, these
equations in Cartesian frame of reference are given by Continuity:

∂v∗

∂y∗
= 0 (1)
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Figure 1. Physical model and the coordinate system.

Momentum:

∂u∗

∂t∗
+ v∗

∂u∗
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∂p∗

∂x∗
+ ν

∂2u∗

∂y∗2
− σB2

0

ρ
u∗ − νu∗

K∗
+ gβ(T ∗ − T∞) (2)

Energy:

∂T ∗

∂t∗
+ v∗

∂T ∗

∂y∗
=

k

ρcp

∂2T ∗

∂y∗2
− 1

ρcp

∂q∗r
∂y∗

− Q0

ρcp
(T ∗ − T∞) (3)

where u∗and v∗ are the components of the dimensional velocities along x∗and y∗ directions
respectively.
Cogley et al. [10] have shown that, in the optically thin limit for a non-gray gas near
equilibrium, the radiative heat flux is represented by the following form:

∂q∗r
∂y∗

= 4(T ∗ − T∞)I∗ (4)

where I∗ =

∫

Kλw

∂ebλ
∂T ∗

dλ

Under this assumption, the appropriate boundary conditions for velocity involving slip flow,
temperature fields are given by

u∗ = u∗
slip =

√
K∗

α

∂u∗

∂y∗
, T ∗ = Tw at y∗ = 0 (5)

u∗ → U∗
∞ = U0(1 + εen

∗t∗), T ∗ → T∞ as y∗ → ∞ (6)

Since the suction velocity normal to the plate is a function of time only, it can be taken
in the exponential form as

v∗ = −V0(1 + εAen
∗t∗) (7)

where A is a real positive constant, ε and εA are small quantities less than unity and V0>
0.

Outside the boundary layer, equation (2) gives

−1

ρ

dp∗

dx∗
=

dU∗
∞

dt∗
+

σB2
0

ρ
U∗
∞ +

ν

K∗
U∗
∞ (8)
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Now, we introduce the dimensionless variables as follows

u =
u∗

U0

, v =
v∗

V0

, y =
V0y

∗

ν
, U∞ =

U∗
∞

U0

, t =
t∗V 2

0

ν
, θ =

T ∗ − T∞

Tw − T∞
,

n =
n∗ν

V 2
0

,K =
K∗V 2

0

ν2
,Pr =

µcp
k

,M =
σB2

0ν

ρV 2
0

, Gr =
νβg(Tw − T∞)

U0V 2
0

,

φ =
Q0ν

ρcpV 2
0

, F =
4νI∗

ρcpV 2
0

(9)

Using (9), the governing equations (2) & (3) reduce to the following non-dimensional
form:

∂u

∂t
− (1 + εAent)

∂u

∂y
=

dU∞

dt
+

∂2u

∂y2
+Grθ +N(U∞ − u) (10)

where N = M + 1

K

∂θ

∂t
− (1 + εAent)

∂θ

∂y
=

1

Pr

∂2θ

∂y2
− Fθ − φθ (11)

The boundary conditions (5) and (6) in the dimensionless form can be written as

u = uslip = φ1

∂u

∂y
, θ = 1 at y = 0 (12)

where φ1 =
√
K
α

U0

u → U∞ = 1 + εent, θ → 0 as y → ∞ (13)

3 Solution of the Problem

To solve the equations (10) and (11), we assume the solution in the following form:

u = f0(y) + εentf1(y) +O(ε2) (14)

θ = g0(y) + εentg1(y) +O(ε2) (15)

Substituting (14) and (15) into the equations (10) and (11) and equating the harmonic
and non-harmonic terms, neglecting the coefficient of O(ε2) , we get the following pairs of
equations for (f0, g0)and (f1, g1).

f ′′
0 + f ′

0 −Nf0 = −N −Grg0 (16)

f ′′
1 + f ′

1 − (N + n)f1 = −Af ′
0 −Grg1 − (N + n) (17)

g′′0 + Pr g′0 − Pr(F + φ)g0 = 0 (18)

g′′1 + Pr g′1 − Pr(F + φ+ n)g1 = −APr g′0 (19)

where the primes denote the differentiation with respect to y.
The corresponding boundary conditions can be written as

f0 = φ1f
′

0, f1 = φ1f
′

1, g0 = 1, g1 = 0 at y = 0 (20)

f0 = 1, f1 = 1, g0 → 0, g1 → 0 as y → ∞ (21)

