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Abstract: We extend the generalized maximum principle of Lou and Ni [1] of elliptic equa-
tions to parabolic equations. By this result, we show that the solution of a Turing system
has a global attractor provide the diffusion coefficient D 6= 0 otherwise the solution blow-up
in finite time.
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1 Introduction

The Brusselator equation was first introduced by Prigogine and Lefever [2] and it attract
many research attention due to its complicated dynamic behavior. It is a model of auto-
catalytic of chemical (or biological chemical [3, 4, 5, 6]) reaction. In particular, it describes
an activation-depletion mechanism [7] of a reaction moreover, it is a Turing system as well.
The signature of a Turing system is Hopf’s bifurcation which is equivalent to the changing
of the stability of the dynamics. The mathematical model of it is as follows:

{

ut = Du∆u+ u2v − (β + 1)u+ α
vt = Dv∆v − u2v − βu,

x ∈ Ω, (1)

with Neumann boundary condition

∂u

∂n
=

∂v

∂n
= 0, (2)
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and initial data
u(0, ·) = u0, v(0, ·) = v0. (3)

The history about the research of this model is long. Recently, Ghergu [8] show the
existence, non existence and regularity of the steady states of (1) by generalized maximum
principle of Lou and Ni [1]. Many other then focus on the dynamic model without diffusion
term. In this article, we will present a complete study of the asymptotic behavior of this
model related to the diffusion coefficient D instead of the parameter α and β.

To clarify the changing of the asymptotic behavior due to the varying of parameters
of the system we rescale the variables by s = kt, y = kx and u′ = u

k
, v′ = v

k
. Without

ambiguity, we still use notation t, x, and u, v instead of s, y, and u′, v′ and we let D = d/k
then system (1) becomes;

{

ut = D∆u+ u2v
k2 − (β + 1)u+ α

vt = ∆v − u2v
k2 − βu.

x ∈ Ω. (4)

2 Global attractor

Throughout this article, we will assume µ(Ω) = 1, where µ(·) is the measure of R2.
For the purpose of self complementary, we give a brief proof of the extension the gener-

alized maximum principle of parabolic equation (cf. Lou and Ni [1]). To this end, we denote
ET = {(x, t)|x ∈ Ω, and t ∈ (0, T ]}.

Proposition 1. Let g ∈ C(Ω̄× (0, T )×R) and w(x, 0) ≥ 0.

(i) If w ∈ C2,1(Ω× (0, T )) ∩ C1,0(Ω̄× [0, T ]) satisfies

−wt +∆w + g(x, t, w) ≥ 0,
∂w

∂n
|∂Ω ≤ 0 (5)

and w(x0, t0) = max(x,t)∈Ω̄×[0,T ] w(x, t); then, g(x0, t0, w(x0, t0)) ≥ 0.

(ii) If w ∈ C2,1(Ω× (0, T )) ∩ C1,0(Ω̄× [0, T ]) satisfies

−wt +∆w + g(x, t, w) ≤ 0,
∂w

∂n
|∂Ω ≥ 0, (6)

and w(x0, t0) = min(x,t)∈Ω̄×[0,T ] w(x, t); then, g(x0, t0, w(x0, t0)) ≤ 0.

Proof. We will only prove (i), since (ii) can be derived similarly. Let (x0, t0) be an in-
terior point of domain Ω × (0, T ) such that w(x0, t0) = maxξ∈Ω×(0,T ) w(ξ). From (6)
g(x0, t0, w(x0, t0)) ≥ wt(x0, t0)−∆w(x0, t0) ≥ 0.

To prove the case of the boundary point (x0, t0) ∈ ∂Ω̄× [0, T ], we argue by contradiction
(cf. [9]) and we assume that g(x0, t0, w(x0, t0)) < 0 where w(x0, t0) = maxξ∈∂Ω̄×[0,T ] w(ξ).
By (5), g(x0, t0, w(x0, t0)) +∆w(x0, t0, w(x0, t0)) ≥ wt, we have wt < 0, thus, w is larger at
eariler time. We derive a contradiction. Thus (i) is proved.

With the above result, we obtain the existence of global attractor for D closed to 1.

Theorem 1. If u0, v0 are non-negative and the diffusion coefficient |D − 1| ≤ ǫ, for some
ǫ > 0, then (4) has a unique positive classical solution with global attractor satisfying:

α
1+β

≤ u ≤ α2+k2β(β+1)
α

,
αβ

α2+k2β(β+1) ≤ v ≤ k2β(β+1)
α

.
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Proof. We begin with D = 1, and let u(pn) = minξ∈Ω̄×(0,T ) u(ξ); then, by (ii) of lemma 1,
we have

0 ≥ α− (1 + β)u(pn) +
u2(pn)v(pn)

k2

≥ α− (1 + β)u(pn)

thus
u(pn) ≥

α

1 + β
. (7)

Let v(qm) = maxξ∈Ω×(0,T ) v(ξ); then, by (i) of lemma 1 and (7), we have

v(qm) ≤
k2β(β + 1)

α
. (8)

We define w = u+ v; then,
0 = −wt +∆w + α− u. (9)

Let w(rm) = maxξ∈Ω×(0,T ) w(ξ); then, by (i) of lemma 1, u(rm) ≤ α. Hence,

u(x, t) ≤ w(x, t) ≤ w(rm)
= u(rm) + v(rm)

≤ α+ k2β(β+1)
α

.

