
App. Math. and Comp. Intel., Vol. 1 (2012) 56–62

http://amci.unimap.edu.my

c© 2012 Institute of Engineering Mathematics, UniMAP

A preliminary report on the utilization of Galerkin-PSO

method for solving interpolation-like problem

Ayu Fitri Yantia,∗, Iwan Pranotob

aMathematics Department

Faculty of Mathematics and Natural Sciences

Institut Teknologi Bandung

40132, Bandung, Indonesia.

bIndustrial and Financial Mathematics Research Group

Faculty of Mathematics and Natural Sciences

Institut Teknologi Bandung

40132, Bandung, Indonesia.

Received: 29 February 2012; Revised: 19 April 2012; Accepted: 20 July 2012

Abstract: The interpolation-like problem discussed in this paper is to search an optimal
curve minimizing a functional cost and at the same time interpolating several given points.
Instead of solving the optimization problem with constrain directly, we transform the prob-
lem into a pure optimization problem, without constrain. After that, the Galerkin Method is
used to make the problem finite dimensional one. The problem becomes finding a minimal
point and value of a finite dimensional function. The Particle Swarm Optimization (PSO)
algorithm is used to minimize this function.

Keywords: Interpolation, Galerkin method, Particle swarm optimization.

PACS: 02.70.-c, 02.60.-x

1 Introduction

Interpolation is the process of defining a function if the values at specified points are given.
In [1], they discuss an interpolation method to find a differentiable function that passes pre-
scribed points and at the same time minimizes some energy integral analytically. This paper
discusses an approach. The approach first transforms the original optimization problem with
constrains into a pure minimization one without constrains. After that, using the Galerkin
method, the minimization problem is transform into a discrete one. The method then ap-
proximates the infinite dimensional problem with a finite dimensional one. Thus, now the
problem becomes a problem of minimizing some finite dimensional function. For minimiz-

∗Corresponding Author: ayufitriyanti@hotmail.com (Ayu Fitri Yanti)



App. Math. and Comp. Intel., Vol. 1, 2012 57

ing this finite dimensional function, it utilizes the Particle Swarm Optimization (PSO). The
PSO is an evolutionary computation technique developed by Kennedy and Eberhart in 1995.
This means that PSO have been around for just over fifteen years. However, it has been
researched and utilized intensively in various areas. In this paper, we will observe the PSO
performance in solving the interpolation-like problem as stated above.

2 Problem Formulation

2.1 Problem

Suppose we are given N+1 points (x0, y0), (x1, y1), (x2, y2), ..., (xN , yN ) with 0 = x0 < x1 <

... < xN = 1 and y0 = yN = 0. The problem here is to find a continuously differentiable
function f : [0, 1] → R on [0, 1] with f(0) = f(1) = 0 such that it minimizes the following
functional

J(f) = α

1
∫

0

[

f (γ)(x)
]2

dx+ (1− α)

N−1
∑

i=1

(f(xi)− yi)
2

where 0 < α < 1, γ = 1 and 2. The term
∫ 1

0

[

f (γ)(x)
]2

dx is the energy integral,
∑N−1

i=1 (f(xi)−
yi)

2 is the total error between the actual function value at xi with the expected value yi.
The constants α and 1 − α are the weights. Here f (γ)(x) denotes the derivative of f(x) of
order γ. Even though the method proposed here should work with any rational value of
γ, we restrict γ = 1 and 2. We consider Galerkin method [6] and Fourier series such as in [7].

The function is discretized by Galerkin method and it can be represented by the following
Fourier series

f(x) =

∞
∑

j=1

aj sin jπx

for some a1, a2, a3, ... where aj ’s follow the following formula

aj = 2

1
∫

0

f(x) sin jπx, j = 1, 2, 3, ...

and satisfy the conditions
∑

∞

j=1 j
2γa2j < ∞.

Then, we approximate the function with the Fourier series f̂ , where

f̂(x) =

∞
∑

j=1

aj sin jπx,

for some M . Now the problem becomes to find (a1, a2, ..., aM ) which minimizes

J
(

f̂(x)
)

= Ĵ(a1, a2, a3, ..., aM )

= α

1
∫

0

[

f̂ (γ)(x)
]2

dx+ (1− α)

N−1
∑

i=1

[

f̂(xi)− yi

]2

.

Since

f̂ (1)(x) =

M
∑

j−1

ajjπ cos jπx,



58 Ayu Fitri Yanti and Iwan Pranoto

then

Ĵ(a1, a2, a3, ..., aM ) = α

1
∫

0





M
∑

j−1

ajjπ cos jπx





2

dx+ (1− α)

N−1
∑

i=1









M
∑

j−1

aj sin jπxi



− yi





2

.

When the second derivative is considered, that is γ = 2, we have

f̂ (2)(x) = −

M
∑

j−1

aj(jπ)
2 sin jπx.