The solutions of equations (16)-(19) which satisfy the boundary conditions (20) and (21)
are given by

f0(y) = 1 +D3e
−m3y +D2e

−m1y (22)

f1(y) = 1 +D7e
−m4y +D4e

−m3y +D5e
−m2y +D6e

−m1y (23)

g0(y) = e−m1y (24)

g1(y) = −D1e
−m2y +D1e

−m1y (25)
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where

m1 =
Pr+

√

Pr2 +4Pr(F + φ)

2
, m3 =

1

2
(1 +

√
1 + 4N),

m2 =
Pr+

√

Pr2 +4Pr(F + φ+ n)

2
, m4 =

1

2
(1 +

√

1 + 4(n+N)),

D1 =
APrm1

m2
1 − Prm1 − (F + φ+ n) Pr

, D2 =
−Gr

m2
1 −m1 −N

,

D3 =
−(1 +D2 + φ1m1D2)

1 + φ1m3

, D4 =
AD3m3

m2
3 −m3 − (N + n)

,

D5 =
GrD1

m2
2 −m2 − (N + n)

, D6 =
AD2m1 −GrD1

m2
1 −m1 − (N + n)

,

D7 =
−(1 +D4 +D5 +D6)− φ1(D4m3 +D5m2 +D6m1)

1 + φ1m4

Substituting equations (22)-(25) in equations (14) and (15), we obtain the velocity and
temperature distributions in the boundary layer as follows:

u(y, t) = 1 +D3e
−m3y +D2e

−m1 + εent(1 +D7e
−m4y +D4e

−m3y

+D5e
−m2y +D6e

−m1y) (26)

θ(y, t) = e−m1y + εent(−D1e
−m2y +D1e

−m1y) (27)

Skin-friction at the wall is given by

Cfx =
τw

ρU0V0

=
∂u

∂y

∣

∣

∣

∣

y=0

Cfx = −(D3m3 +D2m1) − εent(D7m4 +D4m3 +D5m2 +D6m1) (28)

We calculate the heat transfer coefficient in terms of Nusselt number as follows:

Nux = x

∂T
∂y∗

∣

∣

∣

w

Tw − T∞
⇒ Nux/Rex =

∂θ

∂y

∣

∣

∣

∣

y=0

(29)

Nux/Rex = −m1 + εentD1(m2 −m1) (30)

where Rex =
V0x

ν
is the Reynolds number.

4 Results and Discussion

The problem of the influence of radiation on magneto-hydrodynamic unsteady convective
heat transfer past a semi-infinite vertical porous plate by perturbation technique is dealt.
Based on these solutions, we have carried out numerical computations for the velocity and
temperature for various values of the material parameters. The numerical values for skin-
friction and Nusselt number are computed for various values of the parameters M, K, φ,φ1,
F, Gr and Pr. These results are presented in Table 1. It is seen from the table that the
effect of increasing values of M, K, φ, φ1, F and Pr is to decrease skin-friction coefficient
whereas increasing Grashof number increases skin-friction coefficient. Further, no effect of
M, K, φ1 and Gr is seen on Nusselt number. But Nusselt number decreases on increasing
the values of φ, F and Pr.
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Table 1. Skin friction and nusselt number for various values of fm, f, g & Pr with n =
0.1, t = 1, ε = 0.2 and a = 0.5

M K φ φ1 F G Pr Cf Nu/Rex
0
1
3
5

1 1 1 1 2 0.7 0.82829
0.77572
0.73675
0.72180

-1.63299
-1.63299
-1.63299
-1.63299

2 1 1 1 -1
0
3

2 0.7 0.84852
0.77871
0.72036

-0.76866
-1.30943
-2.10586

2 1 1 1 1 0
3
5
10

0.53619
0.64356
1.07303
1.60988

-1.63299
-1.63299
-1.63299
-1.63299

2 1 1 1 1 2 0.054
1
6.7

0.90075
0.72509
0.60419

-0.35993
-2.07288
-8.92813

2 0.001
0.01
0.1

1 1 1 2 0.7 0.75727
0.72690
0.70891

-1.63299
-1.63299
-1.63299

2 1 0
1
5

1 1 2 0.7 0.77871
0.75093
0.70204

-1.30943
-1.63299
-2.47407

2 1 1 3
5

1 2 0.7 0.31576
0.19991

-1.63299
-1.63299

Figure 2 illustrates the effect of Grashof number Gr on the velocity distribution. The
numerical results show that the effect of increasing values of Grashof number leads to an
increase in velocity. In addition, the curves show that the peak value of velocity increases
rapidly near the wall as Grashof number increases, and then decays to the relevant free
stream velocity. Figure 3 plots the velocity profiles against the span-wise coordinate y for
different magnetic parameters. This illustrates that the velocity decreases as the existence
of magnetic field becomes stronger. This conclusion agrees wish the fact that the magnetic
field exerts retarding force on the free-convection flow. Figure 4 illustrates the effect of
radiation on the velocity in the boundary layer. We note from this graph that there is a
decrease in the velocity with the increase in radiation parameter F. The increase of the
radiation parameter F leads to decrease the boundary layer thickness and to enhance the
heat transfer rate in the presence of thermal buoyancy force.