(10)

Let v(qn) = minξ∈Ω×(0,T ) v(ξ); then, by (ii) of lemma 1, we have βu(qn) ≤ u2(qn)v(qn).
Hence,

v(x, t) ≥ v(qn) ≥
β

u(qn)
≥

αβ

α2 + k2β(β + 1)
. (11)

To attain the global solution, we let

LD =

(

D∆ 0
0 ∆

)

.

We consider Banach spaceX = C(Ω)×C(Ω) and let U = (u, v), and we denote F (α, β, u, v) =
F (α, β, U); then, (4) may rewrite as follows:

Ut = LDU + F (α, β, U)
U0 = (u0, v0) ∈ X,

(12)

Since ∆ generates a contraction semi-group on C(Ω), so does the direct sum LD. Thus the
existence of unique local solution of equation (12) is established. By standard results of
parabolic equation [10], the solution of (4) is classical.

We could extend Theorem 2 further to D 6= 0, or equivalently k → ∞. However, we
prefer to discuss after the critical case that D = 0 at the end of this article.

3 Blow-up Solutions

In this section, we will study the asymptotic behavior of the solution that affected by the
diffusion coefficient D. We begin with the case when the diffusion coefficient D = 0 and
equation (4) then reduced to:

{

ut = u2v − (β + 1)u+ α
vt = ∆v − u2v + βu,

x ∈ Ω, (13)

while the boundary condition and initial data remain the same.
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Lemma 1. The solution u is alway positive and blow-up in finite time, furthermore, there
exists a positive constant Mv such that 0 ≤ v < Mv.

Proof. Let X = C(Ω)× C(Ω) and

L =

(

−β − 1 0
0 ∆

)

≡

(

L1, 0
0 L2

)

.

Since L1 and L2 both generate contractive semi-groups on C(Ω), so does L. Thus the
existence and uniqueness of local solution of equation (13) is established.

To show that the solution u of the first equation of (13) is unbounded, we will argue
by contradiction. We assume that u is bounded. In this case, we claim that v is bounded
away from zero, that is v > mv ≥ 0. As in section 1, we let qv ∈ Ω × (0, T ) and v(qv) =
min(x,t)∈ET

v(x, t) then by the generalized maximum principle Proposition 1,

0 ≥ −u2(qv)v(qv) + βu(qv) = u(qv)(−u(qv)v(qv) + β). (14)

Since u is bounded, we have v(qv) ≥
β

u(qv)
≥ β

u(Qu)
> 0 where u(Qu) = max(x,t)∈ET

u(x, t).

Furthermore, we let v̄ = β
u(Qu)

and

Iu =

∫

Ω

udx,

then
dIu
dt

=

∫

Ω

u2v − (β + 1)u+ αdx ≥

∫

Ω

u2v̄ − (β + 1)udx.

Let y(t) be the solution of
y′ = v̄y2 − (β + 1)y,

then y blow-up in finite time and so does u that contradicts to our assumption that u is
bounded.

By (14), v ≥ vm is bounded from below and vm = 0 if supt u = ∞. To prove that v
is bounded above we let v(Qv) = max(x,t)∈ET

v(x, t) and u(qu) = min(x,t)∈ET
u(x, t) then

again by Proposition 1,
u2(Qv)v(Qv) ≤ βu(Qv),

thus

v(Qv) ≤
β

u(qu)
.

Thus v is bounded from above if u(qu) > 0. To prove u(qu) > 0, we apply the quadratic
formula to the right hand side of u and by v is non-negative we have,

r± =
(β + 1)±

√

(β + 1)2 − 4vα

2v
> 0. (15)

The radius of the global absorbing set of v may obtain directly from the Lyapunov
function

Iv =
1

2

∫

Ω

v2dx.

Thus we omit the proof.

From lemma 3, we would expect that solution u blow-up in finite time if D is small
due to the nonlinearity reaction term but on the contrary the blow up behavior occurs only
when D = 0.
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Lemma 2. If the diffusion coefficient D 6= 0 then the solution has a global attractor.

Proof. Let w = u+ v then

wt = ∆w − (1−D)∆u− u+ α. (16)

Integrating (16) over Ω, we obtain

∂

∂t

∫

Ω

wdx = −

∫

Ω

wdx+

∫

Ω

vdx+ α,

By lemma 7, v is bounded thus
∫

Ω
vdx+ α ≤ k for some k. Let y(t) be the solution of

yt = −y + k,

then
∫

Ω
wdx ≤ y and w has a global attractor. Since v is bounded, u also has a global

attractor.

4 Conclusion

Examining the simulation of the solution of system (4) we find many interesting phe-
nomenons. For example, the mesa type of solution was done by Kolokolnikov et al. [4]
using perturbation method. The localization is another interesting phenomenon of the so-
lution of heat equation. In fact, the main reason that we study the blow-up behavior of
the solution is to resolve such a phenomenon. However, our result answers only part of the
question. The main difficulty is that the solution of occurrence of the blow-up behavior is
the ordinary differential equation of system (4) but not the parabolic equation. An ordi-
nary differential equation does not exhibit the behavior of the solution concerning spatial
variable. In fact, the localization of system (4) remains open.
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