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Abstract: We extend the generalized mazimum principle of Lou and Ni [1] of elliptic equa-
tions to parabolic equations. By this result, we show that the solution of a Turing system
has a global attractor provide the diffusion coefficient D # 0 otherwise the solution blow-up
in finite time.
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1 Introduction

The Brusselator equation was first introduced by Prigogine and Lefever [2] and it attract
many research attention due to its complicated dynamic behavior. It is a model of auto-
catalytic of chemical (or biological chemical [3, 4, 5, 6]) reaction. In particular, it describes
an activation-depletion mechanism [7] of a reaction moreover, it is a Turing system as well.
The signature of a Turing system is Hopf’s bifurcation which is equivalent to the changing
of the stability of the dynamics. The mathematical model of it is as follows:

u = DyAu+u*v— (B+1Du+a
{ vy = DyAv—u’v— Bu, z €, (1)
with Neumann boundary condition
du  Ov
22 =0 2
on  On ’ @)
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and initial data
'LL(O, ) = Ug, U(O, ) = 10. (3)

The history about the research of this model is long. Recently, Ghergu [8] show the
existence, non existence and regularity of the steady states of (1) by generalized maximum
principle of Lou and Ni [1]. Many other then focus on the dynamic model without diffusion
term. In this article, we will present a complete study of the asymptotic behavior of this
model related to the diffusion coefficient D instead of the parameter a and 5.

To clarify the changing of the asymptotic behavior due to the varying of parameters
of the system we rescale the variables by s = kt, y = kz and v’ = %, v' = Z. Without
ambiguity, we still use notation ¢, z, and u, v instead of s, y, and v’, v" and we let D = d/k

then system (1) becomes;

DAu+%—(ﬂ+l)u+a

Ut
2 € 0. 4
{vt = Av— 4% - Bu. v )

2 Global attractor

Throughout this article, we will assume p(2) = 1, where pu(-) is the measure of R.

For the purpose of self complementary, we give a brief proof of the extension the gener-
alized maximum principle of parabolic equation (cf. Lou and Ni [1]). To this end, we denote
Er ={(z,t)|lx € Q, and t € (0,T]}.

Proposition 1. Let g € C(Q x (0,T) x R) and w(z,0) > 0.
(i) If w e C*HQ x (0,7)) N CHO(Q x [0,7T)) satisfies

and w(xg,ty) = Max(, yeaxfo,r] W(T,t); then, g(x, to, w(xzo,t0)) > 0.

(i) If w € C*H(Q x (0,7)) NCHO(Q x [0,7T)) satisfies
0
—wp+ Aw + glo,tw) S0, S-lag >0, (6)

and w(antO) = min(z,t)GQX[O,T] ’U}(J?,t); th6n7 g(anth U}(Jfo,to)) <0.

Proof. We will only prove (i), since (ii) can be derived similarly. Let (z¢,to) be an in-
terior point of domain Q x (0,7) such that w(zo,t0) = maxecoxo,r)yw(§). From (6)
g(l‘o,to, w(.’L‘(),t())) Z ’wt(l‘o,to) — Aw(l‘o,to) Z 0. _

To prove the case of the boundary point (zg,tg) € 9 x [0, T], we argue by contradiction
(cf. [9]) and we assume that g(zo,to, w(zo,t0)) < 0 where w(zo,t0) = maxeconxjo,r W(§)-
By (5), g(xo, to, w(xo,to)) + Aw(xg, to, w(zo,to)) > wy, we have w; < 0, thus, w is larger at
eariler time. We derive a contradiction. Thus (i) is proved. O

With the above result, we obtain the existence of global attractor for D closed to 1.

Theorem 1. If ug, vy are non-negative and the diffusion coefficient |D — 1| < €, for some
€ > 0, then (4) has a unique positive classical solution with global attractor satisfying:

o®+k*B(B+1)
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Proof. We begin with D = 1, and let u(p,) = mingcqy o,y u(§); then, by (ii) of lemma 1,
we have

0 > a—(1+p)u(p,) + esjelen)
> a—(1+B)ulpn)
thus o
n Z . 7
o) = 1 @
Let v(gm) = maxecox(o,) v(§); then, by (i) of lemma 1 and (7), we have
K*B(6+1)
o(g) < FPOHD, 0
We define w = u + v; then,
0=—w+Aw+a—u. (9)

Let w(rm,) = maxecqx o,y w(§); then, by (i) of lemma 1, u(r,,) < «. Hence,

w(wt) S wlzt) < wlrm)
= u(rm) +o(rm) (10)
< o4 FBEEY

Let v(gy) = mingeqyx (o) v(€); then, by (ii) of lemma 1, we have Bu(gn) < u?(gn)v(gn).
Hence,
B of

v(@,t) = v(gn) = u(qn) = a2 +k2B(B+1)

