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ABSTRACT

Conjugate Gradient (CG) method is an interesting tool to solve optimization problems
in many fields, such design, economics, physics and engineering. Until now, many CG
methods have been developed to improve computational performance and have applied in
the real-world problems. Combining two CG parameters with distinct denominators may
result in non-optimal outcomes and congestion.In this paper, a new hybrid three-term CG
method is proposed for solving unconstrained optimization problems. The hybrid three-term
search direction combines Hestenes-Stiefel (HS) and Dai-Yuan (DY) CG parameters which
standardized by using a spectral to determine the suitable conjugate parameter choice and
it satisfies the sufficient descent condition. Additionally, the global convergence was proved
under standard Wolfe conditions and some suitable assumptions. Furthermore, the numerical
experiments showed the proposed method is most robust and superior efficiency compared to
some existing methods.

Keywords: Unconstrained Optimization, Three-Term Conjugate Gradient, Memoryless
Quasi-Newton Method, Line Search, Global Convergence.

1 INTRODUCTION

Consider the subsequent large-scale unconstrained optimization problem:

min
x∈Rn

f(x). (1)

The function f : Rn → R is continuously differentiable and its gradient rk := ∇f(xk) is a Lipschitz
continuous. The Newton method, the quasi-Newton method, and some of their variants [1–3] are
some approaches for addressing unconstrained optimization problems (1). However, the approaches
are not preferable for large-scale problems since they involve computing and storing the Hessian
matrix at each iteration. Specifically, the Hessian matrix turns singular when the approaches fail.
As a result, Conjugate Gradient (CG) were developed to overcome those problems due to its ease of
implementation, Hessian free and low storage requirements [4].
The sequence {xk} is generated by the iterative formula to solve equation (1) which as follows

xk+1 = xk + sk, sk = αkdk, k = 0, 1, 2, . . . (2)
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where αk is a step length which αk > 0 and dk s the search direction, defined by

dk =

{
−rk, if k = 0,

−rk + βkdk−1, if k > 0.
(3)

The step length αk is generated by computing the suitable the line search conditions. The step
length satisfies the standard Wolfe line search, in which

f(xk + αkdk)− f(xk) ≤ η1αkr
T
k dk, (4)

r(xk + αkdk)
Tdk ≥ η2r

T
k dk, (5)

where 0 < η1 < η2 < 1. The search direction is required to satisfy the sufficient descent condition

rTk dk ≤ −t∥rk∥2, t > 0. (6)

The βk is the conjugate gradient parameter that defines the global convergence properties and
numerical performance of various conjugate gradient methods. The most well-known conjugate
gradient methods include Hestenes-Stiefel (HS) [5], Polak-Ribiere-Polyak (PRP) [6, 7], Liu-Storey
(LS) [8], Dai-Yuan (DY) [9], Fletcher-Reeves (FR) [10], and Conjugate Descent (CD) [11]. These
methods are described as follows:

βFR
k =

∥rk∥2

∥rk−1∥2
, βCD

k =
∥rk∥2

−rTk−1dk−1
, βDY

k =
∥rk∥2

dTk−1yk−1
. (7)

βPRP
k =

rTk yk−1

∥rk−1∥2
, βLS

k =
rTk yk−1

−rTk−1dk−1
, βHS

k =
rTk yk−1

dTk−1yk−1
(8)

where ∥.∥ is the Euclidean norm in Rn and yk−1 = rk − rk−1.

Babaie-Kafaki and Ghanbari [12] propose that methods incorporating a common term like rTk yk−1