The changes in velocity profile due to different permeability of the porous medium are
plotted in Figure 5. This figure shows that when the permeability parameter φ1 increases
from 0, the velocity increases gradually and it attains its maximum peak value when φ1=0.5.
The horizontal velocity profile in the boundary layer for different values of time is depicted
in Figure 6. It is observed that the horizontal velocity slowly attains the peak value close
to the porous boundary and then it decreases till it reaches the minimum value at the end
of the boundary layer for all the values of time. It is noticed that the velocity increases as
the time increases. It is observed the Figure 7 that the velocity increases for the increasing
values of ε and reaches its maximum peak value for a larger ε.

The temperature profiles for different Prandtl numbers are given in Figure 8 which shows
that, increasing values of Prandtl number implies the decrease in temperature profile. This
leads to decrease the thermal boundary layer thickness. Figure 9 represents the temperature
distribution for different values of radiation parameter F. It is observed that increase in the
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radiation parameter decreases the temperature distribution in the thermal boundary layer.
Figure 10 has been plotted to depict the variation of temperature profiles for different values
of heat source parameter φ. From this graph, we observe that temperature decreases with
increase in φ because when heat is absorbed, the buoyancy force decreases the temperature
profile.

Fig. 2. Velocity profiles for different Fig. 3. Velocity profiles for different
Grashof numbers with Pr=0.7, values of M with Gr=6, Pr=0.7,
M=1, K=1,φ = 0.5, F=1, n=0.1, K=1, φ = 0.5, F=1, n=0.1 , t=1,
t=1, ε = 0.2, A=1 and φ1 = 0.3 ε = 0.2, A=1 and φ1 = 0.3

Fig. 4. Velocity profiles for different Fig. 5. Velocity profiles for different
radiation parameters with Gr=6, permeability of porous medium with
Pr=0.7, K=1, φ=0.5,M=3, n=0.1 , Gr=6, Pr=1,K=1,φ=0.5, M=3,
t=1, ε = 0.2, A=1 and φ1=0.3 n=0.1, t=1, ε = 0.2 and A=1

Fig. 6. Velocity profiles for different Fig. 7. Velocity profiles for different ǫ
times with Gr=6, Pr=0.7, K=1, with Gr=6, Pr=1, K=1, φ=0.5,

φ=0.5, F=1, M=3, n=0.1, M=3, n=0.1, t=1, A=1 and φ1=0.3
ε = 0.2, A=1 and φ1=0.3
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Fig. 8. Temperature profiles for different Fig. 9. Temperature profiles for different
Prandtl numbers with φ=1, F=1, radiation parameters with Pr=0.7, φ=1,

K=1, n=0.1, t=1, ε=0.2 and A=0.5 K=1, n=0.1, t=1, ε = 0.2 and A=0.5

Fig. 10. Temperature profiles for different φ
with Pr=0.7, F=1, n=0.1, t=1, ε=0.2 and A=0.5

5 Conclusions

The problem of the influence of radiation on magneto-hydrodynamic unsteady convective
heat transfer past a semi-infinite vertical porous plate is studied and the solution is obtained
by perturbation technique. Based on these solutions, numerical computations for various
values of the material parameters are carried out. The fundamental parameters found to
have an influence on the problem under consideration are magnetic field parameter, radia-
tion parameter, porous permeability, heat source parameter, Grashof number and Prandtl
number. It is found that the effect of magnetic parameter and radiation parameter reduces
the velocity while the effect of porous permeability enhances it. For increasing values of
the Grashof number, the velocity increases but it decreases on increasing the Prandtl num-
ber. The effect of increasing values of magnetic parameter, radiation parameter and Prandtl
number tend to decrease the skin friction coefficient. An increase in radiation parameter and
Prandtl number results in lowering the temperature steadily and hence a decrease in ther-
mal boundary layer thickness is observed. Further, the temperature increases as ε increases,
whereas it decreases when φ increases.
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