(11)

To attain the global solution, we let

DA 0
= (0 2)
We consider Banach space X = C(Q2)xC(Q2) and let U = (u, v), and we denote F(o, 8, u,v) =
F(a, B,U); then, (4) may rewrite as follows:

Ut = LDU-FF(OK,B,U) (12)
UO - (UO7U0) € X7

Since A generates a contraction semi-group on C(£2), so does the direct sum Lp. Thus the
existence of unique local solution of equation (12) is established. By standard results of
parabolic equation [10], the solution of (4) is classical. O

We could extend Theorem 2 further to D # 0, or equivalently k& — oo. However, we
prefer to discuss after the critical case that D = 0 at the end of this article.

3 Blow-up Solutions

In this section, we will study the asymptotic behavior of the solution that affected by the
diffusion coefficient D. We begin with the case when the diffusion coefficient D = 0 and
equation (4) then reduced to:

{ut = - (B+Du+a reqQ, (13)

vy = Av—u?v+ Bu,

while the boundary condition and initial data remain the same.
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Lemma 1. The solution u is alway positive and blow-up in finite time, furthermore, there
exists a positive constant M, such that 0 < v < M,,.

Proof. Let X = C(Q) x C(Q) and

_( —-B8-1 0 (L, 0
(T R) =Y L)

Since L; and Lo both generate contractive semi-groups on C(2), so does L. Thus the
existence and uniqueness of local solution of equation (13) is established.

To show that the solution u of the first equation of (13) is unbounded, we will argue
by contradiction. We assume that u is bounded. In this case, we claim that v is bounded
away from zero, that is v > m, > 0. As in section 1, we let ¢, € Q x (0,T) and v(g,) =
ming, e, v(2,t) then by the generalized maximum principle Proposition 1,

0> —u*(q0)v(go) + Bulgn) = u(qu) (—u(gn)v(gs) + B)- (14)
Since u is bounded, we have v(g,) > %qv) > ﬁ > 0 where u(Qu) = max, ¢)cp, u(z, ).

Furthermore, we let o = —2— and
) w(Qu)

Iu:/udx,
Q

1, _
alu = / u?v — (B + Du+ adx > / u?o — (B + 1udz.
dt Q Q

Let y(t) be the solution of

then

y =uy* — (B+1)y,
then y blow-up in finite time and so does u that contradicts to our assumption that w is
bounded.

By (14), v > v, is bounded from below and v, = 0 if sup, u = co. To prove that v
is bounded above we let v(Q,) = max(, yep, v(7,t) and u(q,) = ming ep, u(z,t) then
again by Proposition 1,

u?(Qu)v(Qu) < Bu(Qy),
thus
B
w(qu)
Thus v is bounded from above if u(g,) > 0. To prove u(g,) > 0, we apply the quadratic
formula to the right hand side of u and by v is non-negative we have,

v(Qy) <

(B+1)+/(B+1)? —4va

= > 0. 15
T 59 (15)
The radius of the global absorbing set of v may obtain directly from the Lyapunov
function .
I, == / v3d.
2 Jo
Thus we omit the proof. O

From lemma 3, we would expect that solution u blow-up in finite time if D is small
due to the nonlinearity reaction term but on the contrary the blow up behavior occurs only
when D = 0.
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Lemma 2. If the diffusion coefficient D # 0 then the solution has a global attractor.

Proof. Let w = u + v then
wy =Aw— (1 - D)Au—u+a. (16)

Integrating (16) over Q, we obtain

g wdx:f/wdxqt/vdera,
ot Ja Q Q

By lemma 7, v is bounded thus [, vdz + a < k for some k. Let y(t) be the solution of
Yt =—y+ k,

then fQ wdr < y and w has a global attractor. Since v is bounded, u also has a global
attractor. O

4 Conclusion

Examining the simulation of the solution of system (4) we find many interesting phe-
nomenons. For example, the mesa type of solution was done by Kolokolnikov et al. [4]
using perturbation method. The localization is another interesting phenomenon of the so-
lution of heat equation. In fact, the main reason that we study the blow-up behavior of
the solution is to resolve such a phenomenon. However, our result answers only part of the
question. The main difficulty is that the solution of occurrence of the blow-up behavior is
the ordinary differential equation of system (4) but not the parabolic equation. An ordi-
nary differential equation does not exhibit the behavior of the solution concerning spatial
variable. In fact, the localization of system (4) remains open.
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