tend to perform well in practical situations. According to [13, 14], these methods may not consistently
show improvement due to jamming and demonstrating differences when compared to methods
utilizing a common term ∥rk∥2. Babaie-Kafaki and Mahdavi-Amiri [15] emphasized the quest to
enhance the effectiveness of these strategies and prevent potential issues, researchers are exploring
the combination of methods from both groups. From a theoretical perspective, Hager and Zhang [4]
contend that global convergence theorems for methods using a common term ∥rk∥2 only require
the Lipchitz assumption, diverging from other choices of update parameters that necessitate
boundedness assumptions. Powell [16] underscores that jamming is the primary factor contributing
to the nonoptimal practical performance of the FR method. Babaie-Kafaki [17] observes that when
a bad direction and a small step occur between xk and xk−1, the ensuing direction dk and step
length αk are likely to be less than optimal unless a gradient restart is employed. Nevertheless,
Babaie-Kafaki [18] also highlighted that methods employing a common term inherently exhibit an
inherent feature resembling an approximate restart to address the jamming issue. According to
Andrei [19, 20], the newly computed search direction dk closely aligns with the steepest descent
direction −rk when a small value of βk is generated due to the poor step sk−1, where the gradient
difference yk−1 in the numerator approaches zero.
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Wang [21] proposed a spectral that provides the optimal step size strategy in the gradient method
as a new scheme for determining the conjugate parameters and the new search direction meets both
the sufficient descent and spectral conditions. The global convergence is then proven under some
suitable assumptions. The spectral parameter θk is described below

θk = max{min{α∗
k, ρ̄k}, ρk} (9)

where α∗
k = −

sTk−1rk−1

υ∥yk−1∥2ρk
, ρ̄k =

∥sk−1∥2

sTk−1yk−1
, ρk =

sTk−1yk−1

∥yk−1∥2
and υ is positive value.

Motivated by suitable conjugate parameters choice spectral proposed by Wang [21] and the issues
discussed by Andrei [13, 14] and Babaie-Kafaki [12] in addressing convergence and jamming [12], this
paper aims to tackle these challenges. The primary objective is to prevent jamming by considering a
combined analysis of the norms ∥rk∥2, ∥sk−1∥2, and ∥yk−1∥2. This modification involves computing
the maximum of these norms, serving as a new adjustable parameter dynamically influencing the
CG update. Equation (16) introduces a critical decision point in the CG update process, which
depends on the value of zk calculated in Equation (15). If zk equals ∥yk−1∥2, the update direction
becomes yk−1; otherwise, it remains rk. This decision is pivotal in preventing jamming and ensuring
convergence throughout the iterative process. The approach of these equations is to amalgamate
the strengths of various CG schemes and dynamically adapt update parameters to address jamming
issues. By assessing the norms and switching between update directions based on the value of zk,
these equations enhance the performance of CG methods and aligning with discussions by various
authors in the existing literature.

To enhance the standard two-term direction, researchers have explored the development of hybrid
and three-term CG methods. As the method presented by Andrei [22], it involves modifying the
inverse Hessian approximation within the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula while
ensuring the adherence of the search direction to descent and conjugacy principles. Liu and Li
[23] purposed a hybrid CG approach combining features of LS and DY methods through a convex
combination. This results in a search direction satisfying both the Dai-Liao (DL) conjugacy condition
and the Newton direction which the added advantage of achieving global convergence through a
strong Wolfe line search. Xu and Kong [24] proposed two hybrid methods that combine the PRP
method with FR and the HS method with DY, respectively. Both hybrids yield descent directions
and achieve global convergence through Wolfe line search. Dong [25] has devised a modified HS
method that not only adheres to the descent condition but also closely approximates the Newton
method. Min Li [26] suggests a three-term PRP CG method closely resembling the memoryless BFGS
quasi-Newton method. This method reverts to the classical PRP approach under exact line search
conditions and when the descent condition is satisfied regardless of the line search considerations.
The satisfactory line search strategies contribute to its global convergence and numerical results
indicate its effectiveness in solving unconstrained optimization problems. Additionally, Min Li
[27] introduces a nonlinear CG algorithm generating a search direction akin to the memoryless
BFGS quasi-Newton method. Notably, this search direction meets the descent condition and the
global convergence has been established for both strongly convex and nonconvex functions under
strong Wolfe line search. Abubakar [28] proposes a hybrid three-term CG algorithm where the
search direction is determined using the limited memory BFGS method. This approach successfully
meets the requirements of both sufficient descent and trust region, establishing global convergence
under specific conditions and showcasing efficiency when compared to certain previously suggested
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methods. In addition, Kumam [29] and Deepho [30] introduce modifications to hybrid three-term
CG approaches incorporating combinations of HS and LS, as well as CD and DY, and offering a
scaled preconditioner for the hybrid parameters. These adjustments utilize the existing conjugate
gradient parameters, yielding favorable outcomes in resolving a range of test problems for both
methodologies. A comparable concept was implemented in [31] and [32] with diverse combinations
of conjugate parameters.

