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Abstract: This paper concerns with the solution of a nonlinear, degenerate, convection-
diffusion problem describing two-phase flow in porous media. A numerical procedure based
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1 Introduction

Motivation for the following mathematical problem arises from the area of modelling flow
and transport of contaminants in groundwater and petroleum reservoirs. Flow simulation in
porous media has been extensively studied using finite element methods in past years (see,
e.g., [1-3] and the bibliographies therein). Also, discretizations using both finite element and
finite volume methods for two-phase flow in porous media are presented in [2, 3].

Petroleum reservoir and groundwater aquifer simulation often requires the solution of
a nonlinear, degenerate, convection-diffusion problem describing two-phase flow in porous
media (see, e.g. [1-4]). In this paper, we will focus on immiscible flow, which corresponds
physically to water flooding of a petroleum reservoir. We consider two-phase water and oil
flow in a porous media, using the global pressure, the total velocity and the water saturation
as the primary variables.

Diffusion equation is one of the most important models which appears in porous me-
dia, and often is nonlinear. Nonlinear partial differential equations are encountered in such
various fields as physics, mathematics and engineering. Most nonlinear models of real life
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problems are still very difficult to solve either numerically or theoretically. There has re-
cently been much attention devoted to the search for better and more efficient methods
for determining a solution, approximate or exact, analytical or numerical, to the nonlinear
models [4-12]. The objective of this paper is to present a method based on Adomian decom-
position method (ADM) for solving the following nonlinear, degenerate, convection-diffusion
equation with appropriate initial and boundary conditions

φ(x)ut + div(b(u)−→q )− div(K(x)∇a(u)) = 0, (x, t) ∈ QT = Ω× J, (1)

where u(x, t) is the water saturation, −→q is the total velocity, φ(x) is the porosity of the
porous medium and K(x) is the absolute permeability tensor of the reservoir Ω and a(u) and
b(u) are nonlinear functions which depend on the mobilities and the capillary pressure with
diffusion coefficient vanishing for two values of saturation: a(0) = a(1) = 0 (degeneration of
the diffusion term).

2 Adomian decomposition method (ADM)

The ADM has been proved to be effective and reliable for handling differential equations,
linear or nonlinear. Unlike the traditional methods, The ADM needs no discritization, lin-
earization, spatial transformation or perturbation. The ADM provide an analytical solution
in the form of an infinite convergent power series. A large amount of research works has
been devoted to the application of the ADM to a wide class of linear and nonlinear, ordinary
or partial differential equations [6, 8-14].

Let us first recall the basic principles of the ADM for solving differential equations.
Consider the general equation: Ψu = g, where Ψ represents a general nonlinear differential
operator involving both linear and nonlinear terms. The linear term is decomposed into
L + R, where L is easily invertible and R is the remainder of the linear operator. For
convenience, L may be taken as the highest order derivation. Thus the equation may be
written as

Lu+Ru+Nu = q, (2)

where Nu represents the nonlinear terms. Solving Lu from (2), we have

Lu = g −Ru−Nu. (3)

Since L is invertible, the equivalent expression is

L−1Lu = L−1g − L−1Ru− L−1Nu. (4)

Therefor, u can be expressed as following series

u =

∞
∑

n=0

un, (5)

with reasonable u0 which may be identified with respect to the definition of L−1 and g, and
un, n > 0 is to be determined. The nonlinear term Nu will be decomposed by the infinite
series of Adomian polynomials

Nu =

∞
∑

n=0

An, (6)

where An’s are obtained by writing

v(λ) =

∞
∑

n=0

λnun, (7)

N(v(λ)) =

∞
∑

n=0

λnAn. (8)
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Here λ is a parameter introduced for convenience. From (7) and (8), we have

An =
1

n!

dn

dλn
[N(

∞
∑

k=0

λkuk)]λ=0, n ≥ 0. (9)

The An’s are given as

A0 = F (u0),

A1 = u1

d

du0

F (u0),

A2 = u2

d

du0

F (u0) +
u2
1

2!

d2

du2
0

F (u0),

A3 = u3

d

du0

F (u0) + u1u2

d2

du2
0

F (u0) +
u3
1

3!

d3

du3
0

F (u0),

...

Now, substituting (5) and (6) into (4) yields

∞
∑

n=0

un = u0 + L−1R(

∞
∑

n=0

un)− L−1

∞
∑

n=0

An. (10)

Consequently, with a suitable u0 we can write

u1 = −L−1Ru0 − L−1A0,

...

un+1 = −L−1Run − L−1An.

All of un are calculable, and u =
∑∞

n=0
un. Since the series converges and does so very

rapidly, the n-term partial sum Sn =
∑

n−1

k=0
λkuk can serve as a practical solution.

For the convergence of the decomposition method, the readers are referred to [8, 11, 14].

3 Problem definition and numerical solution

Consider following one dimensional nonlinear, degenerate, convection-diffusion problem

φ(x)
∂u

∂t
=

∂

∂x
(K(x)

∂

∂x
a(u))− ∂

∂x
(q(x)b(u)),

(x, t) ∈ (0, 1)× (0, T ) (11)

u(x, 0) = f(x), x ∈ (0, 1), (12)

u(0, t) = ϕ1(t), t ∈ (0, T ), (13)

u(1, t) = ϕ2(t), t ∈ (0, T ), (14)

0 ≤ u(x, t) ≤ 1 (15)

where φ(x) and K(x) are positive functions.
In this section, we consider following linear operators

Lxx =
∂2

∂x2
, Lx =

∂

∂x
, Lt =

∂

∂t
. (16)
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Using this notation, the equation (11) becomes

φ(x)Lt(u) + Lx(q(x)b(u))− Lx(K(x)Lxa(u)) = 0. (17)

