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1 Introduction

Integro differential equations occur in various areas of engineering, mechanics, physics, chem-
istry, astronomy, biology, economies, potential theory, electrostatic, etc [15,16]. Many meth-
ods were used to handle these equations such as the successive approximations, Adomian
decomposition, Homotopy perturbation, Chebyshev and Taylor collocation, Haar Wavelet,
Tau series methods, etc [1,2]. The main purpose of the present research is to consider the
double exponential transformation in the Sinc collocation method for integro differential
equations. The Double Exponential transformation, abbreviated as DE was first proposed
by Takahasi and Mori [3,14] in 1974 for one dimensional numerical integration and it has
come to be widely used in applications. It is known that the double exponential transfor-
mation gives an optimal result for numerical evaluation of definite integral of an analytic
function [6,7]. In 1997, Sugihara [11,12] established the ”Meta-Optimality ” of the DE
formulas in a mathematically rigorous manner, and since then it has turned out that DE
transformation is also useful for other various kinds of numerical methods. Indeed it has
been demonstrated that the use of the Sinc method in cooperate with the DE transformation
gives highly efficient numerical methods for approximation of function, indefinite numerical
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integration and solution of differential equations. Recently, Muhammad et al. in [8] estab-
lished a method of indefinite numerical integration based on DE transformation incorporated
into Sinc expansion of the integrand which gives results with high efficiency [9,13]. In the
standard setup of the Sinc numerical methods, the error are known to be O(exp(−k

√
N))

with some k > 0, where N is the number of nodes or bases which is used in the methods[10].
However, Sugihara has recently in [13] found that the errors in the Sinc numerical methods
are O(exp(−cN/logN)) with some c > 0, which is also meaningful practically.

The purpose of this paper is to develop the works proposed in [7] and [4], for the
numerical solution of Integro differential equations, which has taken a wide spectrum of
applications, by DE transformation based on the Sinc collocation method and reliability
and efficiency of the proposed scheme are demonstrated by some numerical experiments.
The layout of the paper is as follows: in section 2,we give basic definitions, assumptions and
preliminaries of the Sinc approximations and related topics. In section 3, a Sinc collocation
method is considered for numerical solution of integro differential equations. Finally, section
4 contains the details of our numerical implementation and some experimental results.

2 Basic definitions and preliminaries

In this paper, we consider the Sinc collocation method for the numerical solution of the
following two order linear integro differential equation:

2
∑

i=0

βi(x)u
(i)(x) = f(x) +

∫ x

a

K(x, t)u(t)dt, (1)

u(a) = a0, u
′(a) = a1 (2)

where a, a0, a1 are real constants β0(x), β1(x)β2(x), f(x),K(x, t) are given functions and
u(x)is to be determined. Let f be a function defined onR and h > 0 is step size then the
Whittaker cardinal defined by the series

C(f, h)(x) =

∞
∑

j=−∞

f(jh)S(j, h)(x) (3)

whenever this series convergence, and

S(j, h)(x) =
sin[π(x− jh)/h]

π(x− jh)/h
, j = 0,±1,±2, .. (4)

where S(j, h)(t) is known as j-th Sinc function evaluated at t.
Throughout of this paper, let d > 0, and Dd = {z = x+iy |y| < d} in the complex plan

C and φ the conformal map of a simply connected domain D in the complex domain onto
Dd, such that φ(a) = −∞, φ(b) = ∞, where a, b are boundary points of D with a, b ∈ ∂D.
Let ψ denotes the inverse map of φ, and let the curve Γ, with end points a, b (a, b ∈ Γ),
given by Γ = ψ(−∞,∞). For h > 0, let the points xk on Γ given by xk = φ−1(kh), k ∈ Z.

Moreover, let us consider H1(Dd) be the family of all functions g analytic in Dd, such
that

N1(g,Dd) = limǫ→0

∫

∂Dd(ǫ)
|g(t)||dt| <∞,

Dd(ǫ) = {t ∈ C, |Ret| < 1
ǫ , |Imt| < d(1− ǫ)}.