Inspired by ideas presented in [28–30], we introduce a fresh hybrid three-term CG method designed
for solving equation (1). Termed the hybrid three-term HS-DY (TTHD) direction, it amalgamates
the three-term HS and DY directions. Additionally, this direction exhibits similarities to the
memoryless BFGS quasi-Newton method and incorporates trust region properties. We establish
global convergence under both Wolfe line search conditions. The reported numerical outcomes
suggest the superiority of our hybrid method over those proposed in [27–30]. Which sets our approach
apart is its unique advantage of possessing favorable properties from both HS and DY directions.
For more comprehensive information on CG methods, interested readers can explore [33–35].

2 ALGORITHM AND THEORETICAL RESULTS

In [30], Deepho has introduced a hybrid three-term TTCDDY CG method with the following search
direction

dTTCDDY
k = −rk +

(
rTk rk
vk

−
∥rk∥2rTk dk−1

v2k

)
dk−1 − ck

rTk dk−1

vk
rk, k ≥ 1, (10)

where

vk = max
(
ζ∥dk−1∥∥rk∥,−dTk−1rk−1, d

T
k−1yk−1

)
, ζ > 1, 0 ≤ ck ≤ ck < 1.

Similarly, Kumam [29] proposed a hybrid three-term TTHSLS CG algorithm wherein the search
direction possesses the form

dHTTHSLS
k = −rk +

(
rTk yk−1

uk
−

∥yk−1∥2rTk dk−1

u2k

)
dk−1 + ck

rTk dk−1

vk
yk−1, k ≥ 1, (11)

where

uk = max
(
ζ∥dk−1∥∥yk−1∥,−dTk−1rk−1, d

T
k−1yk−1

)
, ζ > 1, 0 ≤ ck ≤ ck < 1.

Both TTCDDY and HTTHSLS methods satisfy the sufficient descent conditions and global conver-
gence is proven under some assumptions. The numerical results indicated that both hybrid methods
outperform the previous methods. Motivated by the TTCDDY and HTTHSLS, we propose a new
hybrid three-term CG algorithm based on the LBFGS Quasi-Newton algorithm with standardization
by the spectral proposed by Wang [21]. Next, we will recall the search direction of the memoryless
BFGS method by Shanno [36] and Nocedal [37], which can be written as

dBFGS
k = −

(
I −

sTk−1yk−1

sTk−1yk−1
−
yTk−1sk−1

sTk−1yk−1
+
sk−1y

T
k−1yk−1sk−1

sTk−1yk−1
+
sk−1s

T
k−1

sTk−1yk−1

)
rk,
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where sk−1 = xk − xk−1 = αk−1dk−1 and I is the identity matrix. By simplifying the dBFGS
k , it can

be described as

dBFGS
k = −rk +

(
rTk yk−1

dTk−1yk−1
−

∥yk−1∥2rTk dk−1

(dTk−1yk−1)2

)
dk−1 +

rTk dk−1

dTk−1yk−1
(yk−1 − sk−1), k ≥ 1. (12)

By recalling the three-term HS CG method proposed by Li [27] which defined as

dTHS
k = −rk +

(
rTk yk−1

dTk−1yk−1
−

∥yk−1∥2rTk dk−1

(dTk−1yk−1)2

)
dk−1 + ck

rTk dk−1

dTk−1yk−1
yk−1, (13)

By recalling the three-term DY CG method proposed by Deepho [30] which defined as

dTDY
k = −rk +

(
rTk rk

dTk−1yk−1
−

∥rk∥2rTk dk−1

(dTk−1yk−1)2

)
dk−1 − ck

rTk dk−1

dTk−1yk−1
rk. (14)

To achieve the standardization for both parameters, we propose a modification of spectral proposed
by Wang [21]. This adjustment involves replacing terms associated with ∥rk∥2, ∥sk−1∥2, and ∥yk−1∥2,
thereby allowing the selection of suitable values for the conjugate parameter and search direction.

zk = max
{
min

{
∥rk∥2, ∥sk−1∥2}, ∥yk−1∥2

}}
. (15)

where

ωk =

{
yk−1 if zk = ∥yk−1∥2,
rk otherwise.