By defining the inverse operators L−1
t one may formally obtain from (4) that

u(x, t) = f(x) +
1

φ(x)
(L−1

t [Lx(K(x)Lx(a(u)))− Lx(q(x)b(u))]), (18)

where L−1
t (.) =

∫ t

0
(.)dτ . Now if we define

u0(x, t) = f(x), (19)

we can seek the solution u(x, t) of the problem (11)-(15) based on Adomian decomposition
approach as

u(x, t) =
∞
∑

n=0

un(x, t). (20)

The nonlinear terms are decomposed as

a(u) =

∞
∑

n=0

An, (21)

b(u) =
∞
∑

n=0

Bn, (22)

where An and Bn may be found by using Adomian polynomials. Substituting (20), (21) and
(22) into (18) gives

∞
∑

n=0

un = f(x) +
1

φ(x)
(L−1

t [Lx(K(x)Lx(
∞
∑

n=0

An) + Lx(q(x)
∞
∑

n=0

Bn)]). (23)

Using above decomposition analysis, the following recurrence relation can be derived

u0 = f(x) (24)

un+1 =
1

φ(x)
(L−1

t [Lx(K(x)LxAn)− Lx(q(x)Bn)]), n ≥ 0. (25)

On the other hand, we can use the operator Lxx and it’s inverse to represent the solution.
Using (13) and (14) the operator L−1

xx and the starting term may be derived as

L−1
xx =

∫

x

0

dx′
∫

x
′

0

dx′′ − x

∫ 1

0

dx′
∫

x
′

0

dx′′ (26)

ũ0 = (1− x)ϕ1(t) + xϕ2(t). (27)

Then the ADM yields following series solution for the problem (11)-(15)

u(x, t) =

∞
∑

n=0

un(x, t), (28)

where for n ≥ 0

un+1 = L−1
xx

[
1

K(x)
{Ltun − Lx(K(x)LxAn)−K

′

(x)Lxun + Lx(q(x)Bn)}]. (29)



App. Math. and Comp. Intel., Vol. 2 (1), 2013 71

Table 1: Decomposition solutions S6.
x t Exact S6 Absolute errors
0.2 0.3 5.00242026E-4 5.00133504E-4 1.08521533E-7

0.6 5.00484052E-4 5.00334801E-4 1.49250462E-7
0.9 5.00726077E-4 5.00536098E-4 1.89979346E-7

0.4 0.3 5.00272026E-4 5.00128692E-4 1.43334091E-7
0.6 5.00544052E-4 5.00356134E-4 1.87917588E-7
0.9 5.00816077E-4 5.00583576E-4 2.32501015E-7

0.6 0.3 5.00302026E-4 5.00164199E-4 1.37826021E-7
0.6 5.00604057E-4 5.00417787E-4 1.86264116E-7
0.9 5.00906077E-4 5.00671375E-4 2.34702119E-7

In (29), K
′

(x) shows the derivation of K(x) with respect to variable x and the Adomian
polynomial An is obtained using the function a(u)− u. The decomposition series (25) and
(29) are generally convergent very rapidly in real physical problems. One can use each one of
the decomposition series (25) or (29) for constructing the solution of the problem (11)-(15).
In addition if one wants to introduce the solution with respect to the initial and boundary
conditions (12)-(14), the average of the relations (25) or (29) can be used.

4 Test problems

In this section, for illustrations purpose we consider some problems and we show that how
the ADM presented in the preceding section is computationally efficient.

Example 1. Consider following nonlinear initial-boundary value problem














ut = uxx + u(1− u)(u− 10−3), 0 < x < 1, 0 < t < 1
u(x, 0) = 1

2
(1 + tanh(x))

u(0, t) = 1

2
(1 + tanh(

√
2

2
(2− 10−3)t))

u(1, t) = 1

2
(1 + tanh{1 +

√
2

2
(2− 10−3)t}).

(30)

The exact solution of this problem can be derived as [14]

u(x, t) =
1

2
(1 + tanh{x+

√
2

2
(2− 10−3)t}). (31)

Table 1 shows decomposition solution using S6(x, t), exact solution u(x, t), and the absolute
errors between them at some points.

Example 2. Consider the following initial-boundary value problem

ut = uxx + uux +
1

9
u(u2 − 36), 0 < x < 1, 0 < t < 1 (32)

u(x, 0) =
6(e2x − 1)

1 + ex + e2x
, 0 < x < 1 (33)

u(0, t) = 0, 0 < t < 1 (34)

ux(0, t) =
12

2 + e3t
, 0 < t < 1. (35)

The exact solution of problem this problem is

u(x, t) =
6(e2x − 1)

1 + e2x + ex+3t
. (36)
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Table 2: Decomposition solutions S6.
x t Exact S6 Absolute errors
0.2 0.3 0.536927 0.536928 5.67744E-7

0.6 0.298652 0.298653 5.85133E-7
0.9 0.142793 0.142795 1.37153E-7

0.4 0.3 1.06649 1.06648 6.81273E-7
0.6 0.600238 0.600239 7.81525E-7
0.9 0.289230 0.289231 1.14918E-7

0.6 0.3 1.58157 1.58159 6.67887E-7
0.6 0.907283 0.907284 9.80515E-7
0.9 0.442872 0.442873 5.17242E-7

Table 2 shows decomposition solution using S6(x, t), exact solution u(x, t), and the absolute
errors between them at some points.

5 Conclusion

The decomposition method for numerically solving the one dimensional convection-diffusion
equation in groundwater and petroleum reservoirs has been established in this paper. This
method has the advantages that it needs no discritization, linearization, spatial transforma-
tion or perturbation and it seems that this method is a reasonable method for solving the
nonlinear problems.
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