We recall the following definitions from [6,7], that will become instrumental in estab-
lishing our useful formulas:
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Definition 1. A function g is said to be decay double exponentially, if there exist constants

α and C, such that:

|g(t)| ≤ C exp(−α exp |t|), t ∈ (−∞,∞)

equivalently, a function g is said to be decay double exponentially with respect to conformal

map φ, if there exist positive constants α and C such that:

|g(φ(t))φ′(t)| ≤ C exp(−α exp |t|), t ∈ (−∞,∞).

Here, we suppose that Kα
φ (Dd) denotes the family of functions g where g(φ(t))φ′(t)

belongs to H1(Dd) and decays double exponentially with respect to φ. If f belongs to
Kα
φ (Dd) with respect to φ, then we have the following formulas for definite and indefinite

integrals based on DE transformation which is given and fully discussed in [3,7]:

∫ b

a

f(x)dx = h

j=N
∑

j=−N

f(φ(jh))φ′(jh) +O(exp(
−2πdN

log(2πdN/α)
)),

and
∫ s

a
f(x)dx = h

∑j=N
j=−N f(φ(jh))φ

′(jh)( 12 + 1
π si(

πψ(s)
h − jπ))

+O( logNN exp(− πdN
log(πdN/α) )),

where Si(t) is the Sine integral defined by:

Si(t) =

∫ t

0

sinw

w
dw,

and the mesh size h satisfies h = 1
N log(πdN/α).

3 Main Idea

To explain Sinc collocation method, we suppose in the right-hand side of (1) thatK(x, .)u(.) ∈
Kα
φ (Dd). Then by using indefinite integration formula for second term in right-hand side of

Volterra integral equations (1) we obtain:

∫ x

a

K(x, t)u(t)dt ≃ h
N
∑

j=−N

K(x, tj)φ
′(jh)(

1

2
+

1

π
Si(

πφ−1(x)

h
− jπ))uj (5)

where uj denotes an approximate value of u(tj), tj = φ(jh) where [6]

φ(t) =
b− a

2
tanh(

π

2
sinh t) +

a+ b

2
, (6)

and

φ′(t) =
b− a

2

π/2 cosh(t)

cosh2(π/2 sinh(t))
(7)

We assume that u(x), the solution of (1) is approximated by the finite expansion of Sinc
basis functions:

um(x) =

N
∑

j=−N

ujS(j, h)oφ(x), m = 2N + 1. (8)
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The n-th derivative of function um(x) at points xk = φ(kh) can be approximated by using
finite number of terms as:

u(n)m (x) = h−n
N
∑

j=−N

δ
(n)
jk uj , (9)

where

δ
(m)
jk =

dm

dφm
S(j, h)oφ(t)|t=kh, m = 0, 1, 2 (10)

by simple calculations we have in particular:

δ
(0)
jk =

{

1 if j = k
0 if j 6= k,

δ
(1)
jk =

{

1 if j = k
(−1)(k−j)

(k−j) if j 6= k,

δ
(2)
jk =

{

−π2

3 if j = k
−2(−1)(k−j)

(k−j)2 if j 6= k.

If we replace u(x) in (1) by (8) and using (5) we have:

N
∑

j=−N

{

2
∑

i=0

βi(x)
di

dxi
S(j, h)oφ(x)− hK(x, tj)φ

′(jh)ηj,h(x)

}

uj ≃ f(x), (11)

where

ηj,h(x) = (
1

2
+

1

π
Si(

πφ−1(x)

h
− jπ))

Setting[5]

di

dφi
S(j, h)oφ(x) = S

(i)
j (x), i = 0, 1, 2 (12)

We note that

d
dxS(j, h)oφ(x) = S

(1)
j (x)φ′(x),

d2

dx2S(j, h)oφ(x) = S
(2)
j (x)[φ′(x)] + S

(1)
j (x)φ′′(x)

To find unknown uj , j = −N, ..., N , we can apply the Sinc collocation points xk =
φ(kh), k = −N, ..., N , so we have following system of (2N + 1)(2N + 1) unknowns uj

N
∑

j=−N

[

2
∑

i=0

gi(xk)
(−1)iδ

(i)
kj

hi
− hδ

(−1)
kj K(xk, xj)]uj = fk, k = −N, ..., N (13)

where
g0(xk) = β0(xk), g2(xk) = β2(xk)(φ

′(xk))
2,

g1(xk) = β1(xk)φ
′(xk) + β2(xk)φ

′′(xk),

δ
(−1)
kj = ( 12 + 1

πSi(π(k − j))), k, j = −N..N.
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We can write the algebraic system (13) in a matrix form as