(16)

When ωk = yk−1 then dTTHD
k = dTHS

k ; otherwise, dTTHD
k = dTDY

k . The standardization process
applied to both search directions in equations (13) and (14) using equations (15) and (16) results in
a similarity to the TTHD search direction. Consequently, the standardized search direction can be
explicitly defined as follows

dTTHD
k = −rk +

(
rTk ωk

dTk−1yk−1
−

∥ωk∥2rTk dk−1

(dTk−1yk−1)2

)
dk−1 + ck

rTk dk−1

dTk−1yk−1
ωk, (17)

To solve the problem of finding the univariate minimum, it becomes necessary to determine the
parameter ck,

min
t∈R

∥(yk−1 − sk−1)− tωk∥2 . (18)

Let Ak = (yk−1 − sk−1)− cωk, then

AkA
T
k = [(yk−1 − sk−1)− cωk] [(yk−1 − sk−1)− cωk]

T ,

= c2ωkω
T
k − c

[
ωT
k (yk−1 − sk−1) + (yk−1 − sk−1)

Tωk

]
+ (yk−1 − sk−1)(yk−1 − sk−1)

T ,
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Let Bk = yk−1 − sk−1, then

AkA
T
k = c2ωkω

T
k − c(ωT

k Bk +BT
k ωk) +BkB

T
k

tr(AkA
T
k ) = c2∥ωk∥2 − c(tr(ωT

k Bk) + tr(BT
k ωk)) + ∥Bk∥2

= c2∥ωk∥2 − 2cωT
k Bk + ∥Bk∥2.

By taking the derivative of the previous expression with respect to ck and equating it to zero, we
derive the following result,

2c∥ωk∥2 − 2ωT
k Bk = 0.

This yields

c =
ωT
k (yk−1 − sk−1)

∥ωk∥2
. (19)

Therefore, we choose ck to be

ck = min{c̄,max{0, c}}, (20)

where 0 ≤ ck ≤ c̄ < 1.

In accordance with the search direction stated in equations (17), we introduce a new search direction
for the hybrid three-term CG method which as follows,

d0 = −g0, dTTHD
k = −rk + βTTHD

k dk−1 + γTTHD
k ωk, k ≥ 1, (21)

where

βTTHD
k =

rTk ωk

dTk−1yk−1
−

∥ωk∥2rTk dk−1

(dTk−1yk−1)2
, γTTHD

k = ck
rTk dk−1

dTk−1yk−1
. (22)

3 CONVERGENCE ANALYSIS

Next, we discuss the global convergence results of the TTHD method based on the following set of
assumptions

Assumption 1 The level set B = {x ∈ Rn : f(x) ≤ f(x0)} is bounded, where x0 is starting point.

Assumption 2 Suppose some neighbourhood B of B is gradient of f that is Lipschitz continuous
on B and continuously differentiable. In which, B > 0 such that for all x,

∥r(x)− r(b)∥2 ≤ L∥x− b∥, b ∈ B.

From Assumptions 1 and 2 indicates that there exists a constant T1, T2 > 0 for all x ∈ B, in which

∥x∥ ≤ T1, ∥r(x)∥ ≤ T2.

Moreover, {f(xk)} is decreasing when the sequence {xk} ∈ B is decreasing. Thus, suppose that the
objective function is bounded below and the Assumption 1 and 2 hold.

Next, we present the sufficient descent condition for the TTHD method.
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Lemma 3.1 Search direction dk determined in (21) satisfies (6) with t =
(
1− 1

4
(1 + c̄)2

)
.

Proof: Multiplying each sides of (21) with rTk , we get

rTk dk = −∥rk∥2 +
rTk ωk

dTk−1yk−1
rTk dk−1 − ∥ωk∥2

(dTk−1yk−1)2
(rTk dk−1)

2 + ck
rTk ωk

dTk−1yk−1
rTk dk−1

= −∥rk∥2 + (1 + ck)
rTk ωk

dTk−1yk−1
rTk dk−1 −

∥ωk∥2

(dTk−1yk−1)2
(rTk dk−1)

2.

(23)

We obtain ak and bk by using the inequality aTk bk ≤ 1

2

(
∥ak∥2 + ∥bk∥2

)
,

αk =
1√
2
(1 + ck)rk, βk =

√
2(rTk dk−1)ωk

dTk−1yk−1

(1 + ck)
rTk ωk

dTk−1yk−1
rTk dk−1 ≤

1

4
(1 + ck)

2∥rk∥2 +
∥ωk∥2

(dTk−1yk−1)2
(rTk dk−1)

2. (24)

Substitute (24) into (23), we obtain

rTk dk ≤ −∥rk∥2 +
1

4
(1 + ck)

2∥rk∥2 +
∥ωk∥2

(dTk−1yk−1)2
(rTk dk−1)

2 − ∥ωk∥2

(dTk−1yk−1)2
(rTk dk−1)

2

= −∥rk∥2 +
1

4
(1 + ck)

2∥rk∥2

≤ −
(
1− 1

4
(1 + c̄)2

)
∥rk∥2.

The proof is completed. □

Remark 3.1 The lemma 3.1 demonstrates that the TTHD always obeys the sufficient descent
condition without necessitating a line search.

Dai and Yuan [9] demonstrated that the Wolfe line search condition is satisfied by all conjugate
gradient methods

Theorem 3.1 [9] Given the fulfillment of both Assumptions 1 and 2, and satisfied conditions (4)
and (5), if

∞∑
k=0

1

∥dk∥2
= +∞.

Then

lim
k→∞

inf ∥rk∥ = 0. (25)
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Proof: By employing a proof by contradiction, assume that equation (25) is not fulfilled. In this
instance, there exists a positive scalar ς such that

∥rk∥ ≥ ς, for all positive value of k. (26)

Lemma 3.2 If the sequence {dk} is described in (21), there exists a positive scalar λ2 such that
∥dk∥ ≤ ∥rk∥λ2.

Recalling the expression for dTTHD
k as given in (22) for ωk = yk−1 when zk = ∥yk−1∥2,∥∥dTTHD

k

∥∥ ≤
∥∥−rk + βTTHD

k dk−1 + γTTHD
k yk−1

∥∥
≤ ∥ − rk∥+ |βTTHD

k |∥dk−1∥+ |γTTHD
k |∥yk−1∥

= ∥rk∥+

∣∣∣∣∣ rTk yk−1

dTk−1yk−1
−

∥yk−1∥2rTk dk−1

(dTk−1yk−1)2

∣∣∣∣∣ ∥dk−1∥+ ck

∣∣∣∣∣ rTk dk−1

dTk−1yk−1

∣∣∣∣∣ ∥yk−1∥

≤ ∥rk∥+
(

∥rk∥∥yk−1∥
∥rk−1∥∥dk−1∥

+
∥yk−1∥2∥rk∥∥dk−1∥
(∥rk−1∥∥dk−1∥)2

)
∥dk−1∥+ ck

(
∥rk∥∥dk−1∥
∥rk−1∥∥dk−1∥

)
∥yk−1∥

≤ ∥rk∥+

(
αk−1∥rk∥∥dk−1∥
fαk−1∥dk−1∥2

+
α2
k−1∥rk∥∥dk−1∥3

ζ2α2
k−1∥dk−1∥4

)
∥dk−1∥

+ ck

(
∥rk∥∥dk−1∥
ζαk−1∥dk−1∥2

)
αk−1∥dk−1∥

= ∥rk∥+
(
∥rk∥

1

ζ
+ ∥rk∥

1

ζ2

)
+ ∥rk∥ck

(
1

ζ

)
≤ ∥rk∥

(
1 +

1

ζ
+

1

ζ2
+
c̄

ζ

)
.

In which λ2 = ∥rk∥
(
1 +

1

ζ
+

1

ζ2
+
c̄

ζ

)
, where ∥dk∥ ≤ ∥rk∥λ2.

The same proof technique is applied in an alternative scenario, where zk ≠ |yk−1|2 and ωk = rk
holds. Consequently, the sequence |dk| has the upper bound produced by the TTHD method. □

Moreover, we present the well-known Zoutendijk condition [38], a pivotal factor in the global
convergence analysis of the TTHD method.

Lemma 3.3 [38] Assuming the fulfillment of Assumptions 1 and 2, and considering the sequence
{xk} generated by (2), where dk adheres to the sufficient descent condition and αk is determined by
Wolfe line search, then

∞∑
k=0

(
rTk dk

)2
∥dk∥2

< +∞. (27)
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Satisfying condition (4), under the conditions of αk > 0, η1 > 0, and 0 ≤ c̄ ≤ 1 and Lemma 3.1, we
derive

f(xk + αkdk) ≤ f(xk) + η1αkr
T
k dk

≤ f(xk)− η1αk

(
1− 1

4
(1 + c̄)2

)
∥rk∥2

≤ f(xk).

Elaborating on the above finding and considering Assumption 1, we deduce the following

f(xk+1) ≤ f(xk) + η1αkr
T
k dk ≤ f(xk) ≤ f(xk−1) ≤ . . . ≤ f(x0) < +∞.

Incorporating condition (5) by adding −rTk dk yields

g(xk + αkdk)
Tdk − rTk dk ≥ η2r

T
k dk − rTk dk = − (1− η2) r

T
k dk.

Using Lemma 3.1, along with condition (5) and Assumption 2, it deduces as follows

−(1− η2)r
T
k dk ≤ (gk+1 − rk)

Tdk ≤ ∥gk+1 − rk∥∥dk∥ ≤ αkL∥dk∥2. (28)

Multiplying −η1rTk dk to the above inequality and combine it with (4), we deduce

η1 (1− η2)

L

(
rTk dk

)2
∥dk∥2

≤ −η1αkr
T
k dk ≤ f(xk)− f(xk+1)

and

η1 (1− η2)

L

∞∑
k=0

(
rTk dk

)2
∥dk∥2

≤ (f(x0)− f(x1)) + (f(x1)− f(x2)) + . . . ≤ f(x0) < +∞.

As mentioned earlier, the sequence f(xk) is confined within specific bounds. This suggests that

∞∑
k=0

(
rTk dk

)2
∥dk∥2

< +∞.

The conjunction of inequality (26) and (6) implies that

rTk dk ≤ −
(
1− 1

4
(1 + c̄)2

)
∥rk∥2 ≤ −

(
1− 1

4
(1 + c̄)2

)
∥ς∥2. (29)

By squaring both sides and dividing equation (29) by ∥dk∥2, where ∥dk∥ ≠ 0, we derive

∞∑
k=0

(
rTk dk

)2
∥dk∥2

≥
(
1− 1

4
(1 + c̄)2

)2 ∞∑
k=0

∥ς∥4

∥dk∥2
= +∞. (30)

Since it contradicts the Zoutendijk condition (27), then it validates the theorem.
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4 NUMERICAL EXPERIMENTS

The performance of the new TTHD CG algorithm is analysed in this section on 150 test functions
taken into consideration from Moré [39], and Jamil [40], and Andrei [41]. The newly proposed
method, denoted as TTHD, will undergo comparison with various other methods, such as NHS+
[27], HTT [28], TTCDDY [30], HTTHSLS [29]. The comparisons are made based on reductions in
terms of the Number of Iterations (NOI) and Central Processing Unit (CPU) times with dimensions
ranging from 2 to 1,000,000 as stateed in Table 1. All the comparative methods were implemented
and executed using Matlab R2021B which equipped with an Intel® Core™ i5-9300H processor, 16
GB RAM, and 64-bit Windows 11 on a personal laptop.

Table 1 : List of Test Functions and their Dimensions.

No. Functions Dimensions No. Functions Dimensions
1 Extended White & Holst 50,000 76 Cube 2
2 Extended White & Holst 100,000 77 Cube 50
3 Extended White & Holst 1,000,000 78 Cube 100
4 Extended Rosenbrock 50,000 79 Extended Maratos 10
5 Extended Rosenbrock 100,000 80 Extended Maratos 50
6 Extended Rosenbrock 1,000,000 81 Extended Maratos 100
7 Extended Freudenstein and Roth 1,000 82 Generalized Tridiagonal 1 5
8 Extended Freudenstein and Roth 50,000 83 Generalized Tridiagonal 1 10
9 Extended Freudenstein and Roth 100,000 84 Generalized Tridiagonal 1 100
10 Extended Beale 1,000 85 Trecanni 2
11 Extended Beale 50,000 86 Trecanni 2
12 Extended Beale 100,000 87 Zettl 2
13 Raydan 1 10 88 Zettl 2
14 Raydan 1 50 89 Shallow 1,000
15 Raydan 1 100 90 Shallow 50,000
16 Extended Tridiagonal 1 10 91 Shallow 100,000
17 Extended Tridiagonal 1 50 92 Generalized Quartic 100
18 Extended Tridiagonal 1 10 93 Generalized Quartic 5,000
19 Diagonal 4 1,000 94 Generalized Quartic 10,000
20 Diagonal 4 5,000 95 Quadratic QF2 10
21 Diagonal 4 50,000 96 Quadratic QF2 100
22 Extended Himmelblau 1,000 97 Quadratic QF2 1,000
23 Extended Himmelblau 50,000 98 Six Hump Camel 2
24 Extended Himmelblau 100,000 99 Six Hump Camel 2
25 FLETCHCR 100 100 Three Hump Camel 2
26 FLETCHCR 5,000 101 Three Hump Camel 2
27 FLETCHCR 50,000 102 Dixon and Price 1,000
28 Extended Powell 100 103 Dixon and Price 10,000
29 Extended Powell 1,000 104 Dixon and Price 100,000
30 NONSCOMP 2 105 POWER 10
31 NONSCOMP 4 106 POWER 50
32 NONSCOMP 10 107 POWER 500

Continued on next page
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Continued from previous page
No. Functions Dimensions No. Functions Dimensions
33 Extended DENSCHNB 1,000 108 Quadratic QF1 100
34 Extended DENSCHNB 50,000 109 Quadratic QF1 1,000
35 Extended DENSCHNB 100,000 110 Quadratic QF1 10,000
36 Extended Penalty Function U52 5 111 Generalized Tridiagonal 2 10
37 Extended Penalty Function U52 10 112 Generalized Tridiagonal 2 50
38 Extended Penalty Function U52 50 113 Generalized Tridiagonal 2 500
39 Hager 5 114 Leon 2
40 Hager 10 115 Leon 2
41 Hager 50 116 Sphere 1,000
42 Booth 2 117 Sphere 10,000
43 Booth 2 118 Sphere 100,000
44 Sum Squares 1,000 119 Quartic 4
45 Sum Squares 10,000 120 Quartic 4
46 Sum Squares 100,000 121 Strait 1,000
47 Matyas 2 122 Strait 100,000
48 Matyas 2 123 Strait 1,000,000
49 Extended Quadratic Penalty QP3 5 124 Zirilli or Aluffie-Petini’s 2
50 Extended Quadratic Penalty QP3 10 125 Zirilli or Aluffie-Petini’s 2
51 Extended Quadratic Penalty QP3 100 126 Extended Block-Diagonal BD1 100
52 Extended Quadratic Penalty QP2 5 127 Extended Block-Diagonal BD1 5,000
53 Extended Quadratic Penalty QP2 50 128 Extended Block-Diagonal BD1 50,000
54 Extended Quadratic Penalty QP2 500 129 Perturbed Quadratic 2
55 Extended Quadratic Penalty QP1 5 130 Perturbed Quadratic 2
56 Extended Quadratic Penalty QP1 10 131 Perturbed Quadratic 2
57 Extended Quadratic Penalty QP1 100 132 Extended Hiebert 1,000
58 DENSCHNA 1,000 133 Extended Hiebert 10,000
59 DENSCHNA 10,000 134 Extended Hiebert 100,000
60 DENSCHNA 100,000 135 Linear Perturbed 100
61 DENSCHNB 100 136 Linear Perturbed 5,000
62 DENSCHNB 5,000 137 Linear Perturbed 50,000
63 DENSCHNB 50,000 138 QUARTICM 1,000
64 DENSCHNC 100 139 QUARTICM 50,000
65 DENSCHNC 5,000 140 QUARTICM 100,000
66 DENSCHNC 50,000 141 Diagonal 2 2
67 DENSCHNF 100 142 Diagonal 2 5
68 DENSCHNF 5,000 143 Diagonal 2 10
69 DENSCHNF 50,000 144 Colville 4
70 HIMMELBG 10 145 Colville 4
71 HIMMELBG 50 146 Price Function 4 2
72 HIMMELBG 100 147 Price Function 4 2
73 HIMMELBH 10 148 DIAG-AUP1 10
74 HIMMELBH 50 149 DIAG-AUP1 1,000