Thus the function to be minimized will be

Ĵ(a1, a2, a3, ..., aM ) = α

1
∫

0





M
∑

j−1

aj(jπ)
2 sin jπx





2

dx+ (1− α)
N−1
∑

i=1









M
∑

j−1

aj sin jπxi



− yi





2

.

We will use the PSO algorithm to minimize the function Ĵ : RM → R.

2.2 Particle Swarm Optimization

Particle Swarm Optimization or PSO is introduced by Kennedy and Eberhart (1995)[2]. PSO
is a population-based stochastic optimization technique inspired by the social behaviour of
bird flocking or fish schooling. Each particle, or more precisely its coordinate, represents a
candidate solution. Elements of the coordinate of a particle represent values to be searched.
First these particles are ”flown” into the search space. The original process for implementing
the global version of PSO is as follows: let the ith particle position in a M -dimensional space
be represented as Ai = (ai1, ai2, ..., aiM ). The best previous position (the position giving the
best fitness value) of the ith particle is recorded and represented as Pi = (pi1, pi2, ..., piM ).
The index of the best particle among all the particles in the population is represented by
the symbol g. The rate of the position change (velocity) for particle ith is represented by
Vi = (vi1, vi2, ..., viM ). The particles move on the search space following the following rules:

vim = vim + c1r1(pim − aim) + c2r2(pgm − aim) (1)

vim = Vmax, if vim > Vmax

vim = −Vmax, if vim < Vmax

aim = aim + vim (2)

Here vim is momentum which represents inertia component and memory of previous flight
direction. This term prevents the particle from drastically changing direction. The constants
c1 and c2 are two positive constants. The symbols r1 and r2 are two random functions in the
range [0, 1]. The term c1r1(pim − aim) is cognitive component which represents the private
thinking of the particle itself, and c2r2(pgm − aim) is the social component which represents
the collaboration among the particles. Finally, the symbol Vmax is a parameter controlling
the global exploration of particles.

In equation 1, the right hand side consists of three parts: the first part is the previous
velocity of the particle; the second and third parts are the ones contributing to the change
of the velocity of a particle. It is used to calculate the particle’s new velocity according to
its previous velocity and the distances of its current position from its own best experience



App. Math. and Comp. Intel., Vol. 1, 2012 59

(position) and the group’s best experience. Then the particle moves toward a new position
according to equation 2. The performance of each particle is measured according to a pre-
defined fitness function which is related to the problem to be solved.

And then, as in [5], the term Vmax is modified to increase its convergence rate. Inertia
weight concept is introduced to control the exploration and exploitation controlling the mo-
mentum vim [4]. Therefore, the original PSO turns into:

vim = wvim + c1r1(pim − aim) + c2r2(pgm − aim)

According to [4], the recommended value of w should be on the range [0.9, 1.2]. In [3], it
introduces the “lbest” concept. And then, constriction factor is introduced in [8], so that
equation 1 becomes

vim = κ [vim + c1r1(pim − xim) + c2r2(pgm − xim)]

κ =
2

|2− ϕ−
√

ϕ2 − 4ϕ|
,where ϕ = c1r1 + c2r2, ϕ ≥ 4

The optimal settings suggested in [8] correspond to ϕ = 4.1, κ = 0.7298, c1 = c2 = 2.05. So
that, κc1 = κc2 = 1.49618.

2.3 Particle Swarm Optimization Algorithm for This Problem

Suppose there are K agents z1, z2, z3, ..., zK . Mathematically, each agent is a time-varying
vector. The iteration process determines the vector value of the functions based on the
previous values. The process initially starts at a randomly selected location in RM . Suppose
the coordinate of the kth agent is zk = [ak1 , a

k
2 , a

k
3 , ..., a

k
M ], k = 1, 2, ...,K. Then, the position

of all agents at a certain iteration can be written in the form of a matrix A.









a11 a21 ... aK1
a12 a22 ... aK2
: : : :

a1M a2M ... aKM









Thus, the coordinate of the kth agent is the kth column vector of the matrix A.

a. Initialization
Set the constants involved:

1. The weights α and the dimension of the search space M

2. The number of points N

3. The number of agents K

4. The cognitive parameter c1

5. The social parameter c2

6. The random number for individual influence r1, 0 ≤ r1 ≤ 1

7. The random number for social influence r2, 0 ≤ r2 ≤ 1

8. The maximum iteration maxiter

9. The maximum velocity Vmax

10. The maximum position to prevent the particle out of the dynamic range Amax



60 Ayu Fitri Yanti and Iwan Pranoto

11. The initial position of each particle is set randomly to create a matrix of size
M ×K

A0 =









a011 a012 ... a01K
a021 a022 ... a02K
: : : :

a0M1 a0M2 ... a0MK









=
[

A0
1 A0

2 ... A0
K

]

12. The initial velocity of each particle is set randomly to create a matrix of size
M ×K

V 0 =









v011 v012 ... v01K
v021 v022 ... v02K
: : : :

v0M1 v0M2 ... v0MK









=
[

V 0
1 V 0

2 ... V 0
K

]

13. Set iter=1 and maximum error

14. Set initial best previous positionPk and initial best position of population Pg

P 0 = A0 =
[

A10 A0
2 ... A0

K

]

=
[

P 0
1 P 0

2 ... P 0
K

]

After calculating and comparing the value of Ĵ
(

P iter
k

)

, k = 1, 2, ...,K, let Ĵ
(

P 0
g

)

be the smallest value of Ĵ
(

P 0
k

)

, then Pg = P 0
k .

b. Optimization

• Calculate Ĵ
(

Aiter
k

)

value

• If Ĵ
(

Aiter
k

)

≤ Ĵ
(

P iter
k

)

, then Ĵ
(

P iter
k

)

= Ĵ
(

Aiter
k

)

, P iter
k = Aiter

k

• If Ĵ
(

Aiter
k

)

≤ Ĵ
(

P iter
g

)

, then Ĵ
(

P iter
g

)

= Ĵ
(

Aiter
k

)

, P iter
g = Aiter

k

• If stopping criteria is met then program is stopped

• Update particle’s velocity following this equation

V iter+1
k = κ[V iter

k + c1r1(P
iter
k −Aiter

k ) + c2r2(P
iter
g −Aiter

k )],

−Vmax ≤ V iter
k ≤ Vmax

• Update particle’s position

Aiter+1
k = Aiter

k + V iter+1
k ,

−Amax ≤ Aiter
k ≤ Amax

• Update iteration
iter = iter + 1

• Back to the initial step

c. Termination of the iteration
Termination criterion which used on this program is limiting the iteration and error
between objective value at kth and (k − 1)th.

We will get one particle Pg which makes the objective function has a minimum value.
So, the function we are looking at the beginning is f (Pg).



App. Math. and Comp. Intel., Vol. 1, 2012 61

3 Results And Discussion

The following illustrations use dimension of search space (M) is set as 1, 2, 3, 10 and 20.
The population size (K) is 10 and 20 particles. A constriction factor (κ) is set as 0.7298,
κc1 = κc2 = 1.49618. Vmax and Amax are set to be equal, 100 and 100 respectively. The
weight (α) is set as 0.9. The stopping criterion is used by measuring the error between
objective value at kth and (k − 1)th iterations set equal 0.001. The maximum of iterations
(maxiter) is set equal 1, 10, and 100. A total of 15 runs for each combination are conducted.
Tables 1 and 2 show some results for the first case (γ = 1,M = 2) and the second case
(γ = 2,M = 2), respectively, both use f(0) = 0, f(0.5) = 1, f(1) = 0.

Figure 1: f̂(x) = 0.9102 sin(πx) + 0.1938 sin(2πx)

Figure 2: f̂(x) = 0.8112 sin(πx) + 0.0192 sin(2πx)

4 Conclusion And Future Works

In this paper, we propose a method combining Galerkin method and Particle Swarm Op-
timization algorithm for solving an interpolation-like problem. It should be interesting if



62 Ayu Fitri Yanti and Iwan Pranoto

some researchers apply the proposed method on different value of γ, various values of α and
various combination of parameters.

Acknowledgments

The authors would like to thank the Community of Mathematics Department, Institut
Teknologi Bandung, and the Faculty of Mathematics and Natural Sciences, Institut Teknologi
Bandung.

References

[1] H. Gunawan, F. Pranolo, and E. Rusyaman. An interpolation method that minimizes
on energy integral of fractional order. In Proc. of ASCM, pages 151–162, 2008.

[2] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc. of IEEE Inter-
national Conference on Neural Networks, pages 1942–1948, 1996.

[3] R. C. Eberhart and J. Kennedy. New optimizer using particle swarm theory. In Proc. of
the Sixth International Symposium on Micromachine and Human Science, pages 39–43,
1995.

[4] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Proc. of IEEE World
Congr. Computational Intelligence Evolutionary Computation, pages 69–73, 1998.

[5] H. Fan. A modification to particle swarm optimization algorithm. Engineering Compu-
tations, 19:970–989, 2002.

[6] Y. Zhan and N. Ma. Galerkin method, Computational Engineering, Bochvm-
RvhrVeniversitat.

[7] G. B. Folland, Fourier analysis and its applications, Wadsworth & Brooks/Cole, Pacific
Grove,1992.

[8] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and convergence in a
multidimensional complex space. IEEE Transaction on Evolutionary Computation, 6:
58–73, 2002.