Mu = f (14)

where the component of matrix M = (Mkj) is:

Mkj =
2

∑

i=0

gi(xk)
(−1)iδ

(i)
kj

hi
− hδ

(−1)
kj K(xk, xj), k, j = −N..N

and the vectors u and g are

u =







u−N
...
uN






, f =







f(x−N )
...
f(xN )







By solving the above linear system of equations, we obtain uj which approximate u(x)
at Sinc point u(xj). Furthermore in order to get an approximate value of u(x) at arbitrary
point x, we can apply the method in [8].

4 Numerical Experiments

In this section, the theoretical results of the previous sections are illustrated by two numerical
examples. In all examples, d taken to be d = π/2 and α = 1, also for the computation of
Si(x), we evaluated it directly using the integral representation:

Si(x) =
π

2
− f1(x) cos(x)− f2 sin(x)

where

f1(x) =

∫

∞

0

x exp(−t)
t2 + x2

dt, f2(x) =

∫

∞

0

t exp(−t)
t2 + x2

dt

We consider the following two test problems.

Example 1.

For the sake of comparison, we consider the problem discussed by Mohsen and El-Gamel
in [5]. They used single exponential transformation (SE) and numerical results are listed
below, where ‖Es‖ is maximum absolute error.

u′′(x) + 1
sin(πx)u(x) = f(x) +

∫ x

0
K(x, t)u(t)dt

f(x) = −π2 sin(πx)− 1 + π(1+x) cos(πx)−sin(πx)−π
π2(1+x2) ,

K(x, t) = 1+t
1+x2 , u(0) = u(1) = 0,

with the exact solution: u(x) = sin(πx).
The maximum errors forN = 10, 20, 40, 60, 80 are listed in Table 1:
Our calculations are carried out in double precision arithmetic with Maple 13. We use

DE transformations to approximate u(x) by applying φ(t) and Sinc points. The results are
shown in Table 2:

Comparing results show that, DE transformation has high efficiency and accuracy be-
cause we take N = 3, 5, 7, 10, 15 and have very accurate approximation in comparing by the
results in [5].
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Figure 1: u(x) the exact and um(x) approximate solution of Example 1

Table 1: Max-Error for Example 1

N ‖Es‖
10 1.490000E-003
20 9.800000E-005
40 1.836250E-006
60 8.255625E-008
80 7.820003E-009

Table 2: Max-Error for Example 1 using DE transformation

N ‖Es‖
3 2.300000E-003
5 4.200000E-005
7 4.800250E-007
10 8.255625E-008
15 8.320003E-012

Example 2.

Let the following integro differential equation:

u′′(x) + xu′(x) + u(x) = f(x) +
∫ x

0
K(x, t)u(t)dt

f(x) = 3x2 − 2x− exp(2x)(2x− 3)− 3 exp(x) + 2

K(x, t) = exp(x+ t), u(0) = u(1) = 0,

with the exact solution: u(x) = x(x− 1)
The maximum errors for N = 3, 5, 7, 9, 10 ares shown in Table 3.



54 M. A. Fariborzi Araghi and Gh. Kazemi Gelian

u(x) u_(x)

x
1

0

Figure 2: u(x) the exact and um(x) approximate solution of Example 2.

Table 3: Max-Error for Example 2.

N ‖Es‖
3 1.261000E-001
5 5.885000E-002
7 0.636250E-005
9 8.144705E-008
10 4.232003E-009

By taking small value for N , we also obtain very accurate approximation, which is
important in the point of view of numerical methods and computational algorithms.

5 Conclusion

We applied the Sinc collocation method based on double exponential transformation to
integro differential equations, we observe that significant improvement have been obtained
compared with numerical results reported by others. Also, we improved the accuracy of
the solution by selecting the appropriate shape parameters and selecting the large values of
N . The results of the examples showed the high accuracy of the proposed method. This
method is also able to save the time and decrease the number of calculations. In addition
this method is portable to other area of problems and easy to programming.
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