Continued on next page
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Continued from previous page
No. Functions Dimensions No. Functions Dimensions
75 HIMMELBH 100 150 DIAG-AUP1 10,000

The numerical comparisons were conducted objectively using the standard Wolfe line search, where
the parameter values for our proposed method are η1 = 0.0001, η2 = 0.09, and c̄ = 0.3, while the
parameter values were maintained for NHS+, HTT, TTCDDY and HTTHSLS. When ∥rk∥ ≤ 10−6,
all methods were terminated and will fail if the optimal value is never reached or the number of
iterations exceeds 10,000. For the step length, αk will be selected when the search iterations of the
standard Wolfe line search exceed 6. The overall numerical results for the all methods including
the NOI and CPU times are provided at https://shorturl.at/dnxPS. Further evaluation and visual
illustration of the results were conducted using the performance profile tool introduced by Dolan
and Moré [42], as shown in Figure 1 and Figure 2, respectively. Generally, the highest curve in the
performance profile indicates superiority and better efficiency of the algorithm. As demonstrated
in [42], the performance profiles measure τp,s, representing the time needed to solve each problem
p ∈ P by solver s ∈ S. The performance profile formula is defined as follows

ψs(τ) =
1

np
size{p ∈ P : log2 rp,s ≤ τ}.

where τ > 0, size {p ∈ P : log2 rp,s ≤ τ} is the number of elements in the set {p ∈ P : log2 rp,s ≤ τ},
and rp,s is the performance ratio formulated as rp,s = τp,s/min{p ∈ P : log2 rp,s ≤ τ}.

According to numerical reports and our plots in Figure 1 and Figure 2, the proposed TTHD method
establishes a number of advantages which TTHD is effective for the 62% of the tested problems and
more efficient compared to other methods in the comparison. In addition, the numerical performance
of the TTHD method is comparatively stable due to the parameter choices (15), (16), and (22).
According to the numerical results of the two comparisons and their respective performance profiles,
all five methods have proved to be practically effective, at least for these particular sets of numerical
experiments. The effectiveness of each method can be observed by referring to Figure 1 and Figure
2, where the NHS+ mmethod solves 91% of the problems, the HTTHSLS 97%, the TTCDDY
92%, the HTT 89% and the TTHD 100%. In this perspective, the TTHD method is most effective
compared with other methods. Additionally, it is necessary to note that the TTHD performs robustly,
particularly when confronting difficult problems.

5 CONCLUSION

In this article, the HS and DY CG parameters are combined to create a hybrid CG algorithm.
Independent of the line search, the search direction of the algorithm is sufficiently descent and
bounded. In addition, the step length was derived through standard Wolfe line searches. Under
appropriate assumptions, global convergence of the algorithm was proven. On the basis of the
numerical results, it is clear that the new hybrid method is more effective and robust than other
methods, providing quicker and more stable convergence for the majority of the problems considered.
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Figure 1 : Performance Profiles on NOI.

Figure 2 : Performance Profiles on CPU